超声波在线监测磁场对NF膜中碳酸钙沉积的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界水资源短缺和水污染正严重地影响着人类的生存和社会经济的发展,纳滤(NF)和反渗透(RO)膜分离技术在解决水资源短缺和水质净化方面发挥着越来越重要的作用。但在膜分离过程中,膜污染严重影响了膜的分离效果,限制了膜分离技术的进一步推广。膜污染机理研究及膜污染控制受到了科学工作者的广泛关注。本文将磁化水处理技术引入到纳滤过程中,并采用超声时域反射法量化研究磁场对纳滤膜表面无机盐垢沉积和生长的影响。
     系统研究了磁场对Ca(HCO_3)_2溶液的某些物理化学性质及其结晶形态的影响。实验中所用的永磁和电磁场强度分别为0.4T和0.02T。实验结果表明磁场可以提高溶液的电导率和pH值,且其效果依赖于溶液浓度。随着溶液的浓度的增大,磁化效果有所减弱。实验过程中的流速和溶液的pH值都会影响到磁化效果。另外,磁场可以促进CaCO_3结晶由方解石向文石或球霞石的转变。
     错流纳滤实验结果表明超声监测与NF膜表面污染层的生长和发展具有良好的关联。随着CaCO_3垢在膜表面沉积,超声信号的振幅不断增高。超声时域信号随着污染层厚度的增加而发生移动。此外,超声监测技术可以监测到不同的磁化条件下,即无磁、永磁和电磁,污染层形成的速率。永磁和电磁作用条件下膜通量下降缓慢,重量法和超声监测结果表明膜表面形成的CaCO_3垢质层厚度较薄。SEM和XRD研究结果表明磁化处理抑制了正六方体方解石的形成,而优先生长松球形的球霞石或针状文石。磁处理后NF膜表面CaCO_3晶体晶型不规则、排列疏松,导致了污染层厚度和密度的减小及NF膜的渗透通量衰减较缓慢,这与超声反射信号的振幅增长较慢相对应。上述磁化效果通常被认为与磁流体动力学机理有关。
     总之,超声监测与膜通量变化、重量法、SEM和XRD等分析结果具有良好的对应关系,这为膜污染控制方法的评价提供了一种有效手段。
The lack of water resource and the serious water pollution in the world are influencing the life and the development of society economic deeply. Nanofiltration and Reverse Osmosis is playing a more and more important role in resolving the lack of water resource and water purification. In the membrane processes, however, membrane fouling weakens the separate effect and limits the further extension of membrane separation technique. The study on the mechanism and the control of membrane fouling has been paid extensive attention to by boffins all over the world. This study introduces the magnetic water treatments into Nanofiltration process, and describes an existing ultrasonic technique for quantitative study of the effect of magnetic fields on the CaCO_3 scale deposition on the membrane surface during crossflow nanofiltration (NF).
    The effects of magnetic fields on some physico-chemistry properties of Ca(HCO_3)_2 solutions and the crystal morphology were investigated systematically. The permanent and electro magnetic fields used in the experiments are 0.4T and 0.02T, respectively. Results show that magnetic field enhances the conductivity and pH of the treated solution and its effect depends on the concentration of the solution. The influence of magnetic fields declines with the increase of solution concentration. The magnetic effect also affected by the flow rate and the pH of the solutions. In addition, the magnetic treatments promote the formation of aragonite and vaterite from calcite.
    The results obtained in the experiments of crossflow nanofiltration show a good relationship between the ultrasonic measurements and the development of CaCO_3 scale on the NF membrane surface. The amplitude of the ultrasonic signal increased with the deposition of the CaCO_3 scale on membrane. Furthermore, the ultrasonic technique is capable of measuring the rate of fouling layer formation under different treatment conditions, i.e. with non-magnetic field, permanent magnetic field and electromagnetic field. The permeate flux of NF membrane declined slower and the thickness of the scale layer obtained by ultrasonic and weight measurements was thinner in the experiments with PMF and EMF. The SEM and XRD analyses imply that the magnetic treatment suppresses the formation of calcite crystals and prefers to vaterite and aragonite. The CaCO_3 crystal deposited on membrane surface is less
    regular and looser, resulting in the decrease in the thickness and density of fouling layer and the slower flux-decline of NF membrane. These correspond with the lower increase in the amplitude of the ultrasonic response signals, the effect of magnetic treatments is normally related to the the magnetohydrodynamic (MHD) mechanism.
    Overall, the independent measurements such as the flux-decline data, weight measurement and SEM analysis corroborate the ultrasonic measurements. The ultrasonic technique has provided an effective measure to evaluate the prevention and control of membrane fouling.
引文
[1] Marcel Mulder,膜技术基本原理(李琳),北京:清华大学出版社,1999,288.
    [2] 张玉忠,郑领英,高从皆,液体分离膜技术及应用,北京:化学工业出版社,2004.
    [3] Baker J S, Judd Simon J. Magnetic amelioration of Scale Formation. Wat Res, 2001, 30(2): 247-260.
    [4] Khalil A, Rosset R, Gabrielli C, et al. Characterization of the efficiency of antiscale treatments of water. Part Ⅱ: Physical Processes. Journal of Applied Electrochemistry, 1999, 29: 339-346.
    [5] 任建新,膜分离技术及其应用,北京:化学工业出版社,2003.
    [6] Schafer A I, Fane A G, Waite T D, Nanofiltration - Principles and Applications, UK: Elsevier Advanced Technology, 2005.
    [7] 高从皆,陈益棠,纳滤膜及其应用,中国有色金属学报,2004,14(S1):310-316.
    [8] 王晓琳,张澄洪,赵杰,纳滤膜的分离机理及其在食品和医药行业中的应用,膜科学与技术,2000,20(1):29-36.
    [9] 秦文忠,纳滤膜的发展和应用,广西化工,2001,30(4):31-34.
    [10] 郭宏,王熊,膜分离技术在我国食品工业中的应用,膜科学与技术,2003,23(4):197-201.
    [11] 张新晖,袁其朋,纳滤在有机相分离过程中的研究进展及其应用,膜科学与技术,2005,25(1):53-57.
    [12] 吴麟华,分离膜中的新成员——纳滤膜及其在制药工业中的应用,膜科学与技术,1997,17(5):11-14.
    [13] 周花,蒋林煜,蓝伟光等,纳滤在制备高浓度活性红3BS中的应用,膜科学与技术,2001,21(5):42-47.
    [14] 何毅,李光明,赵建夫等,纳滤膜分离机理及其在水处理中的应用,净水技术,2003,22(5):30-33.
    [15] Sarney D B, Hale C, Frankel G, et al, Novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanoliftration, Biotechnology and Bioengineering, 2000, 69(4): 461-467.
    [16] Li W Y, Li J D, Chen T Q, et al, Study on nanofiltration for purifying fructo-oligosaecharides: Ⅱ. Extended pore model, J Membr Sci, 2005, 258(1-2): 8-15.
    [17] Banvolgyi S, Horvath S, Bekassy-Molnar E, et al, Concentration of blackcurrant (Ribes nigrum L.)juice with nanofiltration, Desalination, 2006, 200(1-3): 535-536.
    [18] Versari A, Ferrarini R, Parpinello G P, et al, Concentration of grape must by nanofiltration membranes, Food and Bioproducts Processing: Transactions of the Institution of Chemical Engineers, Part C, 2003, 81(3): 275-278.
    [19] 管萍,胡小玲,范伟东等,多肽和氨基酸纳滤膜分离中的膜污染及防治研究进展,材料导报,2003,17(8):47-50.
    [20] Gotoh T, Iguchi H, Kikuchi K, Separation of glutathione and its related amino acids by nanofiltration, Biochemical Engineering Journal, 2004, 19(2): 165-170.
    [21] 韩少卿,叶骥,薛强等,超滤和纳滤膜分离技术提取螺旋霉素,中国抗生素杂志,2005,30(1):52-55.
    [22] Atra R, Vatai G, Bekassy-Molnar E, et al, Investigation of ultra- and nanofiltration for utilization of whey protein and lactose, Journal of Food Engineering, 2005, 69(3): 325-332.
    [23] 潘巧明,楼永通,陈小良等,膜法处理糖蜜制酒精废水的初探,水处理技术,2000,26(6):340-342.
    [24] 王晓琳,膜的污染和劣化及其防治对策,工业水处理,2001,21(9):1-5.
    [25] 刘茉娥,膜分离技术应用手册,北京:化学工业出版社,2001.
    [26] Schippers J C, Verdouw J, The modified fouling index, a method of determining the fouling characteristics of water, Desalination, 1980, 32: 137-148.
    [27] Li J X, Real-time investigation of fouling phenomena in membrane filtrations by a non-invasive ultrasonic technique, D. Sc. Thesis, University of Stellenbosch, South Africa, 2002.
    [28] Wandelt B, Schmitz P, Houi D, Investigation of transient phenomena in crossflow microfiltration of colloid suspensions using NMR micro-imaging, in: Proceedings of the 6th World Filtration Congress, Nagoya, Japan, 1992, 601-606.
    [29] Yao S, Costello M, Fane A G, et al, Non-invasive observation of flow profiles and polarization layers in hollow fibre membrane filtration modules using NMR micro-imaging, J Membr Sci, 1995, 99(3): 207-216.
    [30] Tiller F M, Hsyung N B, Cong D Z, Role of porosity in filtration: Ⅶ filtration with sedimentation, AIChE J, 1995, 41(5): 1153.
    [31] Altmann J, Ripperger R, Particle deposition and layer formation at the crossflow microfiltration, J Membr Sci 1997, 124(1): 119-128.
    [32] Lu W M, Tung K L, Pan C S, et al, Crossflow microfiltration of mono-dispersed deformable particle suspension, J Membr Sci, 2002, 198: 225-243.
    [33] Mackley M R, Sherman N E, Cross-flow cake filtration mechanisms and kinetics, Chem Eng Sci, 1992, 47: 3067.
    [34] Wakeman R J, Visualization of cake formation in cross-flow microfiltration, Trans lchemE, Part A, 1994, 72: 530.
    [35] Mores W D, Davis R H, Direct visual observation of yeast deposition and removal during microfiltration, J Membr Sci, 2001, 189: 217.
    [36] Hutchins D A, Mair H D, Ultrasonic monitoring of slip-cast ceremics, J Mater Sci, 1989, 8: 1185.
    [37] Haerle A G, Haber R A, Real-time monitoring of cake thickness during slip casting, J Mater Sci 1993, 28: 5679.
    [38] Mairal A P, Greenberg A R, Krantz W B, et al, Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry, J Membr Sci, 1999, 159: 185-196.
    [39] 柴国墉,Greenberg A G Krantz w B,超声检测技术在膜分离过程中的应用研究,膜科学与技术,2003,23:134-140.
    [40] Al-Bomo A Y, Abdel-Jaward M, Conventional pretreatment of surface seawater for reverse osmosis application, state of the art, Desalination, 1989, 74: 3-36.
    [41] Qahtani H A, Effect of magnetic treatment on Gulf seawater, Desalination, 1996, 107: 75-81.
    [42] 任建新,物理清洗,北京:化学工业出版社,2000.
    [43] Bowen W Richard, Sabuni Hoze A M, Pulsed electrokinetic cleaning of cellulose nitrate microfiltration membranes, Industrial and Engineering Chemistry Research, 1992, 31(2): 515-523.
    [44] Chai X, Kobayashi T, Fujii N, Ultrasound-associated cleaning of polymeric membranes for water treatment, Separation and Purification Technology, 1999, 15: 139-146.
    [45] Czekaj P, Mores W, Davis R H Guell, Infrasonic pulsing for foulant removal in crossflow microfiltration, J Membr Sci, 2000, 180: 157-169.
    [46] Li J X, Sanderson R D, Jacobs E P, Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent, J Membr Sci, 2002, 205: 247-257.
    [47] 黄征青,黄光斗,徐洪涛.水的磁处理防垢与除垢的研究,工业水处理,2001,21(1):5-8.
    [48] Ronald Gehr, Zipi A Z, James A F, et al, Reduction of Soluble Mineral Concentrations in CaSO4 Saturated Water Using a Magnetic Field, Wat Res, 1995, 29(3): 933-940.
    [49] Chibowski E, Hotysz L, Szczes A, Time Dependent Changes in Zeta Potential of Freshly Precipitated Calcium Carbonate, Colloids and Surfaces A, 2003, 222: 41-54.
    [50] Parsons Simon A, Wang B L, Judd S J, et al, Magnetic Treatment of Calcium Carbonate Scale - effect of pH Control, Wat Res, 1997, 31(2): 339-342.
    [51] Holysz L, Chibowski B M, Chibowski E, Time-dependent Changes of Zeta Potential and Other Parameters of in situ Calcium Carbonate due to Magnetic Field Treatment, Colloids and Surfaces A, 2002, 208: 231-240.
    [52] Krylov O T, Vikulova I K, Eletskii V K, et al, Influence of magenetic treatment on the electrokinetic potential of a suspension of CaCO_3, Coll J USSR, 1995, 47: 820-824.
    [53] Wang Y, Babchin A J, Chernyi L T, et al, Rapid Onset of Calcium Carbonate Crystallization under the Influence of a Magnetic Field, Wat Res, 1997, 31(2): 346-350.
    [54] Tebenibin E F, Gusev B T, Electrical power stations(in Russian),Moscow: Enery Press, 1968, 49-52.
    [55] Coey J M D, Stephen Cass, Magnetic Water Treatment, Journal of Magnetism and Magnetic Materials, 2000,209: 71-74.
    [56] Zubiate B M E, Alvarez A, Villafane A M, et al, Influence of Magnetic Water Treatment on the Calcium Carbonate Phase Formation and the Electrochemical Corrosion Behavior of Carbon Steel, 2004,369: 256-259.
    [57] Kobe S, Drazic G, McGuiness P J, et al, The Influence of the Magnetic Field on the Crystallisation Form of Calcium Carbonate and the Testing of a Magnetic Water-treatment Device, Jouranl of Magnetism and Magnetic Materials, 2001, 236: 71-76.
    [58] Kobe S, Drazic G, McGuiness P J, et al, Control over Nanocrystalization in Turbulent Flow in the Presence of Magnetic Fields, Materials Science and Engineering C, 2003, 23: 811-815.
    [59] Baker J S, Judd Simon J, Magnetic amelioration of Scale Formation, Wat Res, 2001, 30(2): 247-260.
    [60] Gruber C E, Carda D D, Performance analysis of permanent magnet type water treatment devices, WSA Research report: Final Report, Water Quality Association, 1981.
    [61] 查恩思,张国栋,工业锅炉磁化水处理应用分析,节能, 2005, 3: 46-47.
    [62] Gabrielli C, Jaouhari R, Maurin G, et al, Magnetic Water Treatment for Scale Prevention, Wat Res, 2001, 35(13): 3249-3259.
    [63] Chibowski E, Holysz L, Szczes A, et al, Precipitation of Calcium Carbonate from Magnetically Treated Sodium Carbonate Solution, Colloids and Surfaces A, 2003, 225: 63-73.
    [64] Busch Kenneth W, Busch Mariannna A, Laboratory Studies on Magnetic Water Treatment and Their Relationship to a Possible Mechanism for Scale Reduction, Desalination, 1997,109: 131-148.
    [65] Kozic V, Lipus L C, Magnetic Water Treatment for a Less Tenacious Scale, J Chem Inf Comp Sci, 2003, 43: 1815-1819.
    [66] 罗漫,陆柱,磁场处理水的阻垢研究,水处理技术,2000,26(4):218-221.
    [67] Qahtani Haitham AI, Effect of magnetic treatment on Gulf seawater, Desalination, 1996, 107: 75-81.
    [68] Vedavyasan C V, Potential use of magnetic fields-a perspective, Desalination, 2001, 134: 105-108.
    [69] Graham William, Method for Removing Solids Solved in Water and Device for its Performance, South Africa, P2002 2837B, 1998.
    [70] Graham William, Reverse Osmosis plant for Water Desalination and Method for Desalination, South Africa, AP2002 2964A, 1996.
    [71] http://www.grahamtek.com/innovations.htm
    [72] 朱安娜,祝万鹏,王晓琳,磁场在自来水纳滤过程中的影响机理初探,膜科学与技术,2004,24(4):52-56.
    [73] 朱安娜,祝万鹏,王晓琳,磁场对静态纳滤过程的膜通量及CaCO_3结晶的影响,环境科学,2004,25(5):70-74.
    [74] Long F, Zhu A N, Wang X L, et al, Membrane flux and CaCO3 crystallization in the unstirred dead-end nanofiltration of magnetic solution, Desalination, 2005, 186, 243-254.
    [75] 马丽霞,赵仁兴,庞立涛等,磁场对纳滤膜分离性能影响研究,水处理技术,2005,31(1):20-22.
    [76] 黄征青,徐洪涛,黄光斗,磁化水超滤后的防垢限度研究,湖北工学院学报,2002,17(3):1-3.
    [77] Baker John S, Judd Simon J, Parsons Simon A, Anti-scale Magnetic Pretreatment of Reverse Osmosis Feedwater, Desalination, 1997, 110: 151-166.
    [78] Marial A P, Greenberg A R, Krantz W B, et al, Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectormetry, Desalination, 2000, 130: 45-60.
    [79] Zhang Z X, Greenberg A R, Krantz W B, Study of membrane fouling and cleaning in spiral wound modules using ultrasonic time-domain reflectometry, New Insights into Membrane Science and Technology: Polymeric and Biofunctional Membranes, Bhattacharyya and Butterfield, Elsevier, 2003.
    [80] Sanderson R D, Li J X, Koen L J, In situ measurement of particle deposition and its removal in microfiltration by ultrasonic time-domain reflectometry, Desalination, 2002, 146: 169-175.
    [81] Li J X, Koen L J, Hallbauer D K, et al, Interpretation of calcium sulfate deposition on reverse osmosis membranes using ultrasonic measurements and a simplified model, Desalination, 2005, 186: 227-241.
    [82] Li J X, Hallbauer D K, Sanderson R D, Direct monitoring of membrane fouling and cleaning during ultrafiltdration using a non-invasive ultrasonic technique, J Membr Sci, 2003, 215: 33-52.
    [83] Li J X, Hallbauer Zadorozhnaya V Y, Hallbauer D K, Cake-layer deposition, growth, and compressibility during microfiltration measured and modeled using a noninvasive ultrasonic technique, Ind Eng Chem Res, 2002, 41:4106-4115.
    [84] Li J X, Sanderson R D, Jacob E P, Non-invasive visualization of the fouling of microfiltration membranes by ultrasonic time-domain reflectometry, J Membr Sci, 2002, 201:17-29.
    [85] Li J X, Chai G Y, Sanderson R D, A focused ultrasonic sensor for detection of protein fouling on tubular UF membranes, Sensor & Actuator B, 2006, 114: 182-191.
    [86] Li J X, Sanderson R D, Chai G Y, et al, Development of an ultrasonic technique for in situ investigating the properties of deposited protein during crossflow ultrafiltration, Journal of Colloid and Interface Science, 2005, 284: 228-238.
    [87] MacAdam J, Parsons Simon A, Calcium carbonate scale formation and control, Environmental Science and Bio/Technology, 2004,3:159-169.
    [88] Barrett Rebecca A, Parsons Simon A, The Influence of Magnetic Fields on Calcium Carbonate Precipitation, Wat Res, 1998, 32(3): 609-612.
    [89] Kenz S, Pohar C, The magnetic field influence on the polymorph composition of CaCO_3 precipitated from carbonized aqueous solutions, Journal of Colloid and Interface Science, 2005, 281: 377-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700