特长公路隧道排烟道顶隔板结构抗火性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会发展,特长公路隧道出现的越来越多,隧道结构防火是隧道火灾安全工程的一个重要组成部分。国内对于独立排烟道集中排烟方式既无成熟经验又无相应规范,对于其在火灾下及火灾后的安全性关键参数还没有研究,限制了该技术的推广应用。
     本文在模型隧道大规模热烟试验的基础上,对钢筋混凝土排烟道结构(包括顶隔板和牛腿)和素混凝土隧道衬砌结构的抗火性能进行模型试验研究。通过火灾试验、理论分析和数值模拟等方法,本文取得了研究成果如下:
     (1)通过对顶隔板试件在HC曲线、900℃恒温、800℃恒温和700℃恒温作用2h的火灾试验研究,得到了高温-荷载耦合作用下顶隔板的温度场分布及挠度变化规律。
     (2)对受火后的顶隔板承载力损伤特征、损失程度和损伤等级进行了研究,获得了不同工况后的承载力损失与受火温度的非线性关系,经受HC曲线、900℃恒温、800℃恒温和700℃恒温作用2h后剩余承载力分别减少了76%、50%、25%和24%。
     (3)对在HC升温曲线作用2h时,有(无)防火涂料防护的植筋牛腿结构进行了火灾试验研究,得到了温度场分布及高温反应规律。对受火后牛腿结构承载力损失程度进行了试验研究,得到了剩余承载力变化规律。
     (4)开展了牛腿植筋高温性能试验研究,获得了牛腿植筋在火灾作用下的温度分布、变形特点及高温后在荷载作用下的变形规律,分析了连接处的安全状态。
     (5)对在不同受热温度和不同荷载等级下植筋试块的粘结滑移力学性能进行了拉拔试验,测算了常温下、高温自然冷却后、恒温加载植筋试件的极限承载力、极限粘结应力和承载力损失,得到了恒载升温植筋试件破坏的温度和相对滑移量等关键技术参数,总结了高温后和恒温加载植筋试件极限粘结应力和承载力损失的变化规律。
     (6)在试验研究及理论分析的基础上,通过有限元分析方法对足尺排烟道顶隔板的火安全性进行了数值计算,对火灾后足尺顶隔板结构的损伤等级提出了判断标准和判断方法,对各工况下顶隔板构件的安全性能进行了评定,并提出了加固范围。
     本研究将填补在特长公路隧道集中排烟道结构抗火性能研究的空白,提高公路隧道火灾防灾救灾水平,对国内特长公路隧道消防工程设计、规范制定、工程的实际应用等也有很大的实际价值和指导意义。
With the social development, more and more extra-long highway tunnels appear, it is an important concern to protect tunnel structure from fire in tunnel fire safety engineering. There is no mature experience and corresponding code for centralized smoke exhaust mode in independent smoke shaft by now, which has limited the application of this technique. As there is no research on key safety parameters of independence smoke shaft both in fire and after fire, the application of this technology is limited.
     Based on the hot somke test of tunnel model, this papper presents the fire resistance of the reinforced concrete structure of independant smoke shaft (including both roof spacer and corbel structure) and plain concrete lining structure by model test. On the basis of fire experiments, theoretical analysis and numerical simulation, a seires of valuable findings are achieved. The main researches are as following:
     (1) By fire tests of roof spacer under HC standard curve, 900℃,800℃,700℃for 2 hours, the temperature field distribution and deflection varition of roof spacer under coupling of load and temperature is studied.
     (2) The damage characteristicsm, damage degree and damage grade of variant working conditions after fire are tested, the nonlinear relation between bearing ability of roof spacer and fire temperture is obtained, the residual bearing ability decrease by 76%、50%、25% and 24% respectively.
     (3) By fire test under HC standard curve for 2 hours, the temperature field distribution and high temperature reaction of corbel structure with (without) fire retardant coatings are obtained. The bearing ability after fire is tested and the declines degree is obtained,
     (4) The experiments of adhesive steel bar under and after fire are tested, the temperature field distribution, deformation features and deformation law under load after fire are obtained, the safety of the joint is analyzed.
     (5) The pull-out tests of adhesive steel bar under different temperatures and different load are studied, the ultimate bearing ability, ultimate bond stress and capacity loss under room temperature, natural cooling after high temperature and constant high temperature are analyzed, some key paremeters, such as failure temperature and slided displacement are obtained, the law of ultimate bond stress and capacity loss under and sfter high temperature is obtained.
     (6) On the basis of test research and theoretical analysis, by using finite element analysis, the evaluation standard and method of damage grade of full-scale roof spacer after fire are carried out, the safety of roof spacer is evaluated, and the strengthening area is proposed.
     This study will fill in the gap in the field of fire resistance research of extra-long highway tunnels, raise the level of disaster prevention and reduction, also, provide great reference and guiding significance for fire engineering design, code modification and practical application of engineering.
引文
[1]Vauquelin O, Megret O. Smoke Extraction Experiments in Case of Fire in a Tunnel.Fire Safety Journal,2002,37:525-533.
    [2]Kim M B, Choi J S, Han Y S, Choi B I, Jang Y J. The Status of Road Tunnel Fire, safety in Korea. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003:223-226.
    [3]Lamont D R, Bettis R. Smoke Build-Up Resulting from Hydraulic Oil Fires in a 5.6m2 Tunnel. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003:193-198.
    [4]Takekuni K, Shimoda A, Yokota M. The Characteristics of Fires in Large-Scale Tunnels on Fire Experiments inside the Shimizu No.3 Tunnel on the New Tomei Expressway. Proceedings of ITA World Tunnel Congress 2003.Amsterdam,2003:179-184.
    [5]El-Arabi I A, Duddeck H, Ahrens H. Structural Analysis for Tunnels Exposed to Fire Temperatures. Tunnelling And Underground Space Technology, 1992,7(1):19-24.
    [6]闫治国,杨其新.秦岭特长公路隧道火灾温度场分布试验研究.地下空间,2003,23(2):191-195.
    [7]曾巧玲,赵成刚,梅忐荣.隧道火灾温度场数值模拟和试验研究.铁道学报,1997,19(3):92-98.
    [8]涂文轩.铁路隧道火灾的试验研究.消防技术与产品,1997,(10):32-36.
    [9]柴永模.隧道内发生火灾时的温度初探.消防技术与产品信息,2002,(3):16-23.
    [10]张祉道.公路隧道的火灾事故通风.现代隧道技术,2003,40(1):34-43.
    [11]PIARC. Fire and Smoke Control in Road Tunnels.05.05.B. Paris,1999.
    [12]L6nnermark A, lngasonH, Gas Temperatures in Heavy Goods Vehicle Fires in Tunnels. Fire Safety Journal,2005,40:506-527.
    [13]Haack A. Fire Protection in Traffic Tunnels—Initial Findings from Large-Sclae Tests. Tunnelling and Underground Space Technology, 1992,7(4):363-375.
    [14]Haack A. Fire Protection in Traffic Tunnels:General Aspects and Results of the EUREKA Project. Tunnelling and Underground Space Technology,1998, 13(4):377-381.
    [15]U.S. Department of Transportation, Federal Highway Administration(FHWA). Prevention and Control of Highway Tunnel Fires. FHWA-RD-83-032,1983.
    [16]L6nnermark A. On the Characteristics of Fires in Tunnels (Doctoral Thesis). Land:Land University,2005.
    [17]ITA. Guidelines for Structural Fire Resistance for Road Tunnels. WG 6 Report,2005.
    [18]高伟,译.英吉利海峡隧道穿梭列车火灾试验.消防技术与产品信息,1994,(4):39-41.
    [19]彭伟,霍然,胡隆华,钟委,杨瑞新.隧道内纵向风速对火源上方烟气温度影响的试验.中国科学技术大学学报,2006,36(10):1063-1068.
    [20]胡隆华,霍然,王浩波,杨瑞新.公路隧道内火灾烟气温度及层化高度分布特征试验.中国公路学报,2006,19(6):79-82.
    [21]彭伟,霍然,胡隆华,王浩波,杨瑞新.隧道火灾的全尺寸试验研究.火灾科学,2006,15(4):212-218.
    [22]Yan Z G, Yang Q X, Zhu H H. Large-scaled Fire Testing for Long-sized Road Tunnel. Tunnelling and Underground Space Technology,2006b,21:282.
    [23]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究.土木工程学报,2005,38(11):96-101.
    [24]闫治国,杨其新,朱合华.火灾时隧道内烟流流动状态试验研究.土木工程学报,2006,39(4):94-98.
    [25]梁平,兰馨,龙新峰.公路隧道火灾的模型试验与数值模拟分析.中国西部科技,2008,7(33):1-3.
    [26]Bari S, Naser J. Simulation of Smoke from a Burning Vehicle and Pollution Levels Caused by Traffic Jam in a Road Tunnel. Tunnelling and Underground Space Technology,2005,20:281-290.
    [27]Woodbum P J, Britter R E. CFD Simulations of A Tunnel Fire-Part Ⅰ. Fire Safety Journal,1996a,26:35-62.
    [28]Woodbum P J, Britter R E. CFD Simulations of A Tunnel Fire-Part Ⅱ. Fire Safety Journal,1996b,26:63-90.
    [29]Modic J. Fire Simulation in Road Tunnels. Tunnelling And Underground
    Space Technology,2003,18(3):525-530.
    [30]Alan B, Richard C, Paul J.隧道内火灾大小和火灾蔓延模拟研究.消防科学与技术,2007,2:125-131.
    [31]黄恒栋.地下建筑火灾中火烟温度、火风压沿程变化及其防治措施.重庆建筑工程学院学报,1995,17(1):68-73.
    [32]龙新峰,李艳玲,梁平.顶棚烟道对隧道火灾烟流蔓延作用的数值分析.华南理工大学学报(自然科学版),2009,37(4):100-105.
    [33]王彦富,蒋军成,龚延风,钟星灿,茅靳丰,周平.公路隧道拱顶附近烟气最高温度的理论预测与试验研究.公路,2008,4:212-216.
    [34]张进华,杨高尚,彭立敏,欧阳心和.隧道火灾烟气流动的数值模拟.中南公路工程,2006,31(1):4-8.
    [35]卢平,丛北华,廖光煊,范维澄,厉培德.中国工程科学,2004,6(10):59-64.
    [36]Both C, Haar P W, Wolsink G M. Evaluation of Passive Fire Protection Measures for Concrete Tunnel Linings. TNO Report,2003b.
    [37]O1st D V, Bosch R V D. Behaviour of Electrical Cables During Fire In Tunnels. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003:991-992.
    [38]Richter E. Propagation and Development of Temperature from Tests with Railway and Road Vehicles-Comparison between Test Data and Temperature Time Curves of Regulations. Proceedings of the International Conference on Fire in Tunnels. Borhs,1994.
    [39]Harmathy T. Z., Alto L W. Thermal Properties of Concrete Subject to Elevated Temperature. Concrete for Nuclear Reactors, ACI SP34, Detroit, 1972.376-406.
    [40]Harada T. Strength, Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperature. Concrete for Nuclear Reactors, ACI SP34, Detroit, 1972.377-406.
    [41]Sullivan P J E,Khouty G A, Grainger B N. Apparatus for measuring the transient thermal strain behavior of unsealed concrete under constant load for temperature up to 700℃. Magazine of concrete Research,1983,35(125): 229-236.
    [42]Khouty G A, Grainger B N, Sullivan P J E. Strain of concrete during first heating to 600℃ under load. Magazine of concrete Research,1985,37(133):
    195-215.
    [43]Cabriel A, Khoury, Brain N, Grainger, Patrick J E. Sullivan Strain of concrete during first cooling from 600℃ under load. Magazine of concrete Research,1986,38(134):3-12.
    [44]Khouty G A, Majorana C E, Pesavento F, Schrefler B A. Modelling of heated concrete. J1.Magazine of Concrete Research,2002,54(2):77-101.
    [45]Abrams M S. Behavior of Inorganic Materials in Fire. ASTM STB 685, American Society for Testing and Materials,1979.
    [46]Schneider, Ulrich. Modeling of Concrete Behavior at High Temperature. Design of Structure against Fire, Elsevier Applied Science Publishers, London,1986.
    [47]Lea F,and Stradine R. Me Resistance to Fire of Concrete and Reinforced Concrete. Engineering, Vol.114, No.2959, Sep.1922.
    [48]Diederichs U, Schneider U. Bond Strength at High Temperature. Magazine of Concrete Research,1981(6):75-84.
    [49]Moeley P D, and Royles R. Response of the Bond in Reinforced Concrete to High Temperature. Magazine of Concrete Research, No.123, Sep.1983.
    [50]Chih-Huang Chiang, Cho-Liang Tsai. Time-temperature analysis of bond strength of a rebar. after fire exposure. Cement and concrete research, 2003,33:1651-1654.
    [51]Carlos C, Durrani A J. Effect of Transient High Temperature on High-Strength Concrete. ACr Materials Joumal,1990,87(1):47-53.
    [52]Phan T, Carino N J. Review of Mechanical Properties of HSC at Elevated Temperature. Journal of Materials In Civil Engineering,1998,10(l):58-64.
    [53]Shi X D, Tan T H, Tan K H, Guo Z H. Concrete Constitutive Relationships Under Different Stress-Temperature Paths. Journal of Structural Engineering, 2002b,128 (12):1511-1518.
    [54]Luccioni B M, Figueroa MI, Danesi R F. Thermo-mechanic Model for Concrete Exposed to Elevated Temperatures. Engineering Structures, 2003,25:729-742.
    [55]E1-Hawary M M, Ragab A M, EI-Azim A A. Elibiaris Effect of Fire on Shear Behaviour of RC Beams. Computer and Structure,1997,65(2):281-287.
    [56]Kang S W, Hong S G. Behavior of Concrete Members at Elevated
    Temperatures Considering Inelastic Deformation. Fire Technology, 2003,39:9-22.
    [57]Thienel K C, Rostay. Transient Creep of Concrete Under Biaxial Stress and High Temperature. Cement and Concrete Research,1996,26(9):1409-1422.
    [58]Schrefler B A, Khoury G A, Gawin D, Majorana C E. Thermo-Hydro-Mechanical Modeling of High Performance Concrete at High Temperatures. Engineering Computations,2002b,19(7):787-819.
    [59]Ichikawa Y, England G L. Prediction of moisture migration and pore pressure build-up in concrete at high temporature. Nuclear Engineering and design.2004,228:245-250.
    [60]过镇海,时旭东.钢筋混凝土的高温性能及其计算.北京:清华大学出版社,2003.
    [61]徐或.火灾高温后钢筋力学性能的试验研究:[硕士学位论文].长沙:长沙铁道学院,2000.5.
    [62]朱玛.火灾高温后混凝土力学性能的试验研究:[硕士学位论文].长沙:长沙铁道学院,20005.
    [63]吴波.火灾后钢筋混凝土结构的力学性能.北京:科学出版社,2003.
    [64]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究.1990,(1):37-43.
    [65]胡海涛,董毓利.高温时高强混凝十强度和变形的试验研究.土木工程学报.2002,35(6):44-47.
    [66]陆洲导.钢筋混凝十梁对火灾反应的分析.同济大学工程结构研究所,1989.
    [67]李卫,过镇海.高温中混凝土的强度和变形性能试验研究.建筑结构学报,1993,14(1):8-16.
    [68]张大长,吕志涛.火灾对RC、PC构件材料性能的影响.南京建筑工程学院学报,1998,(2):25-31.
    [69]吴波,袁杰,王光远.高温后高强混凝十力学性能试验研究.土木工程学报,2000,33(2):8-12.
    [70]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋本构关系.四川建筑科学研究,1990,17(1):37-43.
    [71]钮宏,陆洲导,陈磊.高温下钢筋与棍凝土本构关系的试验研究.同济大学学报,1990,18(3):287-297.
    [72]时旭东,过镇海.高温下钢筋棍凝土受力性能的试验研究.土木工程学报,2000,33(6):6-16.
    [73]吴波,马忠诚.高温后混凝土变形特性及本构关系的试验研究.建筑结构学报,1999,20(5):42-49.
    [74]吴波,马忠诚.高温后高强混凝土力学性能的试验研究.土木工程学报,2000,33(2):8-12.
    [75]胡倍雷,宋玉普.高温后混凝土在复杂应力状态下的变形和强度特性的试验研究.四川建筑科学研究,1994,(1):47-50.
    [76]范进,吕志涛.高温后预应力钢丝性能的试验研究.工业建筑,2002,32(9):30-31.
    [77]Harmathy T Z. Effect of moisture on the fire endurance of building elements. Philadelphia:ASTM publication STP,1965,74-95.
    [78]Kowbel W, Pate L K,et al,Fire Resistant Coating For Polymericfibers. International Sampe Symposium and Exhibition,2001,46(2):2577-2581.
    [79]Andrew K. Improving Concrete Performance in Fires. Concrete,2004, 38(8):40-41.
    [80]Khoury G A. Effect of Fire on Concrete and Concrete Structures. Progress of Structure Engineering Material,2000,(2):429-447.
    [81]Anderberg Y. Spalling phenomena of HPC and OC. Proceedings of International Workshop on Fire Performance of High2St rengt h Concrete (NIST Special Publication 919). Gait hersburg:NIST,1997,69-73.
    [82]Chan Y N, Peng G F, Anson M. Fire behavior of high-performance concrete made with silica fume at various moisture content. ACI Materials Journal,1999,96 (3):405-411.
    [83]Poon C S, Azhar S, Anson M, et al. Comparison of the strength and durability performance of normal and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research,2001,31 (9):1291-1300.
    [84]Poon C S, Azhar S, Anson M, et al. Performance of metakaolin concrete at elevated temperatures. Cement & Concrete Composites,2003,25 (1):83-89.
    [85]Hertz K D. Limits of spalling of fire-exposed concrete. Fire Safety Journal, 2003,38 (2):.103-116.
    [86]Hertz K D. Danish Investigations on Silica Fume concrete at elevated temperatures. ACI Materials Journal,1992,89(4):345-347.
    [87]Faris A. Is high strength concrete more susceptible to explosive spalling than normal strength concrete in fire? Fire Materials,2002,26:127-130.
    [88]Both C, Wolsink G M, Breunese A J. Spalling of Concrete Tunnel Linings in Fire. Proceedings of ITA World Tunnel Congress 2003. Amsterdam,2003c: 227-231.
    [89]Phan T, Carino N J. Review of Mechanical Properties of HSC at Elevated Temperature. Jounral of Materials In Civil Engineering,1998,10(1):58-64.
    [90]Sanjayan G, Stocks L J. Spalling of High Strength Silica Fume Concrete in Fire. ACI Materials Journal,1993,90 (2):170-173.
    [91]Kalifa P, Menneteau F D, Quenard D. Spalling and Pore Pressuer in HPC at High Temperatures. Cement and Concerte Research,2000,30:1915-1927.
    [92]Noumowe AN, Clastres P, Debicki G, Costaz J L. Transient Heating Efect on High Strength Concrete. Nuclear Engineering and Design,1996,166:99-108.
    [93]Hertz K D. Limits of Spalling of Fier-exposed Concrete. Fier Safety, 2003,38(2):103-116.
    [94]Yabuki M, Abo El-Wafa Ahmed M, Ayano T, Sakata K. Fire Resistance of Polypropylene Fiber Reinforce Concrete. Jounral of the Society of Materials Science,2002,51 (10):1123-1128.
    [95]Varley N. Robotic Application of High Performance Passive Fire Protective in Tunnels. Tunnelling and Underground SpaceTechnology,2004,19:318.
    [96]Suhaendi S L. Residual Strength and Permeabilny of Hybrid Fiber Reinforced High Strength Concrete Exposed to High Temperature. [Master Thesis]. Sapporo, Japan:Hokkaido University,2004.
    [97]朋改非,陈延年,Anson M.高性能硅灰混凝土的高温爆裂与抗火性.建筑材料学报,1999,2(3):193-198.
    [98]王正友,廖明成,丁水军,金祖权.混杂纤维高性能混凝土高温性能试验.焦作工学院学报(自然科学版),2002,21(5):338-340.
    [99]鞠丽艳,张雄.聚丙烯纤维对高性能混凝土高温性能的影响.建筑材料学报,2004,7(1):25-28.
    [100]肖建庄,王平.掺聚丙烯纤维高性能混凝土高温后的抗压性能.建筑材料学报,2004,7(3):281-285.
    [101]傅宇方,黄玉龙,潘智生,唐春安.高温条件下混凝土爆裂机理研究进展.建筑材料学报,2006,9(3):323-329.
    [102]董香军.纤维高性能混凝土高温、明火力学与爆裂性能研究:[博士学位论文].大连:大连理工大学,2007.2.
    [103]Witteveen J, Twilt L, Bylaard F S K. The Stability of Braced and Unbraced Frames at Elevated Tempetatures. Second International Colloquium on Column Strength,Liege,1977.
    [104]Ellingood B, James R. Reliability of RC Beam Subjected to Fire. Journal of Structural Engineering,1977,103(ST9):1047-1059.
    [105]Gustaferro A H, Abrams M, Sand Salse E A B. Fire Resistance of Prestressed Concrete Beams. Study C:Structural Behavior During Fire Tests. Research and Development Department Bulletion, No. RD009.01 B, PCA, Skokie,1971.29.
    [106]Ellingwood B and Shaver J R. Efects of Fire on Reinforced Concrete members. Journal of structural Engineering, ASCE 106(11),1980. 2151-2166.
    [107]Ellingwood B and Lin T D. Flexure and Shear Behavior of Concrete Beams During Fires. Journal of structural Engineering, ASCE, V.117,No.2, MarApr, 1991.440-458.
    [108]Gustaferco A H and Selvaggino S L. Fire Endurance of Simply Supported Prestcessed Concrete Slabs. Journal, PCI, V 12, No.1, Feb,1967.37-52.
    [109]Huang Z, Burgess I W and Plank R J. Nonlinear Analysis of Reinforced Concrete Slabs Subjected to Fire. ACI Structural Journal,1999, 96(1):127-135.
    [110]Allen L W and Hannathy T Z. Fire Endurance Selected Concrete Masonry Walls. ACI Journal, Proceeding, V69, No.9, Sept,1972.562-568.
    [111]Huang C L D,Gamal N A. Influence of slab thickness on response of concrete walls under fire.Numerical Heat Transfer,Part A.1997,19(1):43-64.
    [112]Yu J R,Hsu T R. Analysis of heat conduction in solids by space-time finite element methods. International Journal for Numerical Methods in Engineering,1985,21(11):2001-2012.
    [113]Wilson E L, Nicked R E. Application of the finite element method to heat conduction analysis. Journal Nuclear Engineering and Design, 1966,4(1):276-286.
    [114]Bathe K J. Finite element procedures in engineering analysis.1982.
    [115]Becker R. Structural behavior of simple steel structures with non-uniform longitudinal temperature distributions under fire conditions. Fire Safety Journal,2002,37(5):495-515.
    [116]时旭东,过镇海.钢筋混凝土结构的温度场.工程力学,1996,13(1):35-43.
    [117]杨泽安.火灾温度作用下钢筋砼构件温度场计算方法及应用.消防技术与产品信息.1999,(2):19-24.
    [118]杨泽安.火灾温度作用下钢筋砼构件温度场计算方法及应用.消防技术与产品信息.1999,(3):12-19.
    [119]闵明保,李延和.建筑物火灾后诊断与处理.徐州:江苏科学技术出版社,1994:74-77.
    [120]Usmani S, Rotter J M, Lamont S, Sanad M, Gillie M. Fundamental principles of structural behaviour under thermal effects. Fire safety Joumal. 2001,36(1):721-744.
    [121]Izzuddin B A, Elghazouli Y. Failure of lightly reinforeed concrete members under fire. I:Analytical Modeling. ASCE, Journal of structural Engineering,2004,January:3-17.
    [122]Elghazouli Y, Izzuddin B A. Failure of lightly reinforced conerete members under fire. Ⅱ:Parametric studies and design considerations. ASCE, Journal of structural Engineering,2004,January:18-31.
    [123]Kouey G A, Majorana C E, Pesavento E, Schrefler B A. Modelling of heated concrete. Magazine of Concrete Research,2002,54(2),77-101.
    [124]Kuang-hua Hsiung, Wei lin P Chang. Evaluation of residual fire endurance of concrete slabs after fire exposure. Fire and matericals,1993, 18(1):201-204.
    [125]Awadhesh Kamar. Temperature distribotion in RC beams during fire. The Indian concrete.2004.December.:55-60.
    [126]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系.清华大学学报,1997,37(6):87-90.
    [127]时旭东,过镇海.钢筋混凝土梁在不同荷载-温度途径下的性能.工程力学(增刊),1995,2:705-711.
    [128]时旭东,过镇海.高温下钢筋混凝土连续梁的受力性能试验研究.土木工程学报,1997,30(4):26-34.
    [129]时旭东,李华东,过镇海.三面受火钢筋混凝土轴心受压柱的力学性能研
    究.建筑结构学报,1997,18(4):13-22.
    [130]时旭东,过镇海.高温下钢筋混凝土框架受力性能试验研究.土木工程学报,2000,33(1):36-45.
    [131]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究.土木工程学报,1993,26(3):47-54.
    [132]姚亚雄,朱泊龙.钢筋混凝土框架结构火灾反应分析.同济大学学报,1997,25(3):255-261.
    [133]朱伯龙主编.土木工程防灾国家重点实验室论文集(1991-1992).上海:同济大学出版社,1995.
    [134]刘静.火灾对钢筋混凝土简支梁性能影响的试验研究:[硕士学位论文].长沙:中南大学,2003.5.
    [135]徐志良.钢筋混凝土梁在高温与应力共同作用下的试验研究:[硕士学位论文].长沙:中南大学,2004.5.
    [136]张威振.足尺钢筋混凝土简支梁高温力学性能的研究:[硕士学位论文].长沙:中南大学,2004.11.
    [137]李守雷.轴心受压足尺钢筋混凝土柱高温力学性能研究:[硕士学位论文].长沙:中南大学,2005.5.
    [138]黄益良.钢筋混凝土拱形构件高温下力学性能研究:[硕士学位论文].长沙:中南大学,2009.5.
    [139]张焱,徐志胜.火灾后碳纤维布约束混凝土棱柱体受力性能试验研究及分析.工程力学,2008,25(5):202-209.
    [140]张焱,徐志胜.CFRP加固火灾损伤后钢筋混凝土梁抗弯性能试验研究.西安建筑科技大学学报,2008,40(1):40-45.
    [141]陈正杰,狄永媚,杨志豪.隧道内排烟道植筋牛腿耐火试验研究.地下工程与隧道,2008,1:34-37.
    [142]穆松.长江隧道管片混凝土高温特性研究:[硕士学位论文].武汉:武汉理工大学,2007.5.
    [143]闫治国.隧道衬砌结构火灾高温力学行为及耐火方法研究:[博士学位论文].上海:同济大学,2007.2.
    [144]Lulkov A V. Heat and Mass Transfer in Capillary Porous Bodies. Pergamon, Oxford,1966.
    [145]Philipe J R, deVries D A. Moistore movement in porous materials under temperature gradients. Trans. Am. Geophys.Union,1957,38:222-232.
    [146]deVries D A. Simultaneous transfer of heat and moistore in porous materials. Trans. Am. Geophys. Union,1958,39:909-916.
    [147]Whitakers S. Simultaneous heat,mass and momentum transfer in porous media:A theory of drying. Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, eds. Academic Press,1977,13:119-203.
    [148]Bazant Z P, Thonguthai W. Pore pressuer and drying of concrete at high temperature. ASCE J. Eng. Mecnanics Division,1978,104:1059-1079.
    [149]Bazant Z P, Thonguthai W. Pore pressure in heated concrete walls: Theoretical prediciton. Magazine of Cocnrete Reseacrh,1979,31(107):67-76.
    [150]Majumdar P, Gupta A. Moisture propagation and resulting stress in heated concrete walls. Nucl. Eng. Des.,1995,156:159-165.
    [151]Majumdar P, Gupta A. Heat, moisture transfer, and induced stresses in porous materials under rapid heating. Numerical Heat Transfe, PartA., 1997,32:111-130.
    [152]Baroghler-Bonuy V, Lassabatere T, Coussy O. Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cement and Concrete Research, 1999,29(8):1225-1238.
    [153]Ahmed G N, Hurst J P. Compled Heat and Mass Transport Phenomena in Siliceous Aggregate Concrete Slabs Subjected to Fire. Fire And Materials, 1997,21:161-168.
    [154]Ahmed G N, Hurst J P. Modeling Pore Pressure, Moisture, and Temperature in High-Strength Concrete Columns Exposed to Fire. Fire Technology,1999,35(3):232-262.
    [155]Tenchev R T, Li L Y, Purkiss J A, Khalafallah B H. Finite element analysis of coupled heat and mass transfer in concrete when it is in fire. Concr. Res., 2001,53(2):117-125.
    [156]Li L Y, Purkiss J A, Tenchev R T. An engineering model for coupled heat and mass transfer in heated concrete. J. Mech. Eng. Sci.,2002, 216:213-224.
    [157]Tenchev R T, Purkiss J A, Li L Y. Numerical analysis of thermal spalling in a column. Proceedings of 9th National Congress on Theoretical and Applied mechanics,19-22 Sept.2001, Vama,Bulgaria.
    [158]Dal Pont S, Ehrlacher A. Numerical and experical analysis of chemical dehydration, heat and mass transfers in a concrete hollow cylinder submitted to high temperatures. International Journal of Heat and Mass Transfer, 2004,47(1):135-147.
    [159]Majorana C E, Salomoni V, Schrefler B A. Hygrothermal and mechanical model of concrete at high temperature. Materials and Structures, 1998,31(210):378-386.
    [160]Obeid W, Mounajed G, Alliche A. Mathematical formulation of thermo-hygro-mechanical coupling problem in non-saturated porous media. Computer Methods in Applied Mechanics and Engineering,2001, 190(39):5105-5122.
    [161]Obeid W, Mounajed G. A new coupling F E. model for the simulation of thermal-hydro-mechanical behaviour of concretes at high temperatures. Materials and Structures,2004,37(270):422-432.
    [162]Schrefler B A. Multiphase flow in deforming porous material. International Journal for Numerical Methods in Engineering,2004,60(1):27-50.
    [163]Gawin D, Majorana C E, Pesavento F, Schrefler B A. Effect of damage on permeability and hygro-thermal behaviour of high performance concrete at elevated temperatures-Part 2:Numerical analysis. Computers and Concrete, 2005,2(3):203-214.
    [164]高小建,阚雪峰,杨英姿.单面干燥条件下混凝土的收缩变形分布特征.硅酸盐学报,2009,37(1):87-91.
    [165]钱晓倩,孟涛,詹树林,钱匡亮.相对湿度对混凝土和砂浆收缩规律的影响.沈阳建筑大学学报(自然科学版),2006,22(2):268-271.
    [166]朱岳明,刘有志,曹为民,吴健.混凝土湿度和干缩变形及应力特性的细观模型分析.水利学报,2006,37(10):1163-1168.
    [167]刘光廷,黄达海.混凝土温湿耦合研究.建筑材料学报,2003,6(2):173-181.
    [168]王馨,王海,施明恒,虞维平.多孔介质快速干燥过程中热质耦合效应的研究.工程热物理学报,2001,22(3):344-347.
    [169]刘有志,张国新,朱岳明.基于细观损伤模型的混凝土湿度及干缩特性研究.工程力学,2008,25(7):196-200.
    [170]李云峰,吴胜兴.基于湿度扩散理论的混凝土早期收缩分析.水力发电,2005,31(12):31-33.
    [171]侯景鹏,袁勇.干燥收缩混凝土内部相对湿度变化实验研究.新型建筑材料,2008,25:1-4.
    [172]焦修刚,刘光廷.混凝土热湿耦合数值计算中的参数拟合.清华大学学报(自然科学版),2005,45(3):319-321.
    [173]张智博,张君.混凝土收缩与环境湿度的关系研究.建筑材料学报,2006,9(6):720-723.
    [174]李荣涛.高温下混凝土中化学-热-湿-力学耦合过程的数值模拟及破坏分析:[博士学位论文].大连:大连理工大学.2006.
    [175]冯雅,陈启高,王尔其.钢筋混凝土火灾下热湿耦合热过程.重庆建筑大学学报,1999,21(3):41-44.
    [176]刘光廷,焦修刚.混凝土的热湿传导耦合分析.清华大学学报,2004,44(12):1653-1655.
    [177]焦修刚,刘光廷,李鹏辉,黄达海.混凝土温湿度耦合方程组的数值解法.三峡大学学报,2005,27(4):329-332.
    [178]Habib Uysal, Ramazan Demirbog, Remzi Sahin,Rustem Gul. The effects of different cement dosages,slumps,and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and Concrete Research, 2004,34(5):845-848.
    [179]M. I. Khan. Factors affecting the thermal properties of concrete and applicability of its. prediction models. Building and Environment,2002, 37(6):607-614.
    [180]Kook-Han Kim, Sang-Eun Jeon, Jin-Keun Kim, Sungchul Yang. An experimental study on thermal conductivity of concrete. Cement and Concrete Research,2003,33(3):363-371.
    [181]Hirth H. C. Thermal Properties of Concrete at Extreme Temperature. University of California,1982.
    [182]Lin T D, Ellingwood B, Piet O. Flexural and Shear Behavior of Reinforced Concrete Beams During Fires Tests. Portland Cement Association Research and Development bulletin RD 091T,1982.
    [183]Harmathy T Z, Alien L W. Thermal Properties of Selected masonry Unit Concretes. Journal of the American Concrete Institute,1973,70(2):132-142.
    [184]Design of Concrete Structure,Eurocode 2 Part 10:Structure Fire Design. Commission of European Communities, April,1990.
    [185]Lie T T, Irwin R J. Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete. J. of Structural Engineering,1995,121(5):797-805.
    [186]陆洲导.钢筋混凝土梁对火灾反应的研究:[博士学位论文].上海:同济大学,1989.
    [187]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理.中国建筑工业出版社,1991.
    [188]Brown T D, Javaid M Y. The Thermal Conductivity of Fresh Concrete. Materials and Structures,1970,18(3):411-416.
    [189]Dodd A E. The Forms of Silica, Ceramics, Symposium. Published by the British Ceramic Society,London,1953.
    [190]CEN(European Committee for Standardisation)DAFT. ENV1993, Eurocode3:Design of Steel Structure,British Standards Institution,1995,7.
    [191]段文玺.建筑结构的火灾分析和处理(二).工业建筑.1985,(8):51-54.
    [192]BSI,Structural use of steel work in building,part 8,Code of practice for fire resistant design,1990.
    [193]孙金香,高伟,译.建筑物综合防火设计.天津科技翻译出版公司,1992.
    [194]ECCS,European recommendations for the fire safety of steel structural. Amsterdam:Elsevier,1983.
    [195]European Committee for Standardization (CEN). Draft pr EN 1993-1-2, Eurocode 3:Design of Steel Structures,Part 1.2:General Rules, Structural Fire Design, London:British Standards Institution,2000.
    [196]British Standards Institution. Structural Use of Steelwork in Buildings (BS5950), Part8:Code of Practice for Fire Resistance Design. London: British Standards Institution,1990.
    [197]吕彤光.高温下钢筋的强度和变形试验研究:[硕士学位论文].北京:清华大学,1996.
    [198]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析:[博士学位论文].北京:清华大学,1992.
    [199]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系.土木工程学报.1993,25(5):58-69.
    [200]段文玺.建筑结构的火灾分析和处理(四).工业建筑.1985,(11):50-54.
    [201]Standards Association of Australian, AS 100-1990, Steel Structures,1990.
    [202]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析:[博
    士学位论文].天津:天津大学,2000
    [203]Lie T T. A Procedure to Calculate Fire Resistance of Structural Members. International Seminar on Three Decades of Structural Fire Saftey,22/23, February 1983.55-68.
    [204]ACI 216R-81. Guide for Determing the Fire Endurance of Concrete Elements, by ACI Committee 216.
    [205]周全会.以烧失量鉴定混凝土受火温度的分析研究:[硕士学位论文].重庆:重庆大学,2005.
    [206]吕天启,赵国藩,林志伸,岳清瑞.高温后静置混凝土的微观分析.建筑材料学报.2003,6(2):135-141.
    [207]董毓利.混凝土结构的火安全设计.北京:科学出版社,2001.
    [208]余江滔.火灾后混凝土构件损伤评估的试验及理论研究:[博士学位论文].上海:同济大学,2007.
    [209]张焱,徐志胜.钢筋混凝土结构抗火性能试验中存在的问题.土木工程学报.2010,43(4):76-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700