TGF-β_3与牙髓干细胞在动物面神经损伤修复中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     面神经的损伤在临床上较为常见,且损伤后很少能达到完美的功能恢复,严重影响患者及家属的心身健康及生活质量。随着干细胞研究的深入,利用骨髓干细胞对脊髓和颅脑损伤的治疗频频见于文献报道,但利用干细胞进行外周神经损伤的治疗报道较少。本研究旨在通过动物实验和分子生物学技术观察DPSCs与TGF-β_3联合干预对于面神经损伤的修复效果,并探讨其作用机制,为治疗面神经损伤提供新的方法。
     方法:
     (1)从新西兰幼兔前牙及磨牙牙髓组织中分离DPSCs进行体外培养,测定细胞克隆形成率、生长曲线、细胞爬片行HE染色、抗Vimentin、抗osteonectin、抗DSP、抗CD44免疫组化染色,鉴定DPSCs的增殖能力和多分化潜能的生物学特征。
     (2)12只普通级瞬目反射正常的成年健康新西兰大白兔,面部两侧自身对照,随机分为自身正常对照组和上颊支缺损模型组,各组l2侧。于建模后7d、14d分别行光镜、电镜组织病理学检测,结合动物行为学观察、神经电生理检测技术对面神经上颊支缺损模型进行评价。
     (3)成年健康新西兰大白兔48只(共96侧面神经),随机抽取24只(共48侧面神经)右侧设为TGF-β_3+DPSCs实验组(共24侧面神经),左侧设为TGF-β_3对照组1组(共24侧面神经),另外24只新西兰大白兔(共48侧面神经)右侧设为正常对照组(共24侧面神经),左侧设为PBS对照组2(共24侧面神经),分别制作面神经上颊支7mm缺损、损伤局部硅胶管套接的动物模型。于术后1周、1月、3月分别行大体形态、光镜、电镜组织学观察、神经电生理检测、GFAP和S100免疫组织化学染色等检测。
     结果:
     第一部分:1)原代培养的幼兔牙髓细胞多呈成纤维细胞样细胞,少数纺锤形或多角形,光镜下传代培养的细胞形态特点与原代培养无明显差异;从第1代到第3胞活率细胞数比分别为:94.7%、95.8%、95.2%;牙髓干细胞在低密度接种后能够形成克隆,幼兔牙髓细胞克隆集落形成率为10-21个/103细胞;2)幼兔牙髓细胞体外多次传代仍具有良好的增殖能力,24孔板计数法表明兔牙髓细胞潜伏期短,随后进入对数增长期,选取的第三代细胞均在五天达到对数生长期,约在第8天细胞达到平台期;细胞周期的测定结果为:G1期DNA含量占80.4%;G2期DNA含量占15.3%;S期DNA含量占4.3%;3)原代和次代克隆,免疫细胞化学对未经诱导的细胞进行表面标志物Vimentin、CD44、osteonectin、dsp鉴定,结果均为染色阳性。
     第二部分:1)12只实验动物建模过程均较顺利,术中面神经暴露良好,操作可重复性佳。切口均获得I期愈合,动物在研究期间未发生切口感染及并发症,无实验兔死亡,动物存活率100%,建模成功率达100%;2)建模后所有实验动物术侧均出现面神经麻痹症状,2周时术侧面部轻度萎缩,兔唇明显偏向健侧;术后2周面部胡须运动功能评分,术侧分值为0.25±0.05,与健侧分值4分比较,差异有统计学意义(t=-249.16,P<0.05);3)面神经电生理检测结果显示,建模后1周、2周时,实验兔健侧组正常面神经潜伏期为(1.47±0.42)ms,神经动作电位最大波幅为(11.32±5.36)mV;刺激术侧组面神经中枢侧断端,不能引起同侧上唇方肌收缩;实验兔术侧面神经动作电位均未能引出;4)健侧组面神经HE染色可见,正常面神经上颊支纤维呈长条形,排列整齐,髓鞘密集,无退变,神经外膜连续;手术组面神经断端可见神经纤维连续性中断,断端部分脱髓鞘改变,神经外膜松散,神经纤维肿胀,板状层结构疏松,轴突呈空泡状;5)电镜观察显示,正常面神经轴突排列整齐,均匀一致,髓鞘结构完整、厚度较均匀、呈致密板层排列,胞核清晰;术后1周模型组神经鞘膜解离,板状结构变得模糊以致消失形成椭圆形小体,出现神经纤维球,轴浆内呈低电子密度;术后2周模型组轴突明显肿胀,其内微管、微丝数目明显减少,线粒体肿胀呈空泡样,电子密度降低;神经纤维排列紊乱,神经外膜连续性中断板层脱离。
     第三部分:1)术后3月大体形态观察发现,与对照组1、2比较,实验组再生神经直径与近、远端神经干相当,无神经瘤形成,外膜血管丰富,质地坚韧;2)HE染色,术后3月实验组神经纤维排列较整齐,胞核浓密,束间血管多;对照组1神经纤维萎缩,再生神经纤维较少,扭曲较明显,呈盘旋状;对照组2部分轴突消失,神经纤维排列紊乱、髓鞘厚薄不均;3)电镜结果显示实验组的再生纤维以有髓神经纤维为主,形态规则,髓鞘板层结构清晰,轴浆内细胞器丰富;对照组1再生纤维髓鞘发育稍差,有髓神经纤维形态较规则,轴浆内细胞器较丰富;对照组2再生纤维髓鞘发育不良,板层结构紊乱,有髓神经纤维形态不规则,可见到变性的神经纤维;4)图像分析显示,实验组再生神经纤维总数多于其他两个对照组,差异有统计学意义(P<0.05);实验组再生神经纤维直径远远大于其他两个对照组,差异有统计学意义(P<0.05);实验组再生神经髓鞘厚度远远大于其他两个对照组,差异有统计学意义(P<0.05);5)神经电生理检测显示,实验组神经肌肉动作电位的潜伏期明显短于其他两个对照组[实验组(1.96±0.32)ms,对照组1(2.35±0.41)ms,对照组2(3.42±0.55)ms,P<0.05],而实验组神经肌肉动作电位的波幅明显高于其他两个对照组[实验组(11.06±3.25)mv,对照组1(8.40±1.68)mv,对照组2(4.62±0.77)mv,P<005];6)免疫组化结果显示,各处理组面神经核中均出现GFAP阳性细胞,且术后7天GFAP阳性细胞数TGF-β_3+DPSCs实验组>TGF-β_3对照组1>PBS对照组2(P<0.05);各处理组面神经中均出现S100阳性细胞,且S100阳性细胞数TGF-β_3+DPSCs实验组>TGF-β_3对照组1>PBS对照组2(P<0.05)。
     结论:
     (1)本研究所培养的DPSCs增殖能力强,具有稳定的生物活性,可适应长期大量培养的需要。
     (2)在传代第一代、第二代及第三代形成的克隆细胞率最高,可以选择前三代形成的克隆球进行细胞移植治疗。
     (3)本研究建立的兔面神经上颊支缺损动物模型,制作简便、性质稳定、可重复性好、术后动物存活率和模型成功率高,且评价方法系统、可靠。
     (4)DPSCs可以作为种子细胞应用于外周神经组织工程。
     (5)TGF-β_3与牙髓干细胞联合应用能显著提高面神经损伤后修复的效果。
     (6)用医用硅胶管、胶原蛋白海绵、DPSCs和TGF-β_3制备的人工神经符合神经组织学结构,对面神经缺损修复有效,为周围神经缺损的修复提供了一种新方法。
Objective
     Facial nerve injury is common clinically, and the function can not be recoveredperfectly after facial nerve injury, which severely affected psychosomatic health andquality of life of patients and families. With the rapid development of the stem cellresearch, the reporter in the literature was more about using bone marrow stem cells forthe treatment of spinal cord and brain injury, but the method that to treatment peripheralnerve injuries using stem cells has not been reported. The purpose of this study was toinvestigate the effects of TGF-β_3and dental pulp stem cells in the regeneration of rabbitfacial nerve, to explore possible mechanism of action, and to provide a new method forthe treatment of facial nerve injury.
     Methods:
     (1) Dental pulp stem cells were separated and cultured in vitro from anterior teethand molar pulp tissue of New Zealand rabbit, and to test the cells clone forming rate, tomeasure cells growth curve by counting the number of cells, did HE staining andimmunhistochemistry staining of Vimentin, osteonectin、dsp and CD44. To identificationproliferation capacity and multiple differentiation potential of biological characteristics ofDPSCs.
     (2)12New Zealand adult rabbits were selected randomly. These rabbits weredivided into two groups (the normal groups and the model groups).7days,14days afteroperation, a series of examinations were performed to evaluate the model, includinghistopathology testing, animal behavior observation, neuroelectrophysiological methods.
     (3)48New Zealand adult rabbits(a total of96facial nerves)were randomly dividedinto4groups,respectively in treatment group (silicone guidance channel with collagenprolein sponge was filled with TGF-β_3+DPSCs), control group1(silicone guidancechannel with collagen prolein sponge was filled with TGF-β_3),PBS control group2 (silicone guidance channel with collagen protein sponge was filled with PBS) and thenormal group.A7mm nerve defect was set up in the buccal branch of facial nerve andwas bridged with three sorts of artificial nerves. One week, one month, three months afteroperation, a series of examinations were performed respectively, including grossmorphology, histopathology testing, neuroelectrophysiological examination, GFAP andS100immunohistochemical stain.
     Results:
     Part one:1) Primary cultured rabbit dental pulp cells were fibroblast-like cells, afusiform or polygonal. characteristics were no difference between subcultured cell andprimary culture under a light microscope. The morphology character of the cells insubcultllring was as same as that in primary culture. Cell survival rate in the cell numbersfrom the first generation to the third generation were:94.7%,95.8%,95.2%. DPSCscould form clone after low density seeding.The cells clone forming rate was10-21/103cells.2) DPSCs have a perfect growing ability after multiple subculture.24holeplate counting method that rabbit dental pulp cells incubation period was short, thenentered the logarithmic growth phase, the third generation cell in five days to reach thelogarithmic growth phase, in about eighth days the cells reach the platform period. Theresult of the cell cycle: G1DNA content of80.4%G2; the content of DNA15.3%; S DNAcontent accounted for:4.3%.3) Immunhistochemistry staining showed that Vimentin、CD44、osteonectin and dsp of dental stem cells were positive in Clone of the original andpassaged.
     Part two:1) All experiments were accomplished successfully, operation process wassmooth, animal survival rate was100%, and the success rate of modeling was100%.2)After modeling, all experimental animals appeared facial nerve paralysis symptoms in theoperation side. At2weeks after operation, the face on the operative side become mildatrophy. Facial whiskers motor function score showed that the scores of operative sidewere0.25±0.05, while the normal side scores were4points, there was a significantdifference (t=-249.16, P<0.05).3) The neuroelectrophysiological examinations revealedthat the latency of nerve and muscle action conduction in the normal control groups were(1.47±0.42) ms, the wave amplitude of nerve and muscle action conduction in thenormal control groups were (11.32+5.36) mV. At one week、two weeks after operation,lateral nerve action potentials were unable to lead.4) Facial nerve HE staining showednormal facial nerve fibers elongated strip, arranged in neat rows, the myelin-intensive, no degeneration, the epineurium continuous; While surgery group facial nerve fiberdiscontinuity, ends part of the demyelination and the outer membrane was loose, the nervefiber was swollen, plate layer structure was loose, axonal vacuolization.5) Electronmicroscopy results showed that the normal facial nerve axons arranged in neat rows,cross-section showing circular, structural integrity of the myelin sheath, uniform thickness,dense lamellar arrangement, clear nucleus, clear Ranvier's node; At one week afteroperation, model group showed that the facial nerve sheath dissociation, platy structureblurred to disappear resulting in the formation of oval-shaped body, appeared nerve fiberballs,low electron density in the axoplasm; At two weeks after operation, the modelgroup results showed that the axon swelling obviously, the number of microtubules andactin filaments significantly reduced, mitochondria were vacuolated, lower electrondensity in myelin sheath, disordered arrangement of nerve fibers, epineuriumdiscontinuity and lamellar detachment.
     Part three:1) At three months after operation, gross morphological observationfound that the diameter was almost the same between the regenerating nerve and near、distal nerve stem in the experimental group, no neuroma formation, adventitialangiogenesis was rich, tough texture.2) At three months after operation, HE stainingshowed that in the experimental group, the facial nerve membrane integrity, nerve fibersarranged in neat rows, dense nuclei. But in the control group1, the nerve fibers atrophy,regeneration fewer nerve fibers and distort obviously,was convoluted; in the controlgroup2, some axons disappeared, the nerve fibers arranged in disorder, the myelin sheathof uneven thickness.3) Electron microscopy results showed that the regenerated fibers inthe experimental group were mainly myelinated never fiber. The layer structure of myelinsheath was clear, and there were rich organells axoplasma. But in the control group1,themyelin dysplasia,disorder of the lamellar structure,myelinated nerve fibers with irregularshape, the degeneration of nerve fibers.4) Image analysis results showed that the totalnumber of regeneration of nerve fibers in the experimental group were more than theother control groups, statistical analysis was significant (P<0.05). Diameter ofregenerating nerve fibers in the experimental group were greater than the other controlgroup, statistical analysis was significant (P<0.05).5) At three months after operation,the neuroelectrophysiological examinations revealed that the latency of nerve and muscleaction conduction in the treatment group was shorter than the other control groups[thetreatment group:(1.96±0.32) ms, the control group1(2.35±0.41) ms, the control group2(3.42±0.55) ms], but the wave amplitude of nerve and muscle action conduction in the treatment group was obviously higher than that in the control group[the treatment group:(11.06±3.25) mv, the control group1(8.40±1.68) mv, the control group2(4.62±0.77)mv, P<0.05].6) Facial nerve nuclear all appeared GFAP positive cells in each group,and the number of GFAP positive cells:TGF-of β_3+DPSCs experimental group>TGF-of β_3control group1> PBS control group2(P<0.05); Facial nerves all appearedS100positive cells in each group,and the number of S100positive cells:TGF-β_3+DPSCs experimental group> TGF-β_3the control group1> PBS control group2(P<0.05).
     Conclusion:
     (1) DPSCs cultured in our experiment have both strong self-proliferation potentialand stable vital activity. Thus these cells are considered to be suitable for long-termculture in a large amount.
     (2) The cell clone rate of DPSCs in the first、second and third generation is highest.These clone cells can be used as the source of grafting.
     (3) Animal model established in this study is simple, stable, good repeatability,postoperative animal survival rate and modeling success rate is high. And these evaluationmethods are systematic, reliable.
     (4) DPSCs can be applied as seed cells for peripheral nerve tissue engineering.
     (5) The comination of TGF-β_3and DPSCs can improve the effects on the repair offacial nerve injury.
     (6) The artificial nerve made of chitosan guidance channel, collagen protein sponge,DPSCs and nerve growth factor is the most effective in repairing nerve defect and for itaccorded with the histological structure of nerve. Therefore it may provide a new methodfor repairing the pepripheral nerve defect in clinic.
引文
[1] Tang J, Wang X M, Hu J, et al. Autogenous standard versusin side-out vein graft torepair facial nerve in rabbits[J]. Chin J Traumato,2008,11(2):104-109.
    [2]俞光岩,蔡志刚.周围性面神经损伤的诊断和治疗[J].国际耳鼻喉头颈外科杂志,2006,30(4):275-278.
    [3]卢旭光,蔡志刚,于国霞,等.面神经功能3种评价方法的相关性研究[J].中国口腔颌面外科杂志,2009,2(1):18-22.
    [4] Odebode T O, Ologe F E. Facial nerve palsy after head injury:Case incidence,causes, clinical profile and outcome[J]. J Trauma,2006,61,61:388-391.
    [5]单增强,王小标,赵莉等.大鼠面神经颅外段的解剖及其应用明解剖学杂志[J].2005,28(1):82-83.
    [6] Gallo Daniela, Zannoni Gian Franco, Apollonio Patrizia, et a1. Characterization ofthe pharmacologic profile of a standardized soy extract in the ovariectomized ratmodel of menopause:effects on bone, uterus, and litlid profile[J]. Menopause.2005,12(5):589-600.
    [7] Woolford TJ, Toriumi DM. The enhancement of nerve regeneration using growthFactors[J]. Long Term Eff Med Implants,1995,5(1):19-26.
    [8]刘昌华.神经节苷脂在周围神经损伤中的应用[J].广西医学,200325(9):1666-1668.
    [9]宋丛笑,王静,张辉.面神经损伤和修复现状[J].中国临床康复,2002,6(8):1155.
    [10] Vuk Koprivica, Kin-Sang Cho, Jong Bae Park, et a1. EGFR Activation MediatesInhibition of Axon Regeneration by Myelin and Chondroitin SulfateProteoglycans[J]. Science2005,310(5745):106-110.
    [11] Keskin M, Akbas H, Uysal OA, et a1. Enhancement of nerve regeneration andorientation across a gap with a nerve graft within a vein conduit graft:a functional,stereological, and electrophysiological study[J]. Plast Reconstr Surg,2004,113(5):1372-1379.
    [12] Liu BS, Yao CH, Hsu SH, et a1. A novel use of genipin-fixed gelatin asextracellular matrix for peripheral nerve regeneration[J]. J Biomater Appl,2004,19(1):2l-34.
    [13] Schmalenberg KE, Uhrich KE. Micropatterned polymer substrates controlalignment of proliferating Schwann cells to direct neuronal regeneration.Biomaterials[J]. Biomaterials,2005,26(12):1423-1430.
    [14] Azad AK, Sermsintham N, Cbandrkrachang S, et a1. Chitosan membrane as awound-healing dressing:characterization and clinical application[J]. Biomed MaterRes B Appl Biomater,2004,69(2):216-222.
    [15]骆文龙,李雷激.信息分子与面神经再生[J].四川解剖学杂志,2007,15(2):25-28.
    [16] Amr SM, Moharram AN. Repair of brachial plexus lesions by end-to-sideside-to·side grafting neurorrhaphy:experience based on11cases[J]. Microsurgery,2005,25(2):126-146.
    [17] Lim J H, Byeon YE, Ryu H H, et a1. Transplantation of canine umbilical cordblood-derived mesenchymal stem cells in experimentally induced spinal cordinjured dogs[J]. J Vet Sci.2007,8(3):275-282.
    [18] Deng YB, Yuan Q T, Liu X G, et a1. Functional recovery after rhesus monkeyspinal cord injury by transplantation of bone marrow mesenchymal-stemcell-derived neurons[J]. Chin Med J(Engl).2005,118(18):1533-1541.
    [19] Koda M, Okada S, Nakayama T, et a1. Hematopoietic stem cell and marrowstromal cell for spinal cord injury in mice[J]. Neuroreport.2005,16(16):1763-1767.
    [20] Zuba-Surma EK, Kucia M, Ratajczak J, et al. Small stemcellsin adult tissues:Verysmall embryonic-like stem cells stand up. Cytometry A.2009;75A(1):4-13.
    [21] Pereira Lda V. The importance of the use of stem cells for publichealth[J]. CienSaude Colet.2008;13(1):7-14.
    [22] Cuenca-Lpez MD, Zamora-Navas P, Garca-Herrera JM, et al. Adult stem cellsapplied to tissue engineering and rege-er-ative medicine[J]. Cell Mol Biol.2008;54(1):40-51.
    [23] Gronthos S, Mankani M. Postnatal human dental pulp stem cells(DPSCs)in vitroand in vivo[J]. Proc Nat1Acad Sci USA,2000,97(5):13625-13630.
    [24] Robinson D, Hasharoni A, Cohen N, et al. Fibroblast growth factor receptor-3as amarker for precartilaginous stem cells[J]. Clin Orthop Relat Res,1999,(367Suppl):163-175.
    [25] Walther M, Mayer F, Kafka W, et al. Effects of weak, low-frequency pulsedelectromagnetic fields(BEMER type)on gene expression of human mesenchymalstem cells and chondrocytes:an in vitro study[J]. Electromagn Biol Med,2007,26(3):179-190.
    [26] Gronthos S. Stem cell properties of human dental pulp stem cell[J]. J Dent Res,2002,81(8):531.
    [27]贺慧霞,金岩,史俊南,等.牙髓干细胞向神经细胞方向的诱导分化实验[J].华西口腔医学杂志,2007,25(4):331-334.
    [28] Yang X, Zhang W, van den Dolder J, et al. Multilinesge potential of STRO-1ratdental pulp cells in vitro[J]. J Tissue Eng Regen Med,2007,1(2):128-135.
    [29] Shia S, Robeya PG, Gronthosa S. Comparison of human dental pulp and bonemarmw stromal stem cells by cDNA microarray analysis[J]. Bone2001:29(6):532-539.
    [30] Shiba H, Mouri Y. Komatsuzawa H, et al. Enhancement of alkaline phosphatasesynthesis in pulp cells co-cultured with epithelial cells derived from lower rabbitincisors[J]. Cell Biol Int2003:27(10):815-823.
    [31] Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering[J]. Cell Tissue Res,2008,331(1):359-372.
    [32] Gronthos S. Stem cell properties of human dental pulp stem cell[J]. J Dent Res,2002,81(8):531.
    [33] Guo BF, Dongmm. Application of neural stem cells in tissue-engi-neered artificialnerve[J].Otolaryngol Head Neck Surg,2009,140(2):159-164.
    [34] Satar B, Karahatay S, Kurt B, et a1. Repair of transected facialnerve withmesenehymal stromal cells:Histopathologie evidence of superior outcome[J].Laryngoscope,2009,119(11):2221-2225.
    [35] Wang J, Ding F, Gu Y, et a1. Bone maowmesenehymal stem cells promote cellproliferation and neurotrophic function of schwanne Rsin vitro and in vivo[J]. BrainRes,2009,1262:7-l5.
    [36] Nosrat IV, Christopher AS. Dental pulp cells provide neurotrophic support fordopaminergic neurous and differertiate into neurons in vitro[J]. Eur J Neurosci,2004,19(9):388.
    [37] Nakashima M, Iohara K, Ishikawa M, et al. Stimulation of reparative dentinformation by ex vivo gene therapy using dental pulp stem cells electrotransfectedwith growth/differentiation factor11(Gdf11)[J]. Hum Gene Ther,2004,15(11):1045-53.
    [38] Andre DE, Daniela F, Marilia T, et al. Reconstruction of large cranial defects innonimmunosuppressed experimental design with human dental pulp stem cells[J]. JCranio Surg,2008,19(1):204-210.
    [39] Aquino RD, Graziano A, Sampaolesi M, et al. Human postnatal dental pulp cellsco-differentiate into osteoblasts and endothelio-cytes:a pivotal synergy leading toadult bone tissue formation[J]. Cell Death Differ,2007,14(8):1162-1171.
    [40]武曦,张纲,谭颖徽. Notch信号通路在牙髓干细胞增殖和分化中的调控作用[J].牙体牙髓牙周病学杂志,2011,(5).112-113.
    [41]麻丹丹,高杰,吴补领.改良组织块酶消化法培养人龋损牙髓干细胞的实验研究[J].牙体牙髓牙周病学杂志,2011,(7).2033-2036.
    [42] Galli R, Gritti A, Bonfanti L, et at. Neural stem cells:an overview[J]. Circ Res,2003,92(6):598-608.
    [43] Goldman SA, Sim F. Neural progenitor cells of the adult brain[J]. Novartis FoundSymp,2005,265:66-80.
    [44]李景辉,张方明,张振庭.人恒牙牙髓干细胞体外定向诱导分化为成骨细胞的研究[J].北京口腔医学,2011,(3):44-45.
    [45] Shi Y, Zhou I, Tian J, et a1. Transplantation of neural stem cells Over expressingglia-derived neurotrophic factor promotes facial nerveregeneration[J]. ActaOtolaryngol,2008,17:1-9.
    [46] Provenzano MJ, Xu N, Ver Meer MR, et a1. P75ntr and sortilinincrease after facialnerve injury[J]. Laryngoscope,2008,118(1):87-93.
    [47] Rueger MA, Aras S, Guntinas-Lichius O, et al Re-activation ofatrophic motorschwann cells after hypoglossal-facial flerveanastomosis[J]. Neurosci Lett,2008,434(3):253-259.
    [48] Tai TF, Chan CP, Lin CC, et al. Transforming growth factor beta2regulates growthand differentiation of pulp cells via ALK5/Smad2/3[J]. J Endod,2008,34(2):427-432.
    [49] Saber Sel-D. Tissue engineering in endodontics[J]. J Oral Sci,2009,51(4):495-507.
    [50] Skoff AM, Lisak RP, et al. TNF alpha and TGF beta act synergistically to killSchwann cell[J]. J Neurosci Res,1998,53(6):747-756.
    [51] Kiefer R, Streit WJ, Toyka KV et al. Transforming growth factor-beta1:alesion-associated cytokine of the nervous system.[J].Int J Dev Neurosci,1995Jun-Jul;13(3-4):331-339.
    [52] Séverine Boillée, Josette Cadusseau, et al. Transforming Growth Factor:A Promoterof Motoneuron Survival of Potential Biological Relevance[J]. The Journal ofNeuroscience,2001,21(18):7079-7088.
    [53] Jason Baardsnes, Cynthia S, Hinck, et al. TβR-II Discriminates the High-andLow-Affinity TGF-β Isoforms via Two Hydrogen-Bonded Ion Pairs[J].Biochemistry,2009,48(10):2146-2155.
    [54] Pierre-Luc C, Guylaine FF, Carl S, et al. Transforming growth factor beta isoformsregulation of Akt activity and XIAP levels in rat endometrium during estrous cycle,in a model of pseudopregnancy and in cultured decidual cells[J]. ReproductiveBiology and Endocrinology,2009,80(7):1-13.
    [55] Mushtaq A, Memon, Matthew D, et al. Transforming Growth Factor Beta(TGFβ1,TGFβ2and TGFβ3)Null-Mutant Phenotypes in Embryonic Gonadal Development[J].Mol Cell Endocrinol.2008,294(1-2):70-80.
    [56] Djouad F, Delorme B, Maurice M, et al. Microenvironmental changes duringdifferentiation of mesenchymal stem cells towards chondrocytes[J]. Arthritis ResTher,2007,9(2):R33.
    [57] Wolff EF, Wolff AB, Hongling Du, et al. Demonstration of multipotent stem cellsin the adult human endometrium by in vitro chondrogenesis[J]. Reprod Sci,2007,14(6):524-533.
    [58] Shintani N, Hunziker EB. Chondrogenic differentiation of bovine synovium:bonemorphogenetic proteins2and7and transforming growth factor beta1induce theformation of different types of cartilaginous tissue[J]. Arthritis Rheum.2007,56(6):1869-1879.
    [59] Kolambkar YM, Peister A, Soker S, et al. Chondrogenic differentiation of amnioticfluid-derived stem cells[J]. J Mol Histol,2007,38(5):405-413.
    [60] Tscheudschilsuren G, Bosserhoff AK, Schlegel J, et al. Regulation of mesenchymalstem cell and chondrocyte differentiation by MIA[J]. Exp Cell Res,2006,312(1):63-72.
    [61]]Indrawattana N, Chen G, Tadokoro M, Growth factor combination forchondrogenic induction from human mesenchymal stem cell[J]. Biochem BiophysRes Commun,2004,320(3):914-919.
    [62] Barry F, Raymond E Boynton, Beishan Liu, et al. Chondrogenic differentiation ofmesenchymal stem cells from bone marrow:differentiation-dependent geneexpression of matrix components[J]. Exp Cell Res,2001,268(2):189-200.
    [63] Jin EJ, Lee SY, Jung JC, et al. TGF-beta3inhibits chondrogenesis of cultured chickleg bud mesenchymal cells via downregulation of connexin43and integrin beta4[J].J Cell Physiol,2008,214(2):345-353.
    [64] Muhetaer Hoojia, Noriko Muraoka, et al. TGF-β3Induces Ectopicmineralization inDental Pulpal Tissue of Fetal Mouse Tooth Germ Development.[J].Development,Growth, and Differentiation,2005;47(3):141-152.
    [65] Sasaki R, Aoki S, Yamato M, et al. Neurosphere generation from dental pulp ofadult rat incisor[J]. Eur J Neurosci.2008Feb;27(3):538-48.
    [66] Gronthos S, Mankani M, Brahim J, et a1. Postnatal human dental pulp stemcells(DPSCs)in vitro and in vivo Proc. Natl[J]. Acad. Sci. USA.2000;97(25):13625-13630.
    [67] Miura M, Gronthos S, zhao MR, et a1. SHED:stem cells stem from humanexfoliated deciduous teeth[J]. Proc Natl Acad Sci USA,2003,100(10):5807-5812.
    [68]王雪飞,张纲,裘松波,等.构建siRNA慢病毒载体调控人牙髓干细胞Delta1表达的实验研究[J].第三军医大学学报,2010,21(10):23-27.
    [69]王志刚,刘兴容.牙髓干细胞及其表面特异标志物[J].国际口腔医学杂志,2010,11(1):123-125.
    [70]翟旭,曹蕊,蔡磊,武京国,孙雪健,吕长胜,.大鼠牙髓干细胞与骨髓间充质干细胞分化成骨样细胞能力对比研究[J].中国美容医学,2011,(4).22-25.
    [71]张萍,朱聪惠,张纲,谭颖徽,.人牙髓干细胞向成牙本质细胞定向分化过程中miRNAs表达谱筛选及鉴定[J].实用口腔医学杂志,2011,(2):31-35..
    [72] Walt FM, Hogan BL.0ut of Eden:stem cells and their niches[J]. Science,2000,287:1427-1430.
    [73] Walt FM. Epidermal stem cells:markers, patterning and the control of stem cellfate[J]. Philo Trans R Soc Lond B Biol Sci,1998,353:831-837.
    [74] Ormerod EJ, Rudland PS. Regeneration of mammary glands in vivo from isolatedmammary ducts[J]. J Embryol Exp Morphol,1986,96:229-243.
    [75] Seale P, Rudnicki MA.. A new look at the origin, function, and “stem-cell” statusof muscle satellite cells[J]. Dev Biol,2000,218:115-124.
    [76] Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells fromthe CNS[J]. Annu Rev Neurosci,1995,18:159-192.
    [77] Blomberg M, Rao S, Reilly J, et a1. Repetitive bone marrow transplantation innomTlyeloablated recipients[J]. Exp Hematol,1998,26(4):320-324.
    [78]章静波,宗书东等.干细胞[M].北京:中国协和医科大学出版社,2003.137:14.
    [79]陆家瑜,刘翳文,华丽,等.人乳牙牙髓干细胞的体外培养观察[J].口腔颌面外科杂志,2007,17(1):25-28.
    [80] Kasperbauer JL, Neel HB3rd, et al. Proliferation and differentiation characteristicsof normal human squamous mucosal cells of the upper aerodigestive tract[J]. AnnOtol Rhinol Laryngol,1990,99:29-37.
    [81] Lauer G, Otten JE, et al. Cultured gingival epithelium, A possible material forpre-posthetic surgery[J]. J Craniomaxillofac Sury,1991,19:21-26.
    [82]鄂征主编.组织培养和分子细胞学技术[M].北京出版社,1995.367-368.
    [83] Papagerakis P, Berdal A, Mesbah M, et al. Investigation of osteocalcin, osteonectin,and dentin sialophosphoprotein in developing human teeth[J]. Bone,2002,30(2):377-385.
    [84] Pittenger MF, Mackay AM, Beck SC, et al. Multilieage potential of adult humanmesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [85] Alliot Licht B, Bluteau G, Magne D, et al.Dexamet-hasone stimulatesdifferentiation of odontoblast like cells in human dental pulp cultures Cell TissueRes,2005,321(3):391-400.
    [86] Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med,200l,22(6):507-520.
    [87] Liu H, Li W, Shi S, et a1. MEPE is downregulated as dental pulp stem ceHsdifferentiate[J]. Arch Oral Biol,2005,50:923-928.
    [88] Gu K, Chang S, Ritchie HH, et al. Molecular cloning of a human dentinsailophosphoprotein gene[J]. Eur J Oral Sci,2000,108:35-42.
    [89] Guntinas-Lichius O, Straesser A, Streppel M. Quality of life after facial nerverepair[J]. Laryngoscope,2007,117(3):421-426.
    [90] Johnson EO, Charchanti A, Soucacos PN. Nerve repair:experimental and clinicalevaluation of neurotrophic factors in peripheral nerve regeneration[J]. Injury,2008,39(Suppl3):S37-42.
    [91]全世明,高志强,亓放,等.荧光金示踪技术评价面神经损伤裸鼠模型[J].中国耳鼻咽喉头颈外科,2007,14(11):623-626.
    [92] Sandrini FA, Pereir A Junior ED. GAY Escoda C. Rabbit facial nerve anastomosiswith fibrin glue:nerve conduction velocity evaluation[J]. Rev Bras Otorhinolaryn-gol,2007,73(2):196-201.
    [93] Dlaz LM, Steele MH, Guerra AB, et a1. The role of topictally administeredFK506(tacrolimus)at the time of facial nerve repair using entubulation neurouhaphyin a rabbit model[J]. Ann Plast Surg,2004,52(4):407-413.
    [94] Lee DY, Choi BH, Park JH, et a1. Nerve regeneration with the use of apoly(1-lactide-co-glycolic acid)-coated Collagen tube filled with collagen gel[J]. JCraniomaxillofaci Surg,2006,34(1):50-56.
    [95]陆艳,迟放鲁,赵霞,等.丝素导管修复面神经缺损的实验研究[J].中华耳鼻咽喉头颈外科杂志,2006,41(8):603-606.
    [96] Theministry of Science and Technology of the People’s Republic of China.Guidance Suggestions for the Care and Use of Laboratory Animals.2006-09-30.
    [97] Most SP. Facial nerve recovery in bcl-2overexpression mice[J]. Arch Facial PlastSurg,2004,6(2):82-87.
    [98] Guntinas-Lichius o, Straesser A, Streppel M. Quality of¨life after facial nerverepair[J]. Laryngoscopy,2007,117:421-426.
    [99] Song XY, Zhou FH, Zhong JH, et al. Knockout of p75(NTR)impairs re-myelinationof injured sciatic nerve in mice[J]. J Ne-urochem,2006,96(3):833-842.
    [100] Buttermeyer R, Rao U, Jones NF. Peripheral nerve allograft transplantation with FK506functional, histological, and immunological results before and afterdiscontinuation of immunosuppresion[J]. Ann Plast Surg,1995,35(12):396-401.
    [101] De Medinaceli L&Seaber AV. Experimental nerve reconnection:importance ofinitial repair[J]. Microsurg,1989,10(5):56-70.
    [102] Labelle Jl&Allen DE. The peripheral nerve repair[J]. A review. J Maine MedAssoc,1972,63(13):164-166.
    [103] Szal GJ&Miller T. Surgical repair of facial nerve branches. An analysis of differentsheathing and suturing techniques[J]. Arch Otolaryngol,1975,10(1):160-165.
    [104] Spector JG, Lee P, Derby A, Frierdich GE, Neises G, Roufa DG. Rabbit facial nerveregeneration in NGF-containing silastic tubes[J]. Laryngoscope,1993,103(5):548-558.
    [105] Spector JG, Lee P, Derby A. Rabbit facial nerve regeneration in autologous nervegrafts after antecedent injury[J]. Laryngoscope,2000,110(12):660-667.
    [106] Vasconcelos BCE, Gay-Escoda C. Facial nerve repair with expandedplytetrafluoroe thylene and collagen conduits:an experimental study in the rabbit[J].Oral Maxillofac Surg,2000,5(8):1257-1262.
    [107]樊忠,樊兆民.外伤性面瘫的外科治疗[J].中华耳鼻喉科杂志,1999,34(1):52-54.
    [108] Yamamoto E, Fisch U. Experimentally induced facial nerve compression in cats[J].Acta Otolaryngol.1975,79(6):390-395.
    [109]史庆卫,孙运花,张微,等.电针对面神经损伤模型的形态学观察[J].辽宁中医杂志,2011,38(4):735-745.
    [110] Lindsay RW, Heaton JT, Edwards C, et al. Nimodipine and acceleration offunctional recovery of the facial nerve after crush injury[J]. Arch Facial Plast Surg,2010,12(1):49-52.
    [111] Yetiser S, Kahraman E. An analysis of time-dependent changes of neurotrophicfactors(BDNF, CNTF)in traumatic facial nerve injury of a nerve-cut andnerve-crush model in rats[J]. Otol Neurotol,2008,29(3):392-396.
    [112] Pan HC, Yang DY, Ou YC, et al. Neuroprotective effect of atorvastatin in anexperimental model of nerve crush injury[J]. Neurosurgery,2010,67(2):376-389.
    [113]阎艾慧,任重.实验性颞骨内面瘫开放面神经管的意义[J].中国医科大学学报,1998:27(4)123-125.
    [114]王立军,周树夏,董绍忠,等.大鼠创伤性面瘫实验动物模型的建立[J].实用口腔医学杂志,1999,15(3):183-185.
    [115]蔡志刚,俞光岩,马大权,等.家兔创伤性面神经损伤的组织病理学研究[J].中华口腔医学杂志,1997,32(8):236.
    [116]王志军,高景恒,李吉.面神经腮腺外分支及吻合[J].实用美容整形外科杂志,1993,4(2):92.
    [117] Shek JW, Wen GY, Wismewski HM. Atlas of the rabbit brain and spinal cord[J].Karger,1986,3(2):8.
    [118] Spector JG, Lee P, Derby A, et al. Rabbit facial nerve regeneration inNGF-containing silastic tubes[J]. Laryngoscope,1993,103(5):548-558.
    [119]刘晓军,漆松涛,王浩,等.兔面神经上颊支缺损模型的建立及评价[J].广东医学,2009,30(10):1455-1457.
    [120] Kazue Semba et al, the Journal of Comparafive Neurelogy, l906,247:144.
    [121]刘新峰,陈春富.实验神经病学[M].北京:人民军医出版社,2006:57.
    [122]牛宇,敏,刘宇,等.大鼠与家兔面神经颅外段解剖的比较研究[J].口腔医学研究.2007,23(6):640-642.
    [123] Moran LB, Graeber MB. The facial nerve axotomy model[J]. Brain Res Brain ResRev,2004,44(3):154-178.
    [124]刘稳,高志强.周围性面神经麻痹的动物模型[J].国际耳鼻咽喉头颈外科杂志,2006,30(2):138-140.
    [125] Constantinidis J, Akbarian A, Steinhart H, el a1. Effects of immediate and delayedfacial—facial nerve suture on rat facial muscle[J]. Acta Otolaryngol,2003,123(8):998-1003.
    [126] Sittel C, Stennert E. Prognostic value of electromyography in acute peripheral facialnerve palsy[J]. Otol Neurotol,2001,22(1):101-104.
    [127] Sinsel N K, Guelinckx P J, Opdebeeck H. Efect of nerve repair after unilateralpartial facial paralysis on craniofacial growth and development[J]. Plast ReconstrSurg,1999,104(2):445-63.
    [128]张伟,刘威,赵建华.利用胶原导管和聚四氟乙烯平板修复兔面神经损伤的实验研究[J].中国康复理论与实践,2005,11(8):621-662.
    [129] Mattsson, P. et a1. Motor neuronal and glial apoptosis in the adult facial nucleusafter intracranial nerve transection[J]. J Neurosurg,2006.104(3):411-418.
    [130] Costa H, J, et a1. Evaluation of the systemic use of riluzole in post-traumatic facialnerve regeneration:experimental study in rabbits[J]. Acta Otolaryngol,2007,127(11):1222-5.
    [131] Sharma N, Cunningham K, Porter RG Sr, et al. Comparison of extratemporal andintratemporal facial nerve injury models[J]. Laryngoscope,2009,119(12):2324-2330.
    [132] Heaton JT, Kowaleski JM, Bermejo R, et al. A system for studying facial nervefunction in rats through simultaneous bilateral monitoring of eyelid and whiskermovements[J]. J Neurosci Methods,2008,171(2):197-206.
    [133] Samii M, Gerganov V, Samii A. Improved preservation of hearing and facial nervefunction in vestibular schwannoma surgery via the retrosigmoid approach in aseries of200patients[J]. J Neurosurg,2006,105(4):527-535.
    [134] Preuss S F. Klussmann J P, Wittekindt C, et a1. Submandibular gland excision:15years of experience[J]. J Oral Maxillofac Surg.2007,6(5):953-957.
    [135]廖进民,徐达传,钟世镇.面神经缺损修复供体的研究进展[J].中国临床解剖学杂志,2004,22(2):222-223.
    [136] Isao K, Yazaburo N, Tetsuya T, et a1. New One—Smge Nerve Pedicle GraftingTechnique Using the Great Auricular NerVe for Reconstruction of Facial NerveDefects[J]. Journal Of Reconstructive Microsurgery,2004,20(5):357-361.
    [137]金海,侯立军.外伤性面神经损伤的研究进展[J].第二军医大学学报.2008,29(10):1248-1250.
    [138]王卫红,许彪,朱谨,等.面神经损伤后神经元中BCL-2p53表达的实验研究[J].现代口腔医学杂志,2009,23(2):155.
    [139] Donzelli R, Maiuri F, Peca C, et a1. Microsurgical repair of the facial nerve[J].Zentralbl Neurochir,2005,66(2):63-69.
    [140] Malik TH, Kelly G, Abmed A, et a1. A comparison of surgical techniques used indynamic reanimation of the paralyzed face[J]. Otol Neurotol,2005,26(2):284-291.
    [141]孙健,董玛,谢富强.骨形态发生蛋白与壳聚糖神经支架复合体修复兔面神经损伤[J].中国组织工程研究与临床康复,2008,12(10):1811.
    [142] Fansa H, Keihoff G, Comparison of different biogenic matrices seeded withcultured Schwann cells for bridging periphceral nerve defects[J]. Neurol Res,2004,26(2):167-173.
    [143] Sinis N, Schaller HE, Schulte-Eversum C, et a1. Nerve regeneration across a2cmgap in the rat median nerve using a resorbable nerve conduit filled with Schwanncells[J]. Neurosurg,2005,103(6):1067-1076.
    [144] Laino G, Carinci F, Graziano A, et a1. In vitro bone production using stem cellsderived from human dental pulp[J]. Craniofac Surg,2006,17(3):511-515.
    [145] Almushayt A, Narayanan K, Zaki AE, et a1. Dentin matrix proteinl inducescytodifferentiation of dental pulp stem cells into odontoblasts[J]. Gene Ther,2006,13(7):611-620.
    [146] Harada H, Toyono T, Toyoshima K, et a1. FGF10maintains stem cell populationduring mouse incisor development[J]. Connect Tissue Res,2002,43(2-3):201-204.
    [147] Caviedes Bucheli J, Monoz H R, et a1. Expression of insulin-like growth factor-1receptor in human pulp tissue[J]. J Endod,2004,30(11):767-769.
    [148] Verner H, Katz J. The emerging role of the insulin-like growth factors in oralbiology[J]. J Dent Res,2004,83(11):832-836.
    [149] Chai Y, Jing X, Ito Y, et a1. Fate of mammalian cranial meural crest during toothand mandibular morphogenesis[J]. Development,2000,127(8):1671-1679.
    [150] KikyoNand, Wolffe AP. Reprogramming nuclei:insights from cloning, nucleartransfer and heterokaryons[J]. Cell Sci,2000,113(1):11-20.
    [151] Galli R, Gritti A, Bonfanti L, et at. Neural stem cells:an overview[J]. Circ Res,2003,92(6):598-608.
    [152] Goldman SA, Sim F Neural progenitor cells of the adult brain[J]. Novartis FoundSymp,2005,265:66-80.
    [153]潘良春.周围神经治疗的新方法一神经干细胞移植[J].国外医学-物理学与康复学分册,2005,25(1):44-45.
    [154] Xiao R, yu G, Jia H. A successive study of histopathological changes in unilateralfacial muscle denervation[J]. Zhonghua Kou Qiang Yi Xue Za Zhi.2001,36(3):177-179.
    [155]韩思源,李荷欢,唐明睿.面神经损伤对表情肌酶组织化学的影响[J].中国血液流变学杂志,2008,18(1):31-33.
    [156] Constantinidis J, Akbarian A, Steinhart H, et al. Morphological changes ofdenervated and reinnervated rat facial muscle[J]. Acta Otolaryngol,2001,121:763-767.
    [157] Malik TH, Kelly G, Ahmed A, et a1. A comparison of surgical techniques used indynamic reanimation of the paralyzed face[J].0tol Neurotol,2005,26(2):284-291.
    [158] Guntinas-Lichius O, Streppel M, Stennert E. Postoperative functional evaluation ofdifferent reanimation techniques for facial nerve repair[J]. Am J Surg,2006,191,(9):61-67.
    [159] Lundborg G, Hansson HA. Nerve regeneration through preformed pseudosynovialtubes. A preliminary report of a new experimental model for studying theregeneration and reorganization capacity of peripheral nerve tissue[J]. HandSurg[Am],1980,5(1):35-38.
    [160]黄孝文,陶泽璋,崔永华,等.甲壳素导管引导面神经再生的研究[J].临床口腔医学杂志,2003,19(1):26-27.
    [161]周翠英,骆文龙.肝细胞生长因子对面神经损伤修复作用的实验初探[J].重庆医学,2003,32(3):299-300.
    [162]李雪盛,孙建军.组织工程种子细胞的研究进展[J].临床耳鼻咽喉科杂志,2004,18(5):313-314.
    [163] Ciardelli G, Chiollovl Materials for peripheral nerve regeneration[J]. MacromolBiosci,2006,6(1):13-26.
    [164]周红星.组织工程中种子细胞粘附的研究进展[J].中国康复医学杂志,2004,19(8):630-633.
    [165]何扬涛,于彬,周德山.成体干细胞的可塑性研究[J].中国临床康复,2004,25(4):5348-5349.
    [166] Nakamura S, Yamada Y, Katagiri W, et al. Stem cell proliferation pathwayscomparison between human exfoliated deciduous teeth and dental pulp stem cellsby gene expression profile from promising dental pulp[J]. J Endod,2009,35(11):1536-1542.
    [167] Pivoriūnas A, Surovas A, Borutinskaitё V, et al. Proteomic analysis of stromal cellsderived from the dental pulp of human exfoliated deciduous teeth[J]. Stem CellsDev,2010,19(7):1081-1093.
    [168] Ishkitiev N, Yaegaki K, Calenic B, et al. Deciduous and Permanent dental pulpmesenchymal cells acquire hepatic morphologic and functional features in vitro[J].J Endod,2010,36(3):469-474.
    [169] Casagrande L, Demarco FF, Zhang Z, et al. Dentin-derived BMP-2and odontoblastdifferentiation[J]. J Dent Res,2010,89(6):603-608.
    [170] Chadipiralla K, Yochim JM, Bahuleyan B, et al. Osteogenic differentiation of stemcells derived from human periodontal ligaments and pulp of human exfoliateddeciduous teeth[J]. Cell Tissue Res,2010,340(2):323-333.
    [171] Gronthos S. Stem cell properties of human dental pulp stem cell[J]. Dent Res,2002,81(8):531-535.
    [172] Nosrat IV, Smith CA, Mullally P, et aL Eur J Neurosci,2004.19(9):2388-2389.
    [173] Miura M, Gronthos S Zhao M, et aL Proc Natl Acad Sci USA,2003,l00(10):5807-5812.
    [174] Laino G, Carinci F, Graziano A, et a1. J Craniofac Surg,2006,17(3):511-515.
    [175] Laino G, Gratiano A, d’Aquino R, et a1. J Cell Physiol.2006,206(3):693-701.
    [176] Aquino R, Graziano A, Sampaolesi M, et aL Cell Death Differ,2007,14(6):1162-1171.
    [177]刘宏胜,白小文,杨嫒,等.人类年轻恒牙牙髓干细胞体外多向分化的能力[J].北京大学学报:医学版,2007,39(1):4l-45.
    [178] Jason Baardsnes, Cynthia S. Hinck, et al. TβR-II Discriminates the High-andLow-Affinity TGF-β Isoforms via Two Hydrogen-Bonded Ion Pairs[J].Biochemistry,2009,48(10):2146-2155.
    [179] Pierre-Luc C, Guylaine FF, Carl S, et al. Transforming growth factor beta isoformsregulation of Akt activity and XIAP levels in rat endometrium during estrous cycle,in a model of pseudopregnancy and in cultured decidual cells[J], ReproductiveBiology and Endocrinology,2009,80(7):1-13.
    [180] Mushtaq A, Memon, Matthew D, et al. Transforming Growth Factor Beta(TGFβ1,TGFβ2and TGFβ3)Null-Mutant Phenotypes in Embryonic GonadalDevelopment[J]. Mol Cell Endocrinol,2008,294(1-2):70-80.
    [181]胡文,王晓冬.周围神经组织工程研究进展[J].国外医学生物医学工程分册,2004,27(3):149-153.
    [182] Rutkowski GE, Miller CA, Jeftinija S, et a1. Synergistic effects of micropatternedbiodegradable conduits and Schwann Cells0n sciatic nerve regeneration[J]. NeuralEng,2004,1(3):151-157.
    [183]刘世清,李皓桓,彭吴,等.毗咯哇咐醒充填导管诱导外周神经再生的实验研究[J].中华显微外科杂志,2005,28(2):145-147.
    [184] wang K, Hu w, Cao Y, et a1. Dog sciatic nerve regeneralion across a30-mm defectbridged by a chitosan/PGA artificial nerve graft. Brain[J]. Neurosurgery,2005,128(Pt8):1897-1910.
    [185] Inada Y, Morimoto S, Takakura Y, et a1. Regeneration of peripheral nerve gapswith a polyglycolic acid-collagen tube[J]. Neurosurgery2004,55(3):640-648.
    [186] Lundborg G, Dahlin L, Dohi D, et a1. A new type of bioartificial nerve graft forbridging extended defects in nenerve[J]. J Han Surg,1997,22(3):299-304.
    [187] Nakamura T, Inada Y, Fukuda S, et a1. Experimental study on the regeneration ofperipheral nerve gaps through a polyglycolic acid-collagen(PGA-collagen)tube[J].Brain Res,2004,1027(1-2):18-29.
    [188] Toba T, Nakamura T, Shimizu Y, et a1. Regeneration of canine peroneal nerve withthe use of a polyglycolic acid-collagen tube filled with laminin-soaked collagensponge:a comparative study of collagen sponge and collagen fibers as fillingmaterials for nerve conduits[J]. J Biomed Mater Res,2001,58(6):622.630.
    [189]成洪泉,翦新春,许春娇.胶原海绵与骨髓基质成骨细胞体外联合培养的实验研究[J].口腔医学研究,2004,20(5):498-500.
    [190]于炎冰,张黎,胡萍,等.含神经生长因子的壳聚糖导管桥接周围神经缺损的实验研究[J].中华神经外科疾病研究杂志,2003,2(3):228-23l.
    [191] Fine EG Decosterd I, Papaloizos M, et a1. GDNF and NGF released by syntheticguidance channels support sciatic nerve regeneration across a long gap[J]. Eur JNeurosci,2002,15(4):589-601.
    [192] Moran L B, GraeberM B. The facial nerve axotomy model[J]. BrainResRev,2004,44:154-178.
    [193] Romansky RK. Axonalm isdirection as contributing factor to aberrant reinnervationofmuscles after facial nerve suture in cats[J]. Arch Physiol Biochem,2003,111:273-283.
    [194] Most S P. Facial nerve recovery in bcl2overexpression mice after crush injury[J].Arch Facial Plast Surg,2004,6:82-87.
    [195]刘南,周柏玉,王静.蛋白酶体抑制剂对面神经运动神经元的保护作用[J].第四军医大学学报2008,29(13):1160.
    [196] Spector JG, Lee P, Derby A, Frierdich GE, Neises G, Roufa DG. Rabbit facialnerve regeneration in NGF-containing silastic tubes[J]. Laryngoscope1993May;103:548-58.
    [197] Spector JG, Lee P, Derby A. Rabbit facial nerve regeneration in autologous nervegrafts after antecedent injury[J]. Laryngoscope2000;110:660-667.
    [198]. Mattsson P, Delfani K, Janson AM, et al. Motor neuronal and glial apoptosis in theadult facial nucleus after intracranial nerve transaction[J]. J Neurosurg,2006,104(3):411-418.
    [199]陈沛,包敏,俞善纯,等.面神经断伤吻合后功能恢复变化的实验研究[J].临床耳鼻咽喉头颈外科杂志,2008,22(7):318-321.
    [200] Sittel C, Stennert E. Prognostic value of electromyography in acute peripheral facialnerve palsy[J]. Otol Neurotol,2001,22(1):101-104.
    [201] Sinsel N K, Guelinckx P J, Opdebeeck H. Efect of nerve repair after unilateralpartial facial paralysis on craniofacial growth and development[J]. Plast ReconstrSurg,1999,104(2):445-63.
    [202] Guntinas-lichius O, Wewetzer K, Tomovt L, et a1. Transplantation of olfactorymucosaminimizes axonal branching and promotes the recovery of vibrissae motorperformance after facial nerve repair in rabbits[J]. J Neurosci,2002,22:7121-7131.
    [203] Hadlock TA, Heaton J, Cheney M, et a1. Functional recovery after facial and sciaticnerve crush injury in the rabbit[J]. Arch Facial Plast Surg,2005,7:17-20.
    [204] Choi D, Raisman G. Somatotopic organization of the facial nucleus is disruptedafter lesioning and regenerabbition of the facial nerve:the histologicalrepresentation of synkinesis[J]. Neurosurgery,2002,50:355-362.
    [205] Franchi G. Changes in motor representation related to facial nerve damage andregenerabbition in adult rabbits[J]. Exp Brain Res,2000,135:53-65.
    [206] Vasconcelos BCE, Gay-Escoda C. Facial nerve repair with expandedplytetrafluoroethylene and collagen conduits:an experimental study in the rabbit[J].J Oral Maxillofac Surg,2000,58(11):1257-1262.
    [207] Willian F, Brown James Veitch, Intraoperative monitoring of periplal and cranialnerves[J]. Muscle Nerve,1994,17(5):371.
    [208]陈伟,陆勤,任荣亮,等.糖尿病大鼠周围神经形态功能及电生理指标的动态变化[J].国际神经病学神经外科学杂志,2010,37(5):400-404.
    [209] Kimura J. Electrodiagnosis in diseases of nerve and muscle:Principles andpractice[M].3rd ed. Philadelphia:Davis FA,2001:4-5.
    [210] Shindo M. Management of facial nerve paralysis. Otolaryngol Clin NorthAm[J].1999,32:945-964.
    [211] Julian GG,Hoffmann JF,Shelton C.Surgical rehabilitation of facial nerveparalysis[J].Otolaryngol Clin North Am,1997,30:701-726.
    [212] Kalla R, Liu Z, Xu S, et a1. Microglia and the early phase of immune suerveillancein the axotomizes facial motor nucleus:impaired microglial activation andlymphocyte recruitment but no feect on neuronal survival or axonal regeneration inmacrophage-colony stimulating factor-deficient mice[J]. J Comp Neurol,2001,43(6):182-201.
    [213] Choi D and Dunn LT. Facial nerve repair and regeneration:an overview of basicprinciples for neurosurgeons[J]. Acta Neurochir,2001,143(23):107-114.
    [214] Schlosshauer B, Muller E, Schroder B, et al. Rat Schwann cells in bioresorbablenerve guides to promote and accelerate axonal regeneration[J]. Brain Res,2003,963(1-2):321.
    [215] Ruan RS, Leong SK, Yeoh KH. Glial reaction after facial nerve compression in thefacial canal of the albino rat[J]. Acta Otolaryngol(stock),1994,114(34):271-277.
    [216]劳杰,姜良福,顾玉东,等.脑源性神经营养因子在激活态雪旺细胞中表达的初步实验研究[J].中华手外科杂志,2008,19(2):109.
    [217] Lietz M, Dreesmann L, Hoss M, et a1. Neuro tissue engineering of glial nerveguides and the impact of different cell types[J]. Biomaterials,2006,27(8):1425.
    [218] Tian GF, Azmi H, Takano T, et al. Nedergaard M. An as trocytic bas is ofepilepsy[J]. Nat Med,2005,11(9):973~981.
    [219] Fields RD, S tevens Graham B. Neuro science:New insights into neurongliacommunication. Science[J].2002,298(5593):556~562.
    [220] Bonvento G, Giaume C, Lorenceau J. Neuron-glia interactions:From physiology tobehavior[J]. J Physiol,2002,96(3):167~168.
    [221]刘建,杨利建,刘望恒,等.星形胶质细胞引起神经元超激发的作用机制分析[J].生物物理学报,2011,27(1):57-65.
    [222] Fitzsimmons TJ, Zhao X, Wank SA. The extracellular domain of receptoractivity—modifying protein1(RAMP1)is sufficient for calcitonin receptor-likereceptor(CRLR)function[J]. J Biol Chem,2003,278(16):14313-14320.
    [223] Haber M, Zhou L, Murai K K. Cooperative astrocyte and dendritic spine dynamicsat hippocampal excitatory synapses[J]. J Neurosci,2006,26(35):8881-8891.
    [224] Nishida H, Okabe S. Direct astrocytic contacts regulate local maturation ofdendritic spines[J]. J Neurosci,2007,27(2):331-340.
    [225] Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurologicaldisorders:a molecular perspective[J]. Nat Rev Neurosci,2006,7(3):194-206.
    [226] Yoshihara Y, De Roo M, Muller D. Dendritic spine formation and stabilization[J].Curr Opin Neurobiol,2009,19(2):146-153.
    [227] Kayser M S, Nolt M J, Dalva M B. EphB receptors couple dendritic filopodiamotility to synapse formation[J]. Neuron,2008,59(1):56-69.
    [228] Li H, Chen G, Zhou B, et al. Actin filament assembly by myristoylated alanine-richkinase substrate-phosphatidylinositol-4,5-diphosphate signaling is critical fordendrite branching[J]. Mol Biol Cell,2008,19(11):4804-4813.
    [229] Slezak M, Pfrieger FW, Soltys A. Synaptic plasticity, astrocytes and morphologicalhomeostasis[J]. J Physiol(Paris),2006,99:84-91.
    [230] E kmark-Lewen S, Lewen A, Israelsson C, et al. Vimentin and GFAP responses inastrocytes after contusion trauma to the murine brain[J]. Restor Neurol Neurosci,2010,28(3):311-321.
    [231] Henning J, Strauss U, Wree A, et al. Differential a-stroglial activation in6-hydroxydopamine models of Parkinson's disease[J]. Neurosci Res,2008,62(4):246-253.
    [232] Ridet L, Malhotra SK, Privat A, et a1. Reactive astrocytes:cellular and molecularcue biological function[J]. TINS,1997,20:570-577.
    [233]杨力,赵培园,战雅,等.糖尿病小鼠海马星形胶质细胞GFAP表达的变化[J].昆明医学院学报,2010,9(6):28-31.
    [234] Graeber MB, Kreutzberg GW. Delayed astrocyte reaction following facial nerveaxotomy[J]. J Neurocytol1988;17(2):209-220.
    [235] Dezawa M. Adachi-Usami. Role of Schwann cells in retunal ganglion cell axonregeneration[J]. Progress in Retinal and Eye Research,2000,19(2):171-204.
    [236] Mirsky R, Jessen KR, Brennan A, et a1. Schwann cells as regulators of nervedevelopment[J]. J Physiology,2002,96:17-24.
    [237] Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factor, and peripheralnerve regeneration[J]. Microsurgery,1998, l8:397-405.
    [238] Jonsson H, Johnsson P, Hoglund P, et al. Elimination of S100and renal functionafter cardiac surgery[J]. J Cardio thorac vasc A nesth,2000Dec,14(12):698-701.
    [239] Zimmer DB, Cornwall EH, Landar A, et al. The S100protein family:historyfunction and expression[J]. Brain Res Buli,1995,37:417-429.
    [240] Yan X,Qin H,Qu C,et al. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin[J].Stem Cells Dev,2010,19(4):469-480.
    [241] Oka K, Oka S, Sasaki T, Ito Y, et al. The role of TGF-beta signaling in regulatingchondrogenesis and osteogenesis during mandibular development [J]. DevBiol,2007,303(1):391-404.
    [242] Djouad F, Delorme B, Maurice M,et al. Microenvironmental changes duringdifferentiation of mesenchymal stem cells towards chondrocytes [J]. Arthritis ResTher,2007,9(2): R33.
    [243] N th U, Rackwitz L, Heymer A, et al. Chondrogenic differentiation of humanmesenchymal stem cells in collagen type I hydrogels [J]. J Biomed Mater ResA,2007,83(3):626-635.
    [244] Fuchs JR, Hannouche D, Terada S,et al. Cartilage engineering from ovineumbilical cord blood mesenchymal progenitor cells [J]. Stem Cells,2005,23(7):958-964.
    [245] Hannouche D, Terai H, Fuchs JR,et al. Engineering of implantable cartilaginousstructures from bone marrow-derived mesenchymal stem cells [J]. TissueEng,2007,13(1):87-99.
    [246] Kawamura K, Chu CR, Sobajima S,et al. Adenoviral-mediated transfer ofTGF-beta1but not IGF-1induces chondrogenic differentiation of humanmesenchymal stem cells in pellet cultures[J]. Exp Hematol,2005,33(8):865-872.
    [247] Tscheudschilsuren G, Bosserhoff AK, Schlegel J, et al. Regulation of mesenchymalstem cell and chondrocyte differentiation by MIA [J]. Exp Cell Res,2006,312(1):63-72.
    [248] Moioli EK, Hong L, Mao JJ. Inhibition of osteogenic differentiation of humanmesenchymal stem cells [J]. Wound Repair Regen,2007,15(3):413-421.
    [249] Jin EJ, Park JH, Lee SY, et al. Wnt-5a is involved in TGF-beta3-stimulatedchondrogenic differentiation of chick wing bud mesenchymal cells [J]. Int JBiochem Cell Biol,2006,38(2):183-195.
    [250] Frank Barry, Raymond E Boynton, Beishan Liu, et al. Chondrogenicdifferentiation of mesenchymal stem cells from bone marrow:differentiationdependent gene expression of matrix components[J]. Exp CellRes,2001,268(2):189-200.
    [251] Jin EJ, Lee SY, Jung JC, et al. TGF-beta3inhibits chondrogenesis of cultured chickleg bud mesenchymal cells via downregulation of connexin43and integrin beta4[J]. J Cell Physiol,2008,214(2):345-353.
    [252] Muhetaer Hoojia,Noriko Muraoka, et al. TGF-β3Induces Ectopic Mineralizationin Dental Pulpal Tissue of Fetal Mouse Tooth Germ Development.[J] Development,Growth, and Differentiation,2005;47(3):141-152.
    [253] Sasaki R, Aoki S, Yamato M, et al. Neurosphere generation from dental pulp ofadult rat incisor[J].Eur J Neurosci.2008,27(3):538-48.
    [254] Kitagawa K.Therapeutic application of cell transplantation and increasedneurogenesis in cerebral infarction[J]. Rinsho shinkeigaku,2004,44(11):756-759.
    [255] Tatsumi K, Haga S, Matsuyoshi H, et a1. Characterization of cells with proliferativeactivity after a brain injury[J]. Neurochem In,2005,46(5):381-389.
    [256] Akiyama Y, Honmou O, Kato T, et a1. Transplantation of clonal neural precursorcells derived from adult human brain establishes functional peripheral myelin in therat spinal cord[J]. Exp Neurol,2001,167(1):27-39.
    [257] Oka S, Honmou O, Akiyama Y, et al. Autologous transplantation of expandedneural precursor cells into the demyelinated monkey spinal cord[J]. Brain Res,2004,1030(1):94-102.
    [258] Blakemore WF. The case for a central nervous system(CNS)origin for the Schwanncells that remyelinate CNS axons following concurrent loss of oligodendrocytes andastrocytes[J]. Neuropathol Appl Neurobiol,2005,31(1):1-10.
    [259] Murakami T, Fujimoto Y, Yasunaga Y, et a1. Transplanted neuronal progenitorcells in a peripheral nerve gap promote nerve repair[J]. Brain Res,2003,974(1-2):17-24.
    [1] Jason Baardsnes, Cynthia S. Hinck, et al. TβR-II Discriminates the High-andLow-Affinity TGF-β Isoforms via Two Hydrogen-Bonded Ion Pairs[J].Biochemistry.2009,48(10):2146.2155.
    [2] Cutroneo KR. TGF-beta-induced fibrosis and SMAD signaling:oligo decoys asnatural therapeutics or inhibition of tissue fibrosis and scarring[J]. Wound RepairRegen2007,15(Suppl1):S54-S60.
    [3] Massague J. TGF-beta in cancer[J]. Cell2008;134:215-230.
    [4] Pierre-Luc C, Guylaine FF, Carl S, et al. Transforming growth factor beta isoformsregulation of Akt activity and XIAP levels in rat endometrium during estrous cycle,in a model of pseudopregnancy and in cultured decidual cells[J]. ReproductiveBiology and Endocrinology2009,80(7):1-13.
    [5] Marinova-Mutafchieva L, Gabay C, Funa. K, et al. Remission of collagen-inducedarthritis is associated with high levels of transforming growth factor-b expression inthe joint[J]. Clinical and Experimental Immunology,2006,146:287-293.
    [6] Leila Wyatt, Carol Wadham, Lesley A, et al. The protein tyrosine phosphatase Pezregulates TGFβ, epithelial-mesenchymal transition, and organ development. TheRockefeller University Press[J]. The Journal of Cell Biology,2007,178(7):1223-1235.
    [7] Mushtaq A, Memon, Matthew D, et al. Transforming Growth Factor Beta(TGFβ1,TGFβ2and TGFβ3)Null-Mutant Phenotypes in Embryonic Gonadal Development[J].Mol Cell Endocrinol.2008,294(1-2):70-80.
    [8] Kjetil Ask, Philippe Bonniaud, Katja Maass, et al. Progressive pulmonary fibrosis ismediated by TGF-βisoform1but not TGF-β3[J]. Int J Biochem Cell Biol.2008,40(3):484-495.
    [9] Mohamad Azhar, Raymond B, Runyan, et al. Ligand-Specific Function ofTransforming Growth Factor Beta in Epithelial-Mesenchymal Transition in HeartDevelopment[J]. Dev Dyn.2009,238(2):431-442.
    [10] Schnaper HW, Hayashida T, Hubchak SC, et al. TGF-beta signal transduction andmesangial cell fibrogenesis[J]. Am J Physiol Renal Physiol.2003,284(2):243-52.
    [11] Lawrence A, Wolfraim, Tania M, et al. Loss of smad3in acute T-Cell lymphoblasticLeukemia[J]. The New England Journal of Medicine,2004,5351:5(51):552-559.
    [12] Luisa P, Cacheaux, Sebastian Ivens, et al. Transcriptome Profiling Reveals TGF-βSignaling Involvement in Epileptogenesis[J]. J Neurosci.2009,29(28):8927-8935.
    [13] Thuy-Vy Do, Lena A, Kubba, et al. Transforming Growth Factor-β1, TransformingGrowth Factor-β2, and Transforming Growth Factor-β3Enhance Ovarian CancerMetastatic Potential by Inducing a Smad3-Dependent Epithelial-to-MesenchymalTransition[J]. Mol Cancer Res.2008,6(5):695-705.
    [14]杜宏举.丝裂原活化蛋白激酶信号通路及其生物学功能[J].国外医学卫生学分册,2005,32(4):197-201.
    [15]周官恩,刘宗超,王宇石. p38丝裂原活化蛋白激酶与缺血性脑损伤[J].中风与神经疾病杂志.2004,21(5):473-475.
    [16] Mbayev VV, Yasinska IM. Regulation of MAP kinase-dependent apoptoticpathway:implication of reactive oxygen and nitrogen species[J]. Arch BiochemBiophys.2005,436(2):406-12.
    [17] wang W, Shi L, Xie Y, et al. a new JNK inhibitor, protects dopaminergic neurons inthe MPTP model of Parkinson’S disease[J]. Neurosci Res.2004,48(2):195-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700