超临界流体制备组织工程细胞支架工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞支架的制备工艺是组织工程学研究的核心内容。传统细胞支架的制备工艺虽然各有其优势,但存在着有机溶剂残留、制备周期长和孔隙率低等不足。近年来,将超临界流体(简称SCF)技术引入组织工程细胞支架的制备过程已引起研究者广泛关注。利用现有的超临界C02(简称ScCO2)发泡工艺制备细胞支架,虽然没有有机溶剂的残留,但其孔隙率较低、难以控制孔尺寸的范围;利用ScCO2与其他工艺结合制备细胞支架,增加了原工艺的复杂性,使得制备周期延长;利用超临界反溶剂(简称SAS)工艺制备细胞支架,既没有有机溶剂的残留,又可以通过改变工艺参数来控制支架的孔径范围,具有广阔的应用前景。目前对SAS工艺的研究仅停留在实验阶段,主要探讨相关工艺参数对支架性能的影响,缺乏深入系统的理论研究。
     本论文首先对现有的ScCO2发泡工艺进行改进,采用多次升温和泄压的方法,以典型的无定型类聚合物—PMMA为模型材料,制备了PMMA多孔支架,考察了主要工艺参数对多孔支架性能的影响,并与现有的ScCO2发泡工艺制备的支架进行了比较。结果表明,与现有ScCO2发泡技术制备的PMMA细胞支架相比,在相同温度、压力、泄压时间、不同保压时间的条件下,改进工艺制备的PMMA细胞支架具有孔径范围大、孔隙率高、孔与孔之间连通性好的特点。
     利用SAS工艺,以PCL、PLLA为模型材料,进行了SAS工艺制备细胞支架的实验研究,确定了聚合物浓度、CO2压力和温度对支架形态、孔径分布的影响规律,得出了实验范围内制备上述材料支架的最佳工艺;为了提高单体PLLA支架的孔隙率与抗压强度,分别以PEG和β-TCP为添加剂,在制备单体PLLA细胞支架的基础上,成功制备了PLLA/PEG和PLLA/β-TCP复合材料支架。结果显示,加入PEG后,可以提高支架的孔隙率,最高可达92%;加入β-TCP后,可以提高支架的抗压强度,最高可达1.76MPa。
     以Flory-Huggins理论为基础,对SAS工艺的热力学行为进行了研究,建立了适合SAS工艺过程的相平衡热力学模型。利用模型中双节线、旋节线和临界点的计算方法,得到了三元体系相图,分别分析了ScCO2/AC/PCL和ScCO2/CH2C12/PLLA三元体系在制备多孔支架过程中的相行为。结果表明,两种三元体系均在临界点的上方按成核生长机理发生液—液相分离,可制备出具有多孔结构特征的聚合物。随着CO2压力的增加,相互作用参数χ12、χ13均减小,χ23保持不变;随着温度的升高,相互作用参数χ12χ13均增大,X23变化的趋势很小;分相点的计算结果表明,随着压力的增加,非溶剂进入聚合物溶液中的量逐渐增大,而随着温度的升高,非溶剂进入聚合物溶液中的量逐渐减小,两种体系计算结果一致。
     基于Reuvers模型,建立了适合SAS工艺过程的传质动力学模型,分别针对ScCO2/AC/PCL和ScCO2/CH2C12/PLLA三元体系给出了相关参数的求取方法,模拟了传质过程,得到了三元相图中的传质路径,描述了不同工艺参数对多孔结构的影响趋势。结果表明:两种三元体系在不同工艺条件下各组分体积分数的变化趋势相似,组分间扩散系数随着CO2压力的增加而减小,随着温度的升高而增大:随着聚合物浓度的增加、CO2压力的减小和温度的升高,传质路径逐渐变短,相分离速度逐渐加快,支架的平均孔径呈逐渐减小的趋势。支架平均孔径的最终变化趋势受相平衡热力学和传质动力学两方面因素的影响;两种三元体系中聚合物不同的物理性质、组分间不同的扩散系数造成了两种支架截面孔结构的不同。
Scaffolds fabrication technique is essential to tissue engineering research. Conventional techniques for scaffolds fabrication have their advantages, but they exist in one or more limitations as follows:residual organic solvent, low porosity and difficulty in controlling pore size. Recently, supercritical fluid has been introduced into scaffolds production, and several processes have been developed. Among these three processes stand out and gain more attention. One of these is the ScCO2foaming process and no solvent is used during the process, while the product obtained by this process has generally low porosity and closed-cells structure. Combing ScCO2with other processes can overcome some disadvantages, but it makes the process more complexited and time consumed. The SAS process has shown great application potential in preparing porous polymer with the advantages of no residual organic solvent and controllable pore size by adjusting process parameters. The present research work on the SAS process is still in the early stage on the process feasibility, and there are seldom reseach on the systemically theoretical research of the process.
     An improvement is made on the ScCO2foaming process. Porous PMMA scaffolds are produced by repeated heating and pressure reducing. The influences of the different operation parameters on the properties of porous scaffolds are examined and a comparison is made between conventional SCCO2foaming process and the improved one. The results show that the porosity, pore size and pore connectivity of PMMA scaffolds prepared by improved ScCO2foaming process are higher than those prepared by conventional one at the operation conditions of the same temperature, pressure, pressure release time, and different maitaining times.
     The scaffolds of PCL and PLLA polymer are successfully prepared by SAS process. The influences of operation parameters (polymer concentration, CO2pressure and temperature) on the scaffolds morphology, pore size and size distribution are investigated. The optimal operation conditions for these materials are obtained. In order to improve the porosity and the compressive strength of the PLLA scaffolds, the PLLA composite scaffolds are fabricated with PEG and β-TCP as additive respectively. The porosity increases with the adding of the PEG and the highest porosity of PLLA/PEG composite scaffolds can reach92%. The compressive strength increases with the adding of the β-TCP and the highest compressive strength of PLLA/β-TCP composite scaffolds can reach1.76MPa.
     Based on Flory-Huggins theory, a thermodynamic model suitable for SAS process is established. Through the calculation of binodal line, spinodal line and critical point, the ternary phase diagram is obtained. The thermodynamics behaviors of ScCO2/AC/PCL and ScCO2/CH2Cl2/PLLA systems in the process of preparing porous scaffolds are analyzed by means of the ternary phase diagram. The results show that both systems have liquid-liquid phase separation in the upper part of the critical point following the nuclear growth mechanism, and they are suitable for the preparation of porous scaffolds. The interaction parameters χ12and χ13reduce, but χ23remains unchanged with the increase of CO2pressure. As the temperature increases, the interaction parameters χ12and χ13increase, the change of χ23is very small. The calculation results of split phase point show that the solvent quantity of polymer solution increases gradually with the increase of pressure and the decrease temperature. Similar calculations are obtained in these two systems.
     Based on Reuvers model, a mass transfer dynamics model suitable for SAS process is established. The computing methods of model parameters are given, the mass transfer processes of ScCO2/AC/PCL and ScCO2/CH2Cl2/PLLA system are simulated, and the influences of the operation parameters on the scaffolds morphology, pore size and size distribution are investigated according to the mass transfer path obtained by the calculation. The result shows that the change of volume fraction of the different component is similar in the two systems. The diffusion coefficients decrease with the increase of CO2pressure, while they increase with the increase of temperature. The mass transfer path gradually becomes short with the increase of the polymer concentration or temperature or with the decrease of CO2pressure. So the speed of phase sepatation gradually accelerate, then the mean pore size of scaffolds gradually decrease. The formation of scaffolds is the result of the combination of the equilibrium thermodynamics and membrane formation kinetics. The different porous structures of these two scaffolds can be explained with different physical properties and component different diffusion coefficients of the polymers.
引文
[1]Langer R, Vacanti J P. Tissue engineering [J]. Science,1993,5110(260):920-926.
    [2]李荣.肌腱组织工程中三维支架材料性能及其力学特性[J].中国组织工程研究与临床康复,2010,14(8):1447-1450.
    [3]任杰,诸静,任天斌.组织工程三维多孔支架制备技术的最新进展[J].同济大学学报(自然科学版),2005,33(12):1664-1667.
    [4]张涛,姬振伟,钱济先.细胞支架研究进展[J].现代生物医学进展,2011,11(1):165-168.
    [5]王海江,陈启富.组织工程支架材料研究进展[J].中国现代医生,2012,50(1):27-28.
    [6]陈锐,陈槐卿.骨组织工程人工合成高分子细胞外基质替代材料的研制[J].国外医学生物医学工程分册,2000,23(5):271-275.
    [7]杨晓光,苏卓娃.脂肪族聚酯类生物合成支架材料的应用[J].中国临床康复,2006,10(12):133-135.
    [8]佟雁翔,吴一民.骨组织工程中载体支架的研究进展[J].内蒙古医学院学报,2007,29(5):390-392.
    [9]江智茂,马刚,周余来.组织工程皮肤研究的最新进展[J].国际生物医学工程杂志,2007,30(4):244-247.
    [10]Chung H J, Park T G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering[J]. Advanced Drug Delivery Reviews.2007,59(4-5):249-262.
    [11]曹成波,王一兵,沈翔等.皮肤组织工程支架材料[J].中国生物工程杂志,2005,25(10):58-62.
    [12]Stamatialis D F, Papenburg B J, Girones M, ea al. Medical applications of membranes:Drug delivery, artificial organs and tissue engineering[J]. Membrane Science,2008,308 (1-2):1-34.
    [13]王新文,金岩,刘源等.用聚乳酸海绵材料构建组织工程真皮[J].生物医学工程与临床,2003,7(2):75-77.
    [14]吴景梅,吴若峰.骨组织工程多孔支架材料性质及制备技术[J].化工新型材料,2004,32(9):17-20.
    [15]王宗良,师铁英,石毅等.应用改性聚乳酸构建复层组织工程皮肤的可行性研究[J].吉林大学学报(医学版),2007,33(4):719-722.
    [16]Li Y, Ma T, ST Yang, et al. Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds[J]. Biomaterials,2001,22:609-618.
    [17]俞耀庭,王身国,宋存先等.生物医用材料[M].第一版,天津:天津大学出版社,2000.48-98
    [18]费小琛,颜永年,熊卓.骨组织工程支架的制造[J].材料导报,2002,16(9):63-68.
    [19]Moony D J, Mazzoni C L, Breueret C, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering[J]. Biomaterials,1996,17:115-124.
    [20]吴林波,丁建东.组织工程三维多孔支架的制备方法和技术进展[J].功能高分子学报,2003,16(1):91-96.
    [21]Kyumin W, Thomas K G, Kevin E H, et al. biodegradable polymer scaffold for deliver yofosteotropic factors[J]. Biomaterials,2000,21(24):2545-2551.
    [22]Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering[J]. Biomaterials,2004,25:1891-1900.
    [23]石宗利,王彦平,戴刚等CPP/PLLA软骨组织工程支复合材料初步研究[J].复合材料学报,2002,19(6):97-100.
    [24]Shastri V P,Martin I,Langer R. Macroporus Polymer Foams by Hydrocarbon Templating [M] Proceedings of t he National Academy of Science. USA.2000,97:1970-1975.
    [25]Mooney D J, Baldwin D F, Suh N P, et al. Novel approach to fabricate porous sponges of poly(DL-lactic-co-glycolic acid) without the use of organic solvents [J]. Biomaterials,1996,17: 1417-1422.
    [26]Park T G. Perfusion Culture of Hepatocytes within Galactose derivatized Biodegradable Poly(lactide-co-glycolide)Scaffolds Prepared by Gas Foaming of Effervescent Salts[J]. Biomedical Materials Research,2002,59:12735.
    [27]高建平,马朋高,于九皋等.组织工程与生物高分子骨架[J].高分子通报,2000,4:895-899.
    [28]Mark B, Mohamed M, Cato T, etal. Tissue Engineered Micosphere based Matrices for Bone Repair: Design and Evalution[J]. Biomaterial,2002,23:55-59.
    [29]Kompella U B, Koushik K. Preparation of drug delivery systems using supercritical fluid technology. Critical ReviewsTM in Therapeutic Drug Carrier Systems,2001,18 (2):173-199.
    [30]Mehdi A S, Hamid R, Feridun E,et al. Solubility of ketoprofen in supercritical carbon dioxide[J]. Supercritical Fluids,2012,72:191-197
    [31]Berens AR, Huvard GS, Korsmeyer RW. US Pat,4820752[P], Apr.l 1,1989.
    [32]Jacques F, Frayssinet P. Histological integration of allogeneic cancellous bone tissue treated by supercritical CO2 implanted in sheep bones[J]. Biomaterial,1998,19(24):2247-2253.
    [33]邢禹彬,李立华,周长忍.超临界CO2反复循环萃取法制备PLA/TCP多孔组织工程支架材料[J].功能材料,2005,12(36):1909-1912.
    [34]Koushik K, Kompella U B. Preparation of large porous deslorelin-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process[J]. Pharmaceutical Research,2004,21(3):524-535.
    [35]Barry J A. Supercritical carbon dioxide foaming of elastomer/heterocyclic methacrylate blends as scaffolds for tissue engineering[J]. Materials Chemistry,2005,15(46):4881-4888.
    [36]Huang Q, Seibig B, Paul D. Polycarbonate hollow fiber membranes by melt extrusion[J]. Membrane Science,1999,161:287-291.
    [37]Quirk R A, France R M, Shakesheff K M, et al. Supercritical fluid technologies and tissue engineering scaffolds[J]. Current Opinion in Solid State and Materials Science,2004,8(3-4):313-321.
    [38]Tsivintzelis I, Pavlidou E, Panayiotou C. Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent[J]. Supercritical Fluids,2007,40:317-322.
    [39]Tsivintzelis I, Marras S I, Zuburtikudis I, et al. Porous poly(L-lactic acid) nanocomposite scaffolds prepared by phase inversion using supercritical CO2 as a antisolvent[J]. Polymer,2007,48: 6311-6318.
    [40]Singh L, Kumara V. Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical application[J]. Biomaterial,2004,25:2611-2617.
    [41]Mooney D J, Sheridan M H, Shea L D,et al. Bioadsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery[J]. Control Release,2000,64:91-98.
    [42]曹晶.气体发泡法制备组织工程用三维支架材料[D].上海:同济大学高分子材料科学与[程系,2004.
    [43]李志义,丁信伟,李岳.超临界流体反溶剂法制备超细粉体[J].化学工程,2001,29(2):15-18.
    [44]Li Z Y, Tang H H, Liu X W, Xia Y J, Jiang J Z. Preparation and characterization of microporous poly(vinyl butyral) membranes by supercritical CO:-induced phase separation[J]. Membrane Science, 2008,312:115-124.
    [45]张存炜.临界流体过程制备有机分离膜的实验研究[D].大连理工大学硕士学位论文.2006
    [46]李志义,夏远景,刘学武等.用超临界流体过程制备有机分离膜.膜科学与技术,2005,25(3):85-88.
    [47]Wang X Y,Zhang L,Sun D H,et al.Formation mechanism and crystallization of poly(vinylidene fluoride)membrane via immersion precipitation method[J]. Desalination,2009,236(1-3):170-178.
    [48]Banner A L,Piringer O G.Prediction of solute partition coefficients between polyolefins and alcohols using the regular solution theory and group contribution methods[J]. Induce Engineer Chemical Research,1991,30(7):1506-1515.
    [49]Craubner H. Thermodynamic perturbation theory of phase separation in macro-molecular multi-component systems-.concentration dependence [J]. Macromolecules,1978,11(6):1161-1167.
    [50]Flory P J. Principles of polymer cheminstry[M]. Ithaca, N Y:Cornell University Press,1953.
    [51]Tompa H. Polymer Solution[M]. London:Butterworths Scientifical Publications,1956.
    [52]Altena F W, Smolders C A. Calculation of liquid-liquid phase separation in a ternary system of a polymer in mixture of solvent and nonsolvent[J]. Macromolecules,1982,15 (6):1491-1497.
    [53]郝继华,王世昌.聚合物-溶剂-非溶剂三元相图的计算[J].高等学校化学学报,1995,16(12):1831-1836.
    [54]Yilmaz L, McHugh A J. Analysis of nonsolvent-solvent-polymer phase diagrams and their relevance to membrane formation modeling[J]. Applied Polymer Science,1986,31 (4):997-1018.
    [55]Pouchly J, Zivny A, Sole K. Thermodynamic equilibrium in the system macromolecular coil-binary solvent [J]. Polymer Science Polymer Symposium,1968,23 (1):245-256.
    [56]曾振辉,黄加乐,董声雄等.改进的Marquardt算法研究制膜液三元相图[J].计算机与应用化学,2003,20(3):313-316.
    [57]Boom R.M, Boomgaard T V, Smolders C.A. Mass Transfer and Thermodynamics during Immersion Precipitation for a Two-polymer System Evaluation with the SystemPES-PVP-NMP-Water[J]. Membrane Science,1994,90(3):231-249.
    [58]Cohen C, Tanny G B, Prager S Diffusion controlled formation of porous structures in ternary polymer systems[J]. Polymer Science Polymer Physics Eduation,1979,17:477-482.
    [59]Reuvers A J, van den Berg J w A, Smolders C A Formation of membranes by means of immersion precipitation. Part Ⅰ:A model to describe mass transfer during immersion precipitation[J]. Membrane Science,1987,34:45-49.
    [60]Tsay C S, McHugh A J.Mass transfer modeling of asymmetric membrane formation by phase inversion[J]. Journal of Polymer Science, Part B:Polymer Physics,1990,28:1327-1332.
    [61]滕新荣,任杰,朱立华.超临界CO2/盐析法制备聚乳酸多孔支架材料[J].武汉化工学院学报,2005,27(5):42-45
    [62]Quirk R A, France R M, Shakesheff K M, Howdle S M. Supercritical fluid technologies and tissue engineering scaffolds[J]. Current Opinion in Solid State and Materials Science,2004,8(3-4):313-321
    [63]Hentze H P, Antonietti M. Rev Mol Biotechnol,2002,90:27-531.
    [64]Rodeheaver B.A., Colton J.S. Open-Celled Microcellular Thermoplastic Foam[J]. Polymer Engineering and Science,2001,41(3):380-385.
    [65]Goodwin C.J, Braden M, Downes S, et al. Investigation into the release of bioactive recombinant human growth hormone from normal and low-viscosity poly(methylmethacrylate) bone cements[J]. Biomedical Material Research,1997,34(1):47-51.
    [66]Vallo C.I, Montemartini P.E, Fanovich M.A, et al. Polymethylmethacrylate-based bone cement modified with hydroxyapatite[J]. Biomedical Material Research,1999,48:150-156.
    [67]Valette P, Thomas M, Dejardin P. Adsorption of low molecular weight proteins to hemodialysis membranes:experimental results and simulations [J]. Biomaterials,1999,20:1621-1627.
    [68]BragaMele R, Cohen S, Rootman D.S.Foldable silicons versus poly(methyl methacrylate) intraocular lenses in combined phacoemulsification and trabeculectomy[J]. Cataract Refractive Surgery,2000,26: 1517-1524.
    [69]Wahling H, Dingeldein E, Bergmann R, et al. The release of gentamicin from polymethylmethacrylate beads [J]. Bone Joint Surgery,1978,60(B):270-274.
    [70]Henry A.C, Tutt T.J, McWhorter C.S,et al. Chemical modification of poly(methyl methacrylate) used in the construction of microanalytical devices[J].Analytical Chemistry,2000,72:5331-5336.
    [71]Ishikiriyama K, Todoki M, Kobayashi T,et al. Pore size distribution measurements of poly(methyl methacrylate) hydrogel membranes for artificial kidneys using differential scanning calorimetry[J]. Colloid Interface Science,1995,173:419-423.
    [72]李志义,孟庭宇,刘学武等.压缩CO2中聚合物玻璃化转变温度的实验研究[J].高压物理学报,2006,30(3):243-248.
    [73]孟庭宇,李志义,刘学武等.PVC及PMMA在CO2环境中玻璃化转变特性的研究[J].化学工业与工程技术,2006,27(2):6-8.
    [74]Singh L, Kumara V. Generation of porous microcellular 85/15 poly(dl-lactide-co-Glucolide) foams for bopmedical applications[J]. Biomaterials,2004,25:2611-2617.
    [75]Mark T N, Hrishikesh R M, David L T, et al. Carbon dioxide infusion of composite electrospun fibers for tissue engineering[J]. Supercritical Fluids,2012,70:90-99.
    [76]杨延慧,严涵,康晓梅等.聚己内酯的应用研究进展[J].化工新型材料,2011,39(12):13-15.
    [77]宋存先,王彭延,孙洪范等.聚己内酯在体内的降解、吸收和排泄[J].生物医学工程学杂志,2000,17(1):25-28.
    [78]汪小超,袁伟方,顾晓雯等.水滴为模板制备蜂窝状表面的聚己内酯孔膜及其细胞亲和性[J].中国科技论文在线,2010,5(4):291-296.
    [79]Ng K W, Hutmacher D W, Schantz J T, et al. Evaluation of ultra-thin poly(epsilon-Caprolactone) films for tissue-engineered skin [J]. Tissue Engineer,2001,7(4):441-455.
    [80]Groot J H, Penning A J, Coenen J. Triple-layer artificial skin:poroud 50/50 copoly(L-lactide/s-caprolactone) template for neo-dermis regeneration[J]. Materials Science Letters, 1997,16(2):153-154.
    [81]Goh J C H, Shao X X, Hutmacher D W,et al. Tissue engineering approach to osteochondral repair and regeneration[J]. Tissue Engineer,2004,4(4):463-483.
    [82]王培境,耿雪,叶霖等.具有抗凝功能的可交联四臂星形聚己内酯的合成及其电纺丝加工的初步研究[J].科技导报,2009,27(21):50-55.
    [83]Matsuyama H, Yano H, Maki T, et al. Formation of porous flat membrane by phase separation with supercritical CO2[J]. Membrane Science,2001,194 (2):157-163.
    [84]Reverchon E, Cardea S. Formation of polysulfone membranes by supercritical CO2 [J]. Supercritical Fluids,2005,35 (2):140-146.
    [85]Reverchon E, Cardea S, Rappo E S. Flexible supercritical CO2-assisted process for poly (methyl methacrylate) structure formation [J]. Polymer Engineer Science,2006,46 (2):188-197.
    [86]Wienk I M, Boom R M, Beerlage M A M, et al. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystal line polymers [J]. Membrane Science,1996,113 (2): 361-371.
    [87]Yao C W, Budford R P, Fane A G. Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides [J]. Membrane Science,1988,38 (2):113-125.
    [88]朱惠光,计剑,高长有等.聚乳酸组织工程支架材料[J].功能高分子学报,2001,14(4):488-492.
    [89]陈曦,李世荣,郭嘉等.聚乳酸及其共聚物制备医用多孔材料的研究进展[J].化学与生物工程,2007,24(4):1-4.
    [90]Yao L, Wang S, Cui W, et al. Effect of functionalized micropatternedPLGA on guided neurite growth [J]. Acta Biomaterials,2009,5 (2):580-588.
    [91]崔文瑾,涂赤枫,贝建中等PLLA细胞支架的制备方法及形态结构的研究[J].组织工程与重建外科杂志,2005,1(6):15-19.
    [92]谢台,喻芬,陈海等.聚乳酸的研究进展及其应用[J].塑料助剂,2011,4:19-23.
    [93]殷敬华,李忠志,姜国伟等.一次性使用注射器用聚乳酸复合材料[P].中国,200610045597.7.2006-07-19.
    [94]韩娟娟,黄汉雄.聚己内酯型聚氨酯弹性体共混物形态与性能研究[J].塑料工业,2010,38(5):67-71
    [95]尹静波,鲁晓春,曹燕琳等.柠檬酸酯增塑改性聚乳酸[J].高分子材料科学与工程,2008,24(1):151-154
    [96]葛建华,王迎军,郑裕东等PLA-PEG-PLA嵌段共聚物的合成及研究[J].材料科学与工程学报,2003,21(6):817-820
    [97]于涛,李岩,任杰.阻燃级黄麻短纤维/聚乳酸复合材料的制备及性能研究[J].材料工程,2009,2:294-297
    [98]Van de Witte P, Esselbrugge H, Dijkstra PJ,et al. Phase transitions during membrane formation of polylactides. I. A morphological study of membranes obtained from the system polylactide-chloroform-methanol[J]. Membrane Science,1996,113(2):223-236.
    [99]Kho Y W, Kalika D S, Knutson B L.Precipitation of nylon 6 membranes using compressed carbon dioxide[J]. Polymer,2001,42(14):6119-6127.
    [100]Van de Wittee P, Dijkstra PJ,Van den Berg JWA,et al. Phase separation process in polymer solution in relation to membrane formation[J].Membrane Science,1996,117(1-2):1-31.
    [101]Mickiewicz A, Mayes A M, Knaack D,et al. Poly-mer-calcium phosphate cement composites for bone substi-tutes J Biomedi [J]. Material Research,2002,61 (4):581-592.
    [102]Wang R Z, Cui F Z, Lu H B. Synthesis of Nanophasehydroxyapatite/collagen composite [J]. Material Science Letter,1995,14:490-492.
    [103]Zhang Y, Zhang M Q, Microstructure and mechanicalcharacterization of chitosan scaffolds reinforced by calciumphosphate[J]. Non-Crystalline Solids,2001,282:159-162.
    [104]Davis M E,Hsieh P C,Grodzinsky A J,etal. Custom design of the cardiac microenvironment with biomaterials[J]. Circure Research,2005,97:8-15.
    [105]熊成东,王亚辉,袁明龙等.聚乙二醇衍生物的合成研究进展[J].高分子通报,2000,1:39-45.
    [106]郑昌琼,冉均国.新型无机材料[M].成都:四川联合大学无机材料系,1996,332-375.
    [107]任杰,吴志刚,贾晓真等PLA-PEG共聚物三维多孔支架的制备与表征[J].材料导报,2004,18:93-95.
    [108]石海涛,汤顺清.β-磷酸三钙/聚乳酸叠层复合组织工程支架的制备和结构[J].材料导报,2000,14(10):296-298.
    [109]石桂欣,王身国,贝建中.聚乳酸与聚乳酸-羟基乙酸多孔细胞支架的制备及孔隙的表征[J].功能高分子学报,2001,14(1)7-11.
    [110]Ji.J.G, Li X, Zhou. Z.G,et al. Preparation and Characterization of Porous Nano-dHA/PLA/BCP Scaffold[J]. Inorganic Marerials,2009,24(3):480-484.
    [111]安身平.高孔隙连通性汗磷酸三钙细胞支架的制备及性能研究:(硕士学位论文).重庆:重庆大学,2006.
    [112]刘朝红,董寅生,林萍华等.p-磷酸钙多孔生物陶瓷支架的制备及生物相容性[J].东南大学学报,2004,34:665-668.
    [113]金海波,郭朝邦,杨筠等β-TCP/HAP/Ca2P2O7多相多孔生物陶瓷的制备方法[P].北京市海淀区中关村南大街5号.
    [114]Verheyen C C P M, De Wijn J R,Van Blitterswijk C A,et al. Evaluation of Hydroxylapatite/poly(L lactide) Composites:Mechanical Behavior [J]. Biomedical Material Research,1992, 26(10):1277-1283.
    [115]Pouchly J, Zivny A, Sole K. Thermodynamic equilibrium in the system macromolecular coil-binary solvent [J]. Polymer Science Polymer Symposium,1968,23 (1):245-256.
    [116]Yilmaz L and Mchugh A J. Analysis of nonsolvent-solvent-polymer phase diagrams and their relevance to membrane formation modeling [J]. Applied Polymer Science,1986,31 (4):997-1018.
    [117]Tompa H. Polymer solutions [M]. London:Butterworths Scientific Publications,1956.
    [118]Mulder M. Basic Principles of Membrane Technology (2nd edition)[M].The Netherlands:Kluwer Academic Publishers,1996.
    [119]Flory P J, Rehner J. Statistical Mechanics of Cross-Linked Polymer Networks Ⅱ. Swelling[J]. Chemical Physics,1943,11:521-526.
    [120]Hildebrand J H, Scott R L.The Solubility of Nonelectrolvtes,3rd ed [M].New York:Reinhold,1950.
    [121]Hansen C M. Hansen solubility parameters [M]. Boca Raton, FL:CRC Press,2000.
    [122]Barton A F W, Handbook of solubility parameters and cohesion parameter s [M]. Boca Raton, Florida,1983.
    [123]Van Krevelen D W, Hoftyzer P J.Properties of Polymers,2nd ed [M].Elsevier:New York,1976.
    [124]Huang F H, Li M H, Lee L L,et al. An accurate equation of state for carbon dioxide [J]. Chemical Engineering Japan,1985,18(6):490-496.
    [125]汪孟艳.超临界二氧化碳体系溶解度参数的分子动力学模拟研究[D].天津:天津大学,2007.
    [126]Williams L L. Removal of Polymer Coating with Supercritical Carbon Dioxide [D]. Fort Collins: Colorado State University,2001.
    [127]Yizhak M. Are solubility parameters relevant to supercritical fluid[J]. Supercritial Fluids, 2005,11:1-6.
    [128]Bordes C, Freville V. Determination of poly(ε-caprolactone) solubility parameters:Application to solvent substitution in a microencapsulation process[J]. International Journal of Pharmaceutics, 2010,383:236-243.
    [129]赵雪峰.二氧化碳与丙酮,丙酸乙酯,碳酸二乙酯二元系统高压气液相平衡的研究(硕士论文).天津:天津大学,2003.
    [130]Elena A, Mojca S. Measurement of CO2 solubility and diffusivity in poly(L-lactide) and poly (D, L-lactide-co-glycolide) by magnetic suspension balance.[J]. Supercritical Fluids.2008,47:296-301.
    [131]Kasturirangan A, Teja A S. Phase behavior of CO2 biopolymer and CO2 fluoropolymer systems[J]. Fluid Phase Equilibrium,2007,261:64-68.
    [132]Nalawade S P, Picchioni F, Marsman J H,et al. Intermolecular interactions between carbon dioxide and the carbonyl groups of polylactides and poly(s-caprolactone) [J]. Controlled Release,2006,116: 38-40.
    [133]Tsivintzelis 1, Missopolinou D, Kalogiannis K, et al.Phase compositions and saturated densities for the binary systems of carbon dioxide with ethanol and dichloromethane[J]. Fluid Phase Equilibria, 2004,224(1):89-96.
    [134]Yilmaz L, McHugh A J. Modeling of asymmetric membrane formation. I. Critique of evaporation models and development of a diffusion equation formalism for the quench period[J]. Membrane Science,1986,28:287-292.
    [135]Tsay C S, McHugh A J. Mass transfer modeling of asymmetric membrane formation by phase inversion[J]. Polymer Science Part B:Polymer Physics,1990,28:1327-1331.
    [136]Cohen C, Tanny G B, Prager S. Diffusion controlled formation of porous structures in ternary polymer systems[J]. Polymer Science Polymer Physics Education,1979,17:477-482.
    [137]Reuvers A J, Vanden B A, Smolders C A. Formation of membranes by means of immersion precipitation. Part I:A model to describe mass transfer during immersion precipitation[J]. Membrane Science,1987,34:45-51.
    [138]Reuvers A J, Smolders C A. Formation of membranes by means of immersion precipitation. Part Ⅱ:The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water[J]. Membrane Science,1987,34:67-72.
    [139]何潮洪.超临界溶剂中溶质的扩散关联[J].高校化学工程学报,1998,2:183-185.
    [140]吕宏凌,王保国.高分子聚合物中溶剂扩散系数的预测[J].化工学报,2006,57(1):6-12.
    [141]吕宏凌,王保国.溶剂在高分子中的扩散系数-Vrentas2Duda模型及其发展[J].功能高分子学报,2005,18(2):353-360.
    [142]吕宏凌,王保国.用状态方程改进的高聚物中溶剂扩散系数预测模型[J].高校化学工程学报,2007,3(21):365-369.
    [143]Haward R N. Occupied volume of liquids and polymers[J]. Macromol Sci-Rev Macromol Chem. 1970, C4:191-242.
    [144]Vrentas J S,Duda J L.Ling H C,et al. Free-volume t heories for self-diffusion in polymer-solvent systems:II,Predictive capabilities[J]. Polymer Science:Polymer Physics Education,1985,23:289-304.
    [145]Jiang W H, Han R. Prediction of solvent2diffusion coefficient in polymer by a modified free-volume theory[J]. Polymer Science,2000,77:428-436.
    [146]Vrentas J S, Vrentas C M. Predictive met hods for self-diffusion and mutual diffusion coefficients in polymer-solvent systems[J].Europe Polymer,1998,34:797-803.
    [147]Hu H J,Jiang W H, Han S J. Influence of energy on solvent diffusion in polymer/solvent systems[J]. Chin Chemical Engineering,2002,10:459-463.
    [148]Elena A, Mojca, Zeljko K. Measurement of CO2 solubility and diffusivity in poly(1-lactide) and poly(d,l-lactide-co-glycolide) by magnetic suspension balance[J]. Supercritical Fluids,2008,47: 296-301.
    [149]Li G, Li H, Turng SG,et al. Measurement of gas solubility and diffusivity in polylactide [J]. Fluid Phase Equilibria,2006,246:158-166.
    [150]Singh L, Kumar V, Ratner B D. Generation of porous microcellular 85/15poly (dl-lactide-co-glycolide) foams for biomedical applications [J]. Biomaterials,2004,25:2611-2614.
    [151]Matuana L M. Solid state microcellular foamed poly (lactic acid):morphologyand property characterization[J]. Bioresource Technology,2008,99:3643-3650.
    [152]Sato Y, Takikawa T, Takishima S,et al. Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene[J]. Supercritical Fluids,2001,19:187-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700