油菜(Brassica napus)miRNA的鉴定及Bna-miR1140表达调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNAs(microRNA)是一类在进化上保守的长约21nt的非编码单链RNA,在基因表达调控的网络中处于核心位置,高效的调控其靶基因的翻译或表达,在生物体生长发育、抵抗生物或者非生物胁迫以及在生物体代谢途径中起着非常重要的作用。在短短的10年时间内,植物miRNAs的研究取得了突飞猛进的成果,成为一个新的研究领域。油菜(rape or rapeseed)作为世界性的重要油料作物,研究其miRNA所参与的遗传控制机理,对于培育理想油菜品种,增加油菜产量和降低油菜生产成本具有重要意义。
     鉴于目前对油菜miRNAs及其靶基因的研究报道还很少,且sanger数据库中可参考的miRNAs信息也仅仅48条,本研究对甘蓝型油菜(Brassica napus)栽培种Westar材料进行小RNA测序及降解组分析,鉴定新的油菜miRNAs,寻找已知miRNAs和新发现的miRNAs的靶基因,并对芸薹属独特的miRNA家族Bna-miR1140进行表达调控机制研究,以期为油菜品种改良和油菜miRNAs调控机制的研究提供理论依据。
     主要结果如下:
     1.鉴定获得了41个新的保守油菜miRNAs以及67个芸薹属特有的新候选miRNAs,其中包括20个miRNAs*序列。利用实时荧光定量RT-PCR技术验证了测序结果。并将新发现的miRNAs提交miRBase数据库。
     2.依据NCBI中现有的油菜EST和基因组数据,利用targetfinder软件预测了油菜miRNAs靶基因,分别获得保守的miRNAs和特异的新候选miRNAs靶向的基因113个和84个。其中Bna-miR1140的潜在靶基因为一种糖基转移酶(glycosyltransferase)和响应调节因子(Arabidopsis response regulator ARR8-likeprotein)。
     3.克隆得到了油菜Bna-miR1140基因前体197bp的片段,构建了植物过表达载体35S::Bna-miR1140,通过农杆菌介导法浸染油菜子叶柄转化甘蓝型油菜栽培种Westar。获得了14个PCR阳性植株,其中有5株株型特异,表现双主序表型,分枝数明显增多,其他9株阳性株均与野生型油菜表型一致,推测可能与表达强度有关。调查了株型特异的5个株系T1代表型分离情况,经卡方检验发现其中有4个株系的株型变异遗传符合3:1的孟德尔分离规律。初步推测油菜Bna-miR1140可能参与调控了油菜的分枝发育。
     4.分离得到了油菜Bna-miR1140基因上游1351bp的序列,利用plantCARE在线软件对启动子序列的顺式作用元件进行在线分析,该启动子含有与转录必需的RNA聚合酶结合的TATA盒以及在调控基因转录效率中发挥重要作用的CAAT盒,并进一步构建了miR1140pro::GUS植物表达载体。通过农杆菌介导法转化油菜,得到5株PCR阳性植株,对转基因植株的根、茎、叶、叶腋(茎尖分生组织,SAM)、叶柄、花、种荚等组织和器官进行GUS染色分析,结果表明GUS仅在叶柄及叶腋中表达,这与Bna-miR1140体内表达的结果一致,进一步佐证了Bnas-miR1140与调控油菜的分枝发育相关。
     综上所述,本研究采用深度测序和降解组分析技术鉴定了一批油菜的miRNA,并对其靶基因进行了分析和预测。对油菜特有的小RNABna-miR1140进行了较深入的研究,转基因结果初步表明miR1140参与了油菜分枝的发育。
MicroRNAs (miRNAs) are non-coding RNAs of approximately21nucleotides that havebeen identified as important regulators of gene expression in both animals and plants. In plants,miRNAs not only post-transcriptionally regulate their targets but also interact with each other inregulatory networks to affect many aspects of development, such as developmental timing,senescence, leaf morphogenesis, reproductive development, and modulation of root architecture.miRNAs are also reported to be involved in plant responses to biotic and environmental stresses.miRNAs are in the core position of the gene expression regulation network, and effectively inhibitits target genes encoding the proteins, or inhibit the expression of target genes via otheradjustment mechanism, resulting in the phenomenon of gene silencing. In the past decades, theplant miRNA research has been made great progress and Significant achievements.As adicotyledons, oilseed rape (Brassica Napus) is one of the most important oil crops,its miRNAhas also become a hot research field of molecular biology today. The studies about miRNAgenetic control mechanism involved in the regulation of rapeseed development can improve thetheoretical basis of the developmental biology of higher plant. Meanwhile, the clone andidentification of miRNA gene involved in the regulation rapeseed development, combined withmolecular breeding means to foster the ideal rape varieties for increasing yield of rapeseed andreducing the rapeseed production costs are very practical significance.
     So far, the reports about studies of rapeseed miRNAs and its targets are much less, andmiRBase currently lists48miRNAs forming17miRNA families in Brassica napus. Here, wedescribe the high-throughput sequencing analysis of sRNAs from a cultivated variety of B. napus,cv Westar, using the Illumina Solexa platform. The sRNAs library was prepared for Solexasequencing from greenhouse cultivated rape plants, new miRNAs and target genes of knownmiRNAs and newly discovered miRNAs have been identificated. In order to provide a theoreticalbasis for rape breed improvement and rape miRNAs regulatory mechanism, the expressionregulation mechanism for the Bna-miR1140of Brassica unique miRNA families has also beenstudied. The methods are as follows, Leaves, petiole, stalk, roots and shoot apices from onemonth-old seedlings were collected and total RNA from different tissues was extracted usingTrizol (Invitrogen). sRNA and degradome cDNA libraries for Solexa sequencing were constructedfollowing the Illumina protocol. The purified cDNA library was sequenced on an IlluminaGAIIx(Biological Information Technology Co., Ltd., Hangzhou LC). Bioinformatic analysis ofthe sequencing data has been carried to identify known and new miRNAs and its target genes;Stem–loop RT primers, universal reverse primer and miRNA-specific forward primers for20sequenced miRNA sequences were designed according to Varkonyi-Gasic to validate and measurethe levels of B. napus miRNA by qRT-PCR. The primers for the precursor of Bna-miR1140 sequence were designed on the basis of the miRNAbase and its full-length was obtained by PCRamplification of Rape genome database, Then the35S:: Bna-miR1140plants over expressionvector constructed infected the cotyledons of wild-type rapeseed varieties by the Agrobacteriummediated. The phenotype of positive plants with the Bna-miR1140transformed was analyzed; Thesequence of the Bna-miR1140upstream1.5kb was analyzed via plantCARE software, finding thekey elements of promoter, such as the TATA-box, G-box et al., and then design primers for it andamplify the1.5kb fragment from rapeseed genomic DNA and constructed miR1140pro::GUSplant expression vector. The tissue of positive lines with miR1140pro::GUS transformed wasanalyzed by GUS staining to analysis the Bna-miR1140expression specificity.
     Through the experimental analysis, the results as follows:
     1. Here,41new conserved and67brassica-specific candidate miRNAs, including20miRNA*sequences were firstly identified. The sequencing results were further confirmed using stem-loopquantitative RT-PCR. The data will be updated to incorporate future miRBase updates. Ourapproach leads to the prediction of several conserved and specific brassica miRNA targets in theavailable EST and genomic databases.113mRNA targets of conserved brassica miRNAs and84mRNA targets of new brassica-specific miRNAs were identified. Validated miRNA targets in B.napus are potentially involved in diverse biological processes, including phase transitions,flowering, hormone signaling, photosynthesis, metabolism and biotic and abiotic stress resistance.Our findings will be a useful resource toward tracing the evolution of small RNA-based regulationin Brassica napus and related species. Most importantly, this study will serve as a foundation forfuture research into the functional roles of miRNAs and their target genes in this important oilcrop.
     2. The precursor of Bna-miR1140gene cloned from Rape is197bp, and the plant overexpression vector35S::Bna-miR1140was constructed successfully. After disseminating thepetiole of rapeseed cultivars Westar via agrobacterium mediated transformation method. At Last,14T0generation Rape positive strains of over expressed35S::Bna-miR1140have been identifiedby the PCR method. There were5strains performed specific plant type, they had double maininflorescence and significantly increased the number of branches, nine positive strains consistentwith the wild-type rapeseed phenotype. After investigating the phenotype separation of five T1generation lines with specific plant type, and, of which there are four strains, their plant typevariation genetic followed3:1Mendel segregation law by the chi-square test. As for the otherpositive strains of over-expressed the35S::Bna-miR1140were not performed variation, they maynot express the35S::Bna-miR1140or transformed copy numbers are few, the real reasons must befurther validated by Northern blotting and other molecular experimental means in future. By phenotypic analysis, initially speculated the Bna-miR1140may participate in the regulation ofbranching and development of oilseed rape.
     3. The1351bp fragment upstream of Bna-miR1140gene has been isolated, and the cis-actingelements of the promoter sequence were analyzed by plantCARE online software, the promotercontains TATA boxes binding RNA polymerase and CAAT boxes which are necessary fortranscription, because it play important role in the regulation of gene transcription efficiency. ThemiR1140pro::GUS plant expression vector was further constructed. Similarly, five positive T0rape strains transformed miR1140pro:: GUS were got, which have been transformed byagrobacterium-mediated infection rapeseed petiole of cultivars Westar. The GUS staining analysisshowed that the1.5kb region of upstream miR1140precursor sequence have promoter function bystaining each tissue of positive rapeseed strains, which able to drive the expression of GUS in rape.The miR1140pro::GUS transgenic rapeseed roots, stems, leaves, leaf axillary (shoot apexpoints Health organization, SAM), petiole, flower, pods and other tissue were carried GUSstaining analysis, the results showed that GUS only expressed in petioles and leaf axillary, thatconsistent with the results of the Bna-miR1140vivo expression, which is further corroborated theBna-miR1140regulation rape branching and development.
     Summing up the results of the study, we found that the results of the Bna-miR1140vivoexpression and miR1140pro:: GUS expression patterns are consistent, proving Bna-miR1140play a role in rape branching development process; By solexa sequencing technology, many newconservative and specific miRNAs have been identified, finding that the target gene ofBna-miR1140are glycosyltransferase and the response to the adjustment factors.
引文
[1]Guarnieri D J, Dileone R J. MicroRNAs: a new class of gene regulators. Ann Med,2008,40(3):197-208
    [2]赵爽,刘默芳. MicroRNA作用机制研究的新进展中国科学C辑:生命科学,2009,39(1):109-113
    [3]杨曦,何玉科.植物microRNA的生物合成和调控功能.生命科学,2010,,2(7):688-696
    [4]Lee RC, Feinbaum RL, Ambros V. The C. elegans hetero-chronic gene lin-4encodes smallRNAs with antisense complementarity to lin-14. Cell,1993,75(5):843–854
    [5]Peragine A, Yoshikawa M, Wu G, et al. SGS3and SGS2/SDE1/RDR6are required forjuve-nile development and the production of trans-acting siRNAs in Arabidopsis. GenesDev,2004,18(19):2368–2379.
    [6]Borsani O, Zhu JH, Verslues PE,et al. En-dogenous siRNAs derived from a pair of naturalcis-antisense transcripts regulate salt tolerance in Arabi-dopsis. Cell,2005,123(7):1279–1291
    [7]Pontes O, Li CF, Nunes PC, et al. The Arabidopsis chroma-tin-modifying nuclear siRNApathway involves a nucleo-lar RNA processing center. Cell,2006,126(1):79–92
    [8]Katiyar-Agarwal S, Gao S, Vivian-Smith A, et al. A novel class of bacteria-induced smallRNAs in Arabidopsis. Genes Dev,2007,2123:3123–3134
    [9]David P. Bartel. MicroRNAs: Genomics, Biogenesis, Mechamism, and Function.Cell,2004,116:281-297
    [10]Lewis, B.P., C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell,2005.120(1): p.15-20.
    [11]Chen, X.M., Small RNAs and Their Roles in Plant Development. Annual Review of Cell andDevelopmental Biology,2009.25:21-44.
    [12]Williams, A.E., Functional aspects of animal microRNAs. Cellular and Molecular LifeSciences,2008.65(4):545-62.
    [13]van Rooij, E. Control of stress-dependent cardiac growth and gene expression by a microRNA.Science,2007.316(5824):575-579.
    [14]Song, L. and R.S. Tuan, MicroRNAs and cell differentiation in mammalian development.Birth Defects Res C Embryo Today,2006.78(2):140-9.
    [15]Ventura, A. and T. Jacks, MicroRNAs and cancer: short RNAs go a long way. Cell,2009.136(4):586-91.
    [16]Ochiya, T. Micrornas as Therapeutic Targets: Potential Effect on Prostate Cancer Management.Journal of Gene Medicine,2009.11(12):1143-1153.
    [17]Chuck G, Candela H, Hake S. Big impacts by small RNAs in plant development. Curr OpinPlant Biol2009,12(1):81-86.
    [18]Dugas DV, Bartel B: MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol2004,7(5):512-520.
    [19]Kidner CA, Martienssen RA: The developmental role of microRNA in plants. Curr Opin PlantBiol2005,8(1):38-44.
    [20]Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporalexpression of let-7heterochronic regulatory RNA. Nature,2000,408(6808):86–89.
    [21]Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science,2001,294(5543):862—864
    [22]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding forsmall expressed RNAs. Science,2001,294(5543):853—858
    [23]Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probableregulatory roles in Caenorhabditis elegans.Science,2001,294(5543):858—862
    [24]Llave C, Kasschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAsin plants. Plant Cell,2002,14(7):1605-19
    [25]Sunkar R., and Zhu J.K.,2004, Novel and stress-regulated microRNAs and other small RNAsfrom Arabidopsis, The Plant Cell,16(8):2001-2019
    [26]Sunkar R., Girke T., Jain P.K., and Zhu J.K.,2005, Cloning and characterization ofmicroRNAs from rice, The Plant Cell,17(5):1397-1411
    [27]Mica E., Gianfranceschi L., and PèM.E.,2006, Characterization of five microRNA families inmaize, Journal of Experimental Botany,57(11):2601-2612
    [28]Yao Y.Y., Guo G.G., Ni Z.Y.,et al.2007, Cloning and characterization of microRNAs fromwheat (Triticum aestivum L.), Genome Biology,8(6):R96
    [29]Dezulian T, Palatnik F, Huson DH et al.Conservation and divergence of microRNA familiesin plants. http://genomebiology.com/2005/6/11/p13(2005)
    [30]Fu Liang Xie, Si Qi Huang1, Kai Guo et al. Computational identification of novel microRNAsand targets in Brassica napus. FEBS Letters581(2007)1464–1474
    [31]Muhammad Y K B,Muhammad I,Rizwany,et al.Identification of micro-RNAs in cotton.Plant Physiology and Biochemistry,2008,46:739-751
    [32]Arazi T., Talmor-Neiman M., Stav R., et al.,2005, Cloning and characterization ofmicro-RNAs from moss, The Plant Journal,43(6):837-848
    [33]何晨,谭军,陈薇,microRNA的研究进展[J].生物技术通讯,2005,16:674-676.
    [34]Errampalli D,Patton d,Castle l,et al.Embryonic lethals and T-DNA insertional mutagenesisin Aarabidopsis.The Plant Cell,1991,3(2):149-157.
    [35]Zhang B H,Wang Q,Pan X P.MicroRNAs and their regulatory roles in plant.Plant Biol,2006,57:19-53
    [36]Yu B,Yang Y Z,Li J J,et al. Methylation as a crucial step in plant microRNAbiogenesis.Science,2005,307(5711):932-935
    [37]Kurihara Y,Watanabe Y.Arabidopsis micro-RNA biogenesis through Dicer-like1proteinfunctions.Proc Natl Acad Sci USA,2004,101(34):12753-12758
    [38]Yi,R., Qin,Y., Macara,I.G., et al. Exportin-5mediates the nuclear export of pre-microRNAsand short hairpin RNAs. Genes Dev,2003,17:3011–3016;
    [39]Lund,E., Guttinger,S., Calado,A., et al. Nuclear export of microRNA precursors. Science,2004,303:95–98
    [40]Tingting Du and Phillip D. Zamore.microPrimer: the biogenesis and function of microRNA.Development2005;132:4645-4652;
    [41]Park M Y, Wu G, Gonzalez-Sulser A, et al..Nuclear processing and export of microRNAs inArabidopsis[J]. Proc Natl Acad Sci USA,2005,102(10):3691-3696;
    [42]Bollman KM, Aukerman MJ, ParkMY,,et al. HASTY, theArabidopsisortholog of exportin5/MSN5,regulates phase change and morphogenesis[J]. Development,2003,130(8):1493-1504;
    [43]金龙国,王川,刘进元.植物MicroRNA.中国生物化学与分子生物学报,2006,22(8):609~614
    [44]Tang G, Reinhart BJ, Bartel DP, et al.A biochemical framework for RNA silencing in plants.Genes Dev2003,17(1):49-63.
    [45]Axtell MJ, Bartel DP: Antiquity of microRNAs and their targets in land plants. Plant Cell2005,17(6):1658-1673.
    [46]Mallory AC, Elmayan T, Vaucheret H: MicroRNA maturation and action--the expanding rolesof ARGONAUTEs. Curr Opin Plant Biol2008,11(5):560-566.
    [47]Grimson A,Farh K K,Jothston W K,et al.MicroRNA targeting specificity in mammals:determinants beyond seed pairing.Mol Cell,2007,27(1):91-105
    [48]Rhoades MW, Reinhart BJ, Lim LP, et al.Prediction of plant microRNA targets. Cell2002,110(4):513-520.
    [49]Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al.Widespread translationalinhibition by plant miRNAs and siRNAs. Science2008,320(5880):1185-1190.
    [50]Chen X. A microRNA as a translational repressor of APETALA2in Arabidopsis flowerdevelopment. Science,2004,303:2022-2025
    [51]Johnston R J. Hobert O. A microRNA controlling left/right neuronal asymmetry inCaenorhabditis elegans. Nature,2003426:845-849;
    [52]Chang S,Robert J, Johnston R J, et al.MicroRNAs act sequentially and asymmetrically tocontrol chemosensory laterality in the nematode. Nature,2004,430:785-789
    [53]Doench J G,Peterson C P,Sharp P A.siRNAs can function as miRNAs. Genes Dev,2003,17:438-442
    [54]Zeng Y,Wagner E J,Cullen B R.Both natural and designed microRNAs can inhibit theexpression of cognate mRNAs when expressed in human cells.Mol Cell,2002,9:1327-1333
    [55]Zeng Y,Yi R,Cullen B R.MicroRNAs and small interfering RNAs can inhibit mRNAexpression by similar mechanisms.Proc Natl Acad Sci USA,2003,100:9779-9784
    [56]Jones-rhoades M W, Bartel D P. Computational identification of plant microRNAs and theirtargets, including a stress-induced miRNA. Mol Cell,2004,14:787-799
    [57]Adai A, Johnson C, Mlotshwa S, et al.. Computational prediction of miRNAs in Arabidopsisthaliana. Genome Res,2005,15:78-91
    [58]Li Y, Li W, Jin Y X. Computational identification of novel family members of microRNAgenes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai),2005,37:75-87
    [59]陈海漩,严忠海,龙健儿等.应用生物信息学寻找山羊新的microRNA分子及其实验验证.遗传,2008.30(10):1326-1332
    [60]Baker C C, Sieber P, Wellmer F, et al.. The early extra petals1mutant uncovers a role formicroRNA miR164c in regulating petal number in Arabidopsis. Curr Biol,2005,15:303-315
    [61]Meyers B C, Lee D K, Vu T H, et al.. Arabidopsis MPSS. An online resource for quantitativeexpression analysis. Plant Physiol,2004,135:801-813
    [62]Nakano M, Nobuta K, Vemaraju K, et al.. Plant MPSS databases:signature-basedtranscriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res,2006,34(Database issue):731-735
    [63]Fahlgren N, Howell M D, Kasschau K D, et al.. High-throughput sequencing of ArabidopsismicroRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE,2007,2:e219
    [64]Rajagopalan R, Vaucheret H, Trejo J, et al.. A diverse and evolutionarily fluid set ofmicroRNAs in Arabidopsis thaliana. Genes Dev,2006,20:3407-3425
    [65]Chellappan P, Jin H. Discovery of plant microRNAs and short-interfering RNAs by deepparallel sequencing. Methods Mol Biol,2009,495:1-12.
    [66]郝力力,李锐. Solexa高通量测序法鉴定日本血吸虫miRNAs[J].浙江农业科学,2011(4):937.939
    [67]刘生财,林玉玲,陈晓东等.利用Solexa测序技术鉴定苋菜试管开花过程中的miRNAs.热带作物学报2011,32(7):1296-1303
    [68]陈洁,林海建,潘光堂等.利用深度测序技术检测玉米根系和叶片中已知的microRNAs.遗传,2010,32(11):1175-118
    [69]Wei B, Cai T, Zhang RZ, et al.. Novel microRNAs uncovered by deep sequencing of smallRNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon(L.) Beauv. Funct Integr Genomics,2009,9(4):499–511
    [70]Moxon S, Jing RC, Szittya G, et al..Deep sequencing of tomato short RNAs identifiesmicroRNAs targeting genes involved in fruit ripening. Genome Res,2008,18(10):1602–1609
    [71]Vitantonio Pantaleo,Gyorgy Szittya,Simon Moxon et al.. Identification of grapevinemicroRNAs and their targets using high-throughput sequencing and degradome analysis. ThePlant Journal,2010,62:960–976
    [72]Zhang J Y,xu Y Y,Huan Q,et a1.Deep sequencing of Brachypodium small RNA at theglobal genome level identifies microRNAs involved in cold stress response[J].BMDGenomics,2009,10:449.
    [73]宋宝,宋现让,刘杰,等.miRNAs及其靶基因的识别.基础医学与临床,2007,27(9):1063-1065;
    [74]蔡斌,李成慧,彭日荷,等.葡萄microRNA的计算识别.华北农学报,2008,23(增刊):213-2l6
    [75]项安玲,黄思齐,杨志敏.芸苔属(Brassica)植物中MicroRNA的生物信息学预测与分析.中国生物化学与分子生物学报,2008,24(3):244-256
    [76]李世风,张宁,刘柏林,等.马铃薯microRNA及其靶基因的预测与功能分析.甘肃农业大学学报,2010,45(6):43-48
    [77]于颢,闫旭,郭卫东,等.小麦属植物寒胁迫相关miRNA的生物信息学研究[J].江苏农业科学,2011,39(3):20-23.
    [78]张磊,晁江涛,崔萌萌等.茄子microRNAs与其靶基因的生物信息学预测.遗传,2011,33(7):776-78
    [79]陈旭,李晚忱,付凤玲.玉米microRNAs及其靶基因的生物信息学预测.遗传,2009,31(11):1149-115;
    [80]张志明宋锐彭华等.用生物信息学挖掘玉米中的microRNAs及其靶基因.作物学报,2010,36(8):1324-1335
    [81]张菁,邹淑雪,张茂林等.miR-15a靶基因的预测及生物信息学分析.生物技术通讯,2010,21(2):179-182
    [82]Palatnik J F,Allen E,Wu X,et al..Control of leaf morphogenesis by microRNAs.Nature,2003,425:257-263
    [83]Lim L P,Lau N C,Garrett-engele P,et al..Microarray analysis shows that some microRNAsdownregulate large numbers of target mRNAs. Nature,2005,433:769-773
    [84]Marcelo A German, Manoj Pillay, Dong-Hoon Jeong et al.. Global identification ofmicroRNA–target RNA pairs by parallel analysis of RNA ends. nature biotechnology,http://www.nature.com/naturebiotechnology
    [85]Addo-Quaye C, Eshoo T W, Bartel D P, et al. Endogenous siRNA and miRNA targetsidentified by sequencing of the Arabidopsis degradome. Curr Biol,2008,18(10):758-762
    [86]Paulina Jackowiak, Martyna Nowacka, Pawel M. Strozycki et al. survey and summary RNAdegradome—its biogenesis and functions. Nucleic Acids Research,2011,1–10
    [87]German MA, Luo S, Schroth G,et al.Construction of Parallel Analysis of RNA Ends (PARE)libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc.2009;4(3):356-62
    [88]Ramachandran V and Chen, X.. Small RNA metabolism in Arabidopsis. Trends Plant Sci.2008,13,368–374.
    [89]Grant-Downton R, Hafidh S, Twell D, et al. Small RNA pathways are present and functionalin the angiosperm male gametophyte. Mol. Plant.2009,2,500–512.
    [90]邢世岩,李际红王京梅等.植物表观遗传变异.分子植物育种,2009,2009,7(5):996-1003
    [91]李微微.植物中miR169靶基因分离及功能分析.硕士学位论文,2010
    [92]Emery JF, Floyd SK, Alvarez J, et al.. Radial patterning of Arabidopsis shoots by class IIIHD-ZIP and KANADI genes. Curr. Biol.2003,13,1768–1774.
    [93]Mallory AC, Bartel DP and Bartel B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression ofearly auxin response genes. Plant Cell.2005,17,1360–1375.
    [94]Smita Raman, Thomas Greb, Alexis Peaucelle,et al.. Interplay of miR164, CUP-SHAPEDCOTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation inArabidopsis thaliana. The Plant Journal,2008,55:65-76
    [95]Yael Berger, Smadar Harpaz-Saad, Arnon Brand,et al..The NAC-domain transcription factorGOBLET specifies leaflet boundaries in compound tomato leaves. Development,2009,136:823-832.
    [96]Laufs, P., Peaucelle,A., Morin,H. et al. MicroRNA regulation of the CUC genes is required forboundarysize control in Arabidopsis meristems. Development,2004,131:4311–4322;
    [97]Mallory,A.C., Dugas,D.V., Bartel,D.P. et al. MicroRNA regulation of NAC-domain targets isrequired for proper form ationand separation of adjacent embryonic, vegetative, and floralorgans. Curr.Biol,2004,14:1035–1046
    [98]Joonki Kim, Jae-Hoon Jung, Jose L. Reyes,et al.. microRNA-directed cleavage of ATHB15mRNA regulates vascular development in Arabidopsis inflorescence stems. The Plant Journal(2005)42,84–94
    [99]Youn-Sung Kim, Sang-Gyu Kim, Minsun Lee,et al..HD-ZIP III Activity Is Modulated byCompetitive Inhibitors via a Feedback Loop in Arabidopsis Shoot Apical Meristemdevelopment. The Plant Cell,2008,20(4):920-933
    [100]Leor Williams, Stephen P. Grigg, Mingtang Xie,et al.. Regulation of Arabidopsis shootapical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP targetgenes.2005Development132,3657-3668.
    [101]Prigge, M. J., Otsuga, D., Alonso, J. M., et al.. Class III homeodomain-leucine zipper genefamily members have overlapping, antagonistic, and distinct roles in Arabidopsisdevelopment. Plant Cell,2005,17:61-76.
    [102]Otsuga, D., DeGuzman, B., Prigge, M. J., et al.. REVOLUTA regulates meristem initiation atlateral positions. Plant J.2001,25,223-236.
    [103]Jean-Philippe Combier, Florian Frugier, Fran oise de Billy, et al..MtHAP2-1is a keytranscriptional regulator of symbiotic nodule development regulated by microRNA169inMedicago truncatula. Genes&Dev.2006.20:3084-3088
    [104]Wang L, Mai YX, Zhang YC, et al.. MicroRNA171c-Targeted SCL6-II, SCL6-III, andSCL6-IV Genes Regulate Shoot Branching in Arabidopsis. Molecular Plant.2010,5,794-806.
    [105]G. Wu, R.S. Poethig.Temporal regulation of shoot development in Arabidopsis thaliana bymiR156and its target SPL3.Development,2006,133:3539–3547
    [106]R. Schwab, J.F. Palatnik, M. Riester, et al..Specific effects of microRNAs on the planttranscriptome. Cell,2005,8:517–527
    [107]J.W. Wang, R. Schwab, B. Czech, et al.Dual effects of miR156-targeted SPL genes andCYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell,2008,20:1231–1243
    [108]G. Chuck, A.M. Cigan, K. Saeteurn, et al. The heterochronic maize mutant Corngrass1results from overexpression of a tandem microRNA. Nature Genetics,2007a,39:544–549
    [109]Rodriguez RE, Mecchia MA, Debernardi JM, et al. Control of cell proliferation inArabidopsis thaliana by microRNA miR396. Development.2010,137(1):103-12
    [110]QH Zhu, Upadhyaya NM, Gubler F, et al. Over-expression of miR172causes loss of spikeletdeterminacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol.2009,9:149-155
    [111]Nag A, King S, Jack T. miR319a targeting of TCP4is critical for petal growth anddevelopment in Arabidopsis. Proc Natl Acad Sci USA.2009,106(52):22534-22539
    [112]Naomi Ori, Aya Refael Cohen, Adi Etzioni, et al. Regulation of LANCEOLATE by miR319is required for compound-leaf development in tomato. Nature Genetics,2007,39,787–791
    [113]Kepinski,S. and Leyser,O. Plant development: auxinin loops. Curr. Biol,2005,15:R208–R210;
    [114]Woodward,A.W. and Bartel,B. Auxin:regulation, action, and interaction. Ann.Bot.(Lond),2005,95:707–735
    [115]Bartel,B. and Bartel,D.P. MicroRNAs:at the root of plant development. Plant Physiol,2003,132:709–717
    [116]H S Guo, Q Xie, J F Fei, et al. MicroRNA directs mRNA cleavage of t he transcriptionfactors NAC1to downregulation auxin signal s for Arabidopsis lateral root development.ThePlant Cell,2005,17(5):1376-1386
    [117]José L. Reyes, Nam-Hai Chua. ABA induction of miR159controls transcript levels of twoMYB factors during Arabidopsis seed germination. The Plant Journal,2007,49(4):592-606
    [118]Hiroyuki Tsuji, Koichiro Aya, Miyako Ueguchi-Tanaka, et al..GAMYB controls different setsof genes and is differentially regulated by microRNA in aleurone cells and anthers. The PlantJournal,2006,47(3):427-444
    [119]Yang JH, Han SJ, Yoon EK, et al. Evidence of an auxin signal pathway,microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells.Nucleic Acids Res.2006,34(6):1892-1899
    [120]Hunter C, Willmann MR, Wu G, et al.Trans-acting siRNA-mediated repression of ETTINand ARF4regulates heteroblasty in Arabidopsis. Development.2006,133(15):2973-81
    [121]Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10by microRNA160is critical for seed germination and post-germination stages. Plant J.2007,52,133–146.
    [122]Wang JW, Wang LJ, Mao, YB, et al.. Control of root cap formation by MicroRNAtargetedauxin response factors in Arabidopsis. Plant Cell.2005,17:2204–2216.
    [123]Pant B D,Musialak-Lange M, Nuc P, et al.. Identification of nutrient-responsive Arabidosisand rapeseed microRANs by comprehensive real-time polymerase china reaction profilingand small RNA sequencing{J}. Plant Physiol.,2009,150(3):1541-1555
    [124]杨存义,黄兰兰,赵默然,等.miRNA在植物土壤胁迫中的作用[J].中国农业科技导报,2010,12(1):16-22)
    [125]Zhao B, Ge L, Liang R, et al..Members of miR-169family are induced by high salinity andtransiently inhibit the NF-YA transcription factor[J]. BMC Mol.Biol.,2009,10:29-38.
    [126]Trindade I, Capit o C, Dalmay T, et al. miR398and miR408are up-regulated in response towater deficit in Medicago truncatula. Planta.2010,231(3):705-716
    [127]YF Ding, GY Wang, YP Fu, et al. The role of miR398in plant stress responses.Yi Chuan.2010,32(2):129-34
    [128]HJ Jung, Kang H.Expression and functional analyses of microRNA417in Arabidopsisthaliana under stress conditions. Plant Physiol Biochem.2007,45(10-11):805-11
    [129]J W Wang, Czech B, Weigel D. miR156-regulated SPL transcription factors define anendogenous flowering pathway in Arabidopsis thaliana. Cell.2009,138(4):738-49
    [130]Lee H, Yoo SJ, Lee JH et al. Genetic framework for flowering-time regulation by ambienttemperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res.2010Jan27.[Epubahead of print]
    [131]Aung K, Lin SI, Wu CC, et al. pho2, a phosphate overaccumulator, is caused by a nonsensemutation in a microRNA399target gene. Plant Physiol.2006,141(3):1000-11.
    [132]Lin SI, Chiou TJ.Long-distance movement and differential targeting of microRNA399s.Plant Signal Behav.2008,3(9):730-2
    [133]Lin S.Regulatory Network of MicroRNA399and PHO2by Systemic Signaling. PLANTPHYSIOLOGY,2008,147(2):732-746
    [134]Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphate-starvation response inArabidopsis. Curr Biol.2005,15(22):2038-43.
    [135]Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1define aphosphate-signaling pathway in plants. Plant Physiol.2006,141(3):988-99.
    [136]Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, et al. Target mimicry provides a newmechanism for regulation of microRNA activity. Nat Genet.2007,39(8):1033-7.
    [137]Pant BD, Buhtz A, Kehr J, et al. MicroRNA399is a long-distance signal for the regulation ofplant phosphate homeostasis.Plant J.2008,53(5):731-8.
    [138]Liu H.. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana.RNA,2008,14(5):836-843
    [139]Navarro L, Dunoyer P, Jay F, et al..A plant miRNA contributes to antibacterial resistance byrepressing auxin signaling. Science.2006,312(5772):436-9.
    [140]Kasschau KD, Carrington JC.A counterdefensive strategy of plant viruses: suppression ofposttranscriptional gene silencing. Cell.1998,95(4):461-70.
    [141]Chapman EJ, Prokhnevsky AI, Gopinath K, et al..Viral RNA silencing suppressors inhibit themicroRNA pathway at an intermediate step. Genes Dev.,2004,18(10):1179-86.
    [142]Chellappan P, Vanitharani R, Fauquet CM.MicroRNA-binding viral protein interferes withArabidopsis development. Proc Natl Acad Sci U S A.2005,102(29):10381-6
    [143]Chen J, Li WX, Xie D, et al..Viral virulence protein suppresses RNA silencing-mediateddefense but upregulates the role of microrna in host gene expression. Plant Cell.200416(5):1302-13.
    [144]Kasschau KD, Xie Z, Allen E, et al..P1/HC-Pro, a viral suppressor of RNA silencing,interferes with Arabidopsis development and miRNA unction. Dev Cell.2003,4(2):205-217
    [145]Zhang X, Yuan YR, Pei Y, et al.Cucumber mosaic virus-encoded2b suppressor inhibitsArabidopsis Argonaute1cleavage activity to counter plant defense. Genes&Dev.2006.20:3255-3268.
    [146]Xie Z, Kasschau KD, Carrington JC.Negative feedback regulation of Dicer-Like1inArabidopsis by microRNA-guided mRNA degradation. Curr Biol.2003,13(9):784-9.
    [147]Vaucheret H, Vazquez F, Crété P, et al..The action of ARGONAUTE1in the miRNA pathwayand its regulation by the miRNA pathway are crucial for plant development. Genes Dev.2004,18(10):1187-97.
    [148]Vaucheret H, Mallory AC, Bartel DP.AGO1homeostasis entails coexpression of MIR168and AGO1and preferential stabilization of miR168by AGO1. Mol Cell.2006,22(1):129-36.
    [149]Vaucheret H, Vazquez F, Crete P, et al.. The action of ARGONAUTE1in the miRNApathway and its regulation by the miRNA pathway are crucial for plant development. GenesDev,2004,18:1187-1197
    [150]焦晓明.油菜种子微小RNA的克隆与分析.硕士学位论文,中国农业科学院,2009
    [151]谢福亮,油菜microRNA和靶基因的预测与鉴定.硕士学位论文,南京农业大学,2007
    [152]BikramDattPant, Magda lena Musialak-Lange. Identification of Nutrient-Responsive Arabidopsis and Rapeseed MicroRNAs b y C omprehensive Real-Time Polymerase Chain Reaction P rofiling a nd Small RNA s equencing PlantPhysiology,2009,150:1541–1555
    [153]Chuck G, Meeley R, Hake S.Floral meristem initiation and meristem cell fate are regulatedby the maize AP2genes ids1and sid1. Development2008,135(18):3013-3019.
    [154]Chuck G, Meeley R, Irish E, et al.. The maize tasselseed4microRNA controls sexdetermination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. NatGenet2007,39(12):1517-1521.
    [155]Chuck G, Whipple C, Jackson D, et al.. The maize SBP-box transcription factor encoded bytasselsheath4regulates bract development and the establishment of meristem boundaries.Development2010,137(8):1243-1250.
    [156]Wu G, Park MY, Conway SR, et al.. The sequential action of miR156and miR172regulatesdevelopmental timing in Arabidopsis. Cell2009,138(4):750-759.
    [157]Kim JH, Woo HR, Kim J, et al.. Trifurcate feed-forward regulation of age-dependent celldeath involving miR164in Arabidopsis. Science2009,323(5917):1053-1057.
    [158]Lim PO, Lee IC, Kim J, et al.. Auxin response factor2(ARF2) plays a major role inregulating auxin-mediated leaf longevity. J Exp Bot2010,61(5):1419-1430.
    [159]Schommer C, Palatnik JF, Aggarwal P, et al.. Control of jasmonate biosynthesis andsenescence by miR319targets. PLoS Biol2008,6(9):e230.
    [160]Allen RS, Li J, Alonso-Peral MM, et al.. MicroR159regulation of most conserved targetsin Arabidopsis has negligible phenotypic effects. Silence2010,1(1):18.
    [161]Alonso-Peral MM, Li J, Li Y, et al.. The microRNA159-regulated GAMYB-like genesinhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol2010,154(2):757-771.
    [162]Chitwood DH, Nogueira FT, Howell MD, et al.. Pattern formation via small RNA mobility.Genes Dev2009,23(5):549-554.
    [163]Donner TJ, Sherr I, Scarpella E.Regulation of preprocambial cell state acquisition by auxinsignaling in Arabidopsis leaves. Development2009,136(19):3235-3246.
    [164]Scarpella E, Barkoulas M, Tsiantis M. Control of leaf and vein development by auxin. ColdSpring Harb Perspect Biol2010,2(1):a001511.
    [165]Todesco M, Rubio-Somoza I, Paz-Ares J, et al..A collection of target mimics forcomprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet2010,6(7):e1001031.
    [166]Wollmann H, Mica E, Todesco M, et al.. On reconciling the interactions betweenAPETALA2, miR172and AGAMOUS with the ABC model of flower development.Development2010,137(21):3633-3642.
    [167]Yan J, Cai X, Luo J, et al..The REDUCED LEAFLET genes encode key components of thetrans-acting small interfering RNA pathway and regulate compound leaf and flowerdevelopment in Lotus japonicus. Plant Physiol2010,152(2):797-807.
    [168]Yant L, Mathieu J, Dinh TT, et al.. Orchestration of the floral transition and floraldevelopment in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell2010,22(7):2156-2170.
    [169]Zhao L, Kim Y, Dinh TT, et al.. miR172regulates stem cell fate and defines the innerboundary of APETALA3and PISTILLATA expression domain in Arabidopsis floralmeristems. Plant J2007,51(5):840-849.
    [170]Gutierrez L, Bussell JD, Pacurar DI, et al..Phenotypic plasticity of adventitious rooting inArabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTORtranscripts and microRNA abundance. Plant Cell2009,21(10):3119-3132.
    [171]Krouk G, Lacombe B, Bielach A, et al..Nitrate-regulated auxin transport by NRT1.1defines amechanism for nutrient sensing in plants. Dev Cell2010,18(6):927-937.
    [172]Marin E, Jouannet V, Herz A, et al..miR390, Arabidopsis TAS3tasiRNAs, and their AUXINRESPONSE FACTOR targets define an autoregulatory network quantitatively regulatinglateral root growth. Plant Cell2010,22(4):1104-1117.
    [173]Moreno-Risueno MA, Van Norman JM, Moreno A, et al.. Oscillating gene expressiondetermines competence for periodic Arabidopsis root branching. Science2010,329(5997):1306-1311.
    [174]Rubio-Somoza I, Cuperus JT, Weigel D, et al..Regulation and functional specialization ofsmall RNA-target nodes during plant development. Curr Opin Plant Biol2009,12(5):622-627.
    [175]Vidal EA, Araus V, Lu C, et al.. Nitrate-responsive miR393/AFB3regulatory modulecontrols root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A2010,107(9):4477-4482.
    [176]Yoon EK, Yang JH, Lim J, et al..Auxin regulation of the microRNA390-dependenttransacting small interfering RNA pathway in Arabidopsis lateral root development. NucleicAcids Res2010,38(4):1382-1391.
    [177]Floyd SK, Bowman JL. Gene regulation: ancient microRNA target sequences in plants.Nature2004,428(6982):485-486.
    [178]Szittya G, Moxon S, Santos DM, et al.. High-throughput sequencing of Medicago truncatulashort RNAs identifies eight new miRNA families. BMC Genomics2008,9:593.
    [179]Griffiths-Jones S, Saini HK, van Dongen S, et al..miRBase: tools for microRNA genomics.Nucleic Acids Res2008,36(Database issue):D154-158.
    [180]German MA, Pillay M, Jeong DH, et al.Global identification of microRNA-target RNApairs by parallel analysis of RNA ends. Nat Biotechnol2008,26(8):941-946.
    [181]Gregory BD, O'Malley RC, Lister R, et al. A link between RNA metabolism and silencingaffecting Arabidopsis development. Dev Cell2008,14(6):854-866.
    [182]Zhou M, Gu LF, Li PC, et al. Degradome sequencing reveals endogenous small RNAtargets in rice (Oryza sativa L. ssp. indica). Front. Biol.2010,1:67–90.
    [183]Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and theirtargets using high-throughput sequencing and degradome analysis.The Plant Journal.2010,62:960–976.
    [184]Guerra-Assuncao JA, Enright AJ. MapMi: automated mapping of microRNA loci. BMCBioinformatics2010,11:133.
    [185]Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data tofind cleaved small RNA targets. Bioinformatics2009,25(1):130-131
    [186]Allen E, Xie Z, Gustafson AM, et al.microRNA-directed phasing during trans-acting siRNAbiogenesis in plants. Cell2005,121(2):207-221.
    [187]Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol: a highly sensitive RT-PCR method fordetection and quantification of microRNAs. Plant Methods2007,3:12.
    [188]Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants.Annu Rev Plant Biol2006,57:19-53.
    [189]Wang L, Wang MB, Tu JX, et al.Cloning and characterization of microRNAs from Brassicanapus. FEBS Lett2007,581(20):3848-3856.
    [190]Jiao Y, Riechmann JL, Meyerowitz EM. Transcriptome-wide analysis of uncapped mRNAsin Arabidopsis reveals regulation of mRNA degradation. Plant Cell2008,20(10):2571-2585.
    [191]Li YF, Zheng Y, Addo-Quaye C, et al.Transcriptome-wide identification of microRNAtargets in rice. Plant J2010,62(5):742-759.
    [192]Yao Y, Guo G, Ni Z, S et al. Cloning and characterization of microRNAs from wheat(Triticum aestivum L.). Genome Biol2007,8(6):R96.
    [193]Kaufmann K, Muino JM, Jauregui R, et al. Target genes of the MADS transcription factorSEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsisflower. PLoS Biol2009,7(4):e1000090.
    [194]Zhang Y, Wang X, Zhang W, et al.Functional analysis of the two Brassica AP3genesinvolved in apetalous and stamen carpelloid phenotypes. PLoS One2011,6(6):e20930.
    [195]Li WX, Oono Y, Zhu J, et al.The Arabidopsis NFYA5transcription factor is regulatedtranscriptionally and posttranscriptionally to promote drought resistance. Plant Cell2008,20(8):2238-2251.
    [196]Cartolano M, Castillo R, Efremova N, et al.A conserved microRNA module exerts homeoticcontrol over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet2007,39(7):901-905.
    [197]Sattler SE, Saathoff AJ, Haas EJ, et al. A nonsense mutation in a cinnamyl alcoholdehydrogenase gene is responsible for the Sorghum brown midrib6phenotype. Plant Physiol2009,150(2):584-595.
    [198]Claire M.M. Gachon, Mathilde Langlois-Meurinne and Patrick Saindrenan. Plant secondarymetabolism glycosyltransferases: the emerging functional analysis. Plant Science,2005,10,(11):542-549,
    [199]Rosamond G. Jackson,Mariusz Kowalczyk, Yi Li, et al.Over-expression of an Arabidopsisgene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation oftransgenic lines. The Plant Journal,2002,32(4):573-583
    [200]侯丙凯;孙延国.拟南芥糖基转移酶基因UGT85A5在提高植物耐盐性中的应用[P].CN201210082202.6.山东大学.2012-07-18
    [201]Prem L Bhalla&Mohan B Singh. Agrobacterium-mediated transfor mation of Brassicanapus and Brassica oleracea. Nature protocols,2008,.3(.2):181-189
    [202]庞进平,雷建明,张建学等.甘蓝型冬油菜双主序性状优势分析.甘肃农业科技,2006,7:16-18.
    [203]张洁夫,傅寿仲,陈玉卿等.油菜株型结构及其理想型研究.Ⅲ.若干高产品种的株型及冠层结构.中国油料作物学报,1998,3:36-40
    [204]陈新军,戚存扣,浦惠明等.甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系.中国油料作物学报,2007,1:54—57.
    [205]赵继献,朱文秀,王华.栽培因素对油菜茎、分枝产量形成的影响.山地农业生物学报,2000,2:83-89.
    [206]王俊生,田建华,张继澍等.紧凑型油菜株型性状的遗传及其与主要产量性状的相关性研究.西北农林科技大学学报,2005,6:7-12.
    [207]况守龙,胡廷章。启动子的克隆和研究方法.重庆工学院学报,2007,21(1):136-139
    [208]Chen C Z, Li L, Lodish H F. MicroRNAs modulate hemmopoietic lineagedifferentiation.Science,2004.(5654):83-86
    [209]Lee Y Kim M,Han J,Yeom K H,et al..MicroRNA genes are transcribed by RNApolymerase II.EMBO J,2004.23(20):4051-60.
    [210]Xie Z,Allen E,Fahlgren N,et al..Expression of Arabidopsis MicroRNA genes.PlantPhysiol,2005.(138):2145-2154.
    [211]田鑫.拟南芥胁迫诱导microRNA的分离和功能研究及microRNA启动子分析.硕士学位论文,2009
    [212]Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxidedismutase genes in Arabidopsis is mediated by downregulation of miR398and important foroxidative stress tolerance. Plant Cell,2006.(18):2051-2065.
    [213]Robert S Allen, Li J Y, Melissa I Stahle, et al.Genetic analysis reveals functional redundancyand the major target genes of the Arabidopsis miR159family. Proc Natl Acad Sci,2007.(104):16371-16376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700