城镇污水处理工艺优选决策模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水处理是涉及技术、经济、环境与社会诸因素的复杂过程。在污水处理工艺优选决策过程中,采用成本效益分析等单目标决策方法有失偏颇。然而,目前污水处理工艺多目标决策模型存在着决策指标体系差别较大、决策指标的量化手段过于主观、决策指标权值求解运算过程稳定性差以及决策模型没有充分体现污水处理工艺优选决策过程的数学特性等问题,致使尚没有被普遍接受的工艺优选决策模型。
     该文是建设部荷兰赠款项目《中国西部小城镇环境基础设施技术指南》编制课题(项目编号:MOC-NGGP-2003-3)的部分研究内容,着重研究在备选工艺确定的条件下如何系统、全面、客观与科学地对城镇污水处理工艺进行优选决策。包括城镇污水处理设施适宜工艺的探讨、可持续污水处理工艺决策指标体系及其量化方法的研究、污水处理工艺决策指标权值确定方法的研究、污水处理工艺决策模型的研究以及备选工艺决策指标灵敏度分析的探讨5个方面。主要研究内容如下:
     ①实地调研与文献调研表明,我国规划建设的西部城镇的污水处理量在5×104m3/d以下,多在(0.2~2.0)×104m3/d范围内,大部分西部城镇污水为典型生活污水。对于我国小城镇污水处理设施,推荐采用SBR系列、氧化沟系列、以及生物滤池系统,土地资源比较丰富的城镇可采用自然净化系统。
     ②分别剖析了以费用最小与“绿色性”作为污水处理工艺优选决策目标存在的不足,认为用可持续性作为污水处理工艺优选决策目标更符合污水处理工艺的发展方向。借鉴以往研究者的研究成果,提出污水处理工艺的可持续性包括技术可持续、经济可持续、环境可持续与社会可持续四个方面。
     根据我国有关基础研究缺乏的现状,从技术、环境、经济与社会四个方面构建了客观、全面且操作性较强的可持续决策指标体系,并确定了决策指标的量化方法。该体系包括技术、能量利用率、间接能耗、占地、年费用、运行管理难易程度与对操作者文化水平要求七个决策指标。应用研究表明,污水处理工艺可持续决策指标较传统技术经济指标更全面,指标的量化方法可操作性较强。
     ③创建了基于模糊聚类的改进遗传算法(FMGA)来确定决策指标的权值。较常规权值求解方法,FMGA不仅能最大程度的保留判断者的原始决策信息,在一定范围内自动调整判断矩阵的一致性,而且能稳定、快速且有效地求得决策指标权值。
     通过大量数值仿真试验对FMGA的5个控制参数的取值范围进行了探讨。仿真试验表明:变量x m二进制编码的长度l由解变量的取值范围与精度要求共同确定;群体规模N宜等于或大于300, A为5% N ~30% N ;采用聚类水平λ将种群尽量划分为个体数目相等的两类;变异概率
     为验证FMGA性能,利用Delphi语言仿真算法,将FMGA与基本遗传算法(简称CGA)进行对比研究。结果表明,FMGA较CGA更能有效克服早熟收敛,能在较短时间内逼近全局最优解;运算结果较CGA提高4个数量级,且运算过程不存在震荡现象。
     ④通过发放调查表获得专家原始判断矩阵;采用FMGA计算得到三峡库区城镇污水处理工艺优选决策指标权值,其重要性排序为:经济(0.2365)>技术(0.2094)>物耗(0.1640)>O&M难易程度(0.1544)>文化水平要求(0.1383)>能耗(0.1014)。该结果表明,在当前情况下经济与技术为三峡库区污水处理工艺优选决策中最重要的指标。
     ⑤根据城镇污水处理工艺优选决策的模糊性、灰色性与决策指标间相互补偿的数学特征,将半梯形分布的隶属函数与灰色关联法相结合,创建了模糊—灰色关联法,并将其用于构建城镇污水处理工艺优选决策模型。模糊—灰色关联法能充分体现污水处理工艺优选决策过程的数学特征。将模糊-灰色关联法与灰色关联法、模糊数学法与逼近理想解法进行比较研究,结果表明,模糊-灰色关联法的决策结果更为科学合理,且运算过程简洁,运算量小。
     ⑥推导得出了模糊-灰色关联法灵敏度分析的结论,包括备选方案排序不变与排序改变两种情况下,决策指标值的允许变动范围。该方法的灵敏度分析能为研究人员、设计人员、污水处理厂运行与管理人员提供改进或改善污水处理工艺的参考信息。
     ⑦针对三峡库区某设计处理规模为4000m3/d的城镇污水处理厂,按SBR、BAF与Orbal氧化沟3种备选工艺进行了决策分析。决策结果表明,BAF工艺最优,SBR工艺次之,Orbal氧化沟工艺相对较劣。灵敏度分析表明,对西部小城镇污水处理设施(设计处理规模为4000m3/d左右),BAF工艺与SBR工艺明显优于Orbal氧化沟。对于西部小城镇污水处理厂,重视运行中的节能减耗工作,并提高处理厂职工的操作与运行水平,可使污水处理过程更符合可持续的发展要求。
Wastewater treatment is a complex process related to many issues, including technique, economy, environment and society. It is unreasonable to use single objective optimization model, such as cost-benefit analysis method, to select the optimal wastewater treatment alternative. However, there were many problems of existing multi-objective optimization models of wastewater treatment alternatives selection, such as, the large difference between decision indicator systems, and the too subjective qualification methods of decision indicator, and the unstable calculating process of indicator-weight, and the optimization models not well matched to mathematic characteristics of the alternatives selection. Therefore, there was still not a generally accepted optimization model of the wastewater treatment alternatives selection.
     The dissertation was a part of the Netherlands Government’s Grant Project Technical manual for environmental infrastructure in China’s western small cities (the project number is MOC-NGGP-2003-3), which aimed at how to systemically, objectively and scientifically select alternatives for the WWTP of western small cities. In the dissertation, the appropriate alternatives for small towns and cities wastewater treatment were discussed, the sustainable decision indicators and their qualification methods were presented, and the way to stably and effectively calculate indicator- weight was studied. Furthermore, a new multi–criteria decision method and its sensitive analysis for optimal wastewater treatment alternatives selection were set up. The main research contents are as follows:
     ①By field survey and literature review, it was concluded that the wastewater flux of towns or small cities was below 5×104m3/d in western China, and mostly fell into the range of (0.2~2.0)×104m3/d. Moreover, the domestic wastewater was the main component of wastewater in western small cities. For the WWTP of small cities, SBR series, Oxidation Ditch series and biofilter series were recommended, and nature treatment systems were suggested to the region abundant with land resource.
     ②There were some shortcomings for the minuum cost and‘greeness’respectively as the decision targets of optimal wastewater treatment alternatives selection, so sustainability was suggested as the decision object of optimal wastewater treatment alternatives selection. Referred to the researchs of some researchers, it was presented that the sustainability of wastewater treatment alternatives could be discribed by technique sustainability, economy sustainability, environment sustainability and society sustainability. Based on the situation of basic research data in China, the objective , reasonable and operational decision indicator systems was set up, which included technique, efficiency of energy utilization, indirect energy consumption , land occupation, annual expense, O&M,professional skill reqirement. Furthermore, the qualification methods of decision indicators were also presented. The case study showed that the sustainable decision indicators were more thorough and reasonable than economic indicator used by cost–benefit analysis method, and the qualification methods of decision indicators were easy to apply.
     ③The Modified Genetic Algorithm based on Fuzzy System was established (FMGA) to determine the weights of decision indicators. Compared with other tranditional weight calculation methods, FMGA not only could keep the original decision information as more as possible and automatically modify the consistency of judgment matrix, but also could stably, quickly and effectively calculate the weights of decision indicators.
     And the scale of five parameters of FMGA was discussed by simulation test. The reslts showed that the number bits of variables' binary code was depend on the precision reqirement , the size of population N should equal to or more than 300 and the number of elitist indivadual A could be between 5 percent and 30 percent of N . Cluster level should divided N into two parts with the same scale, mutation probability p m equaled to O (L N1).
     FMGA and Canonical Genetic Algorithm (CGA) were compared in order to verify the advantage of FMGA. The compared results showed that FMGA could more effectively avoid premature convergence and get global optimal than CGA.
     ④The decision indicator weights of wastewater treatment alternatives selection in Three Gorges Reservoir Region Areas were studied. In result, the rank in desending order of importance of decision indicators were, annual expense (0.2365)>technique(0.2094)>land occupation(0.1640)> O&M(0.1544)>professional skill reqiremnet (0.1383)>energy consumption(0.1014),which showed annual expense and technique were two most important decision indicators at present.
     ⑤According to the math characteristics of wastewater treatment alternatives selection, which was fuzziness, greyness and dependency of decision indicators, the membership function was combined with grey relational analysis to construct fuzzy-grey relational analysis method. Fuzzy-grey relational analysis method was applied to multi-objective decision model of optimal wastewater treatment alternatives selection, which well reflected math character of wastewater treatment alternatives selection. The case study indicated that, fuzzy-grey relational analysis method was more reasonable and easy to operate compared with grey relational analysis method, fuzzy algorithm and TOPSIS.
     ⑥Sensitive analysis of fuzzy-grey relational analysis method was studied. By the sensitivity analysis, the range of decision indicators could be received, in the case that the rank of alternatives be changed or kept. The study showed that sensitive analysis of fuzzy-grey relational analysis method could offer some information about improving the process for researchers, designers and managers.
     ⑦SBR, BAF and Orbal Oxidation ditch were compared for the western small city wastewater treatment plant with capacity of 4000m3/d. The result of Fuzzy-grey relational analysis showed that BAF was the best alternative, and SBR was better than Orbal Oxidation ditch. Furthermore sensitive analysis showed that BAF and SBR were better than Orbal Oxidation ditch. For western small city wastewater treatment, the treatment process could better match with sustainability by reducing energy and material consumption, and improving professional skill level of panel.
引文
[1]刘亚臣,汤铭潭主编.小城镇规划管理与政策法规[M].北京:中国建筑工业出版社, 2004年.
    [2]中华人民共和国国家统计局编.中国统计年鉴[M], 2006年.
    [3]中国城市规划设计研究院,中国建筑设计研究院,沈阳建筑工程学院编著小城镇规划标准研究[M].北京:中国建筑工业出版社. 2002年第一版.
    [4]仇保兴.我国城镇水环境整体恶化的形势依然严峻.中国城镇水务及第五届世界水大会.北京, 2006.
    [5]建城[2000]124号.《城市污水处理及污染防治技术政策》.
    [6]重庆大学城市建设与环境工程学院《中国西部小城镇污水处理技术政策》.
    [7] Marcos von Sperling. Comparing among the most frequently used systems for wastewater treatment in developing countries [J]. Wat. Sci. Tech. , 1996, (33): 59-72.
    [8] Joan García, et al. Wastewater treatment for small communities in Catalonia (Mediterranean region) [J]. Water Policy, 2001(3): 341-350.
    [9] Manel Poch et al. Design and building real environmental decision support systems [J]. Environmental modeling & software. 2004, 19: 857-873.
    [10] Markus Boller. Small wastewater treatment plants- a challenge to wastewater engineers [J]. Wat. Sci. Tech. 1997, Vol. 35, No. 6, 1-12.
    [11]荷P.伦斯, G.泽曼, G.莱廷格分散式污水处理和再利用--概念、系统和实施[M].北京:化学工业出版社, 2004.
    [12] Ellis, K. V. , Tang, S. L. Wastewater treatment optimization model for developing world.Ⅰ: Model development. Journal of environmental engineering division [J], ASCE, 1991, 117: 501-581.
    [13] Ellis, K. V. , Tang, S. L. Wastewater treatment optimization model for developing world.Ⅱ: Model testing. Journal of environmental engineering division [J], ASCE, 1994, 120: 610-624.
    [14] Hellstr?m, D. , Jeppsson, U and K?rrman, E. A framework for systems analysis of sustainable urban water management [J]. Environmental Impact Assessment Review. 2000(20): 311-321.
    [15]刘永淞.污水处理设计的综合评价与优化分析[J].化工给排水设计. 1996年第一期, 1-3.
    [16]王浙明等.灰色关联模型用于工程方案优化[J].中国给水排水, 2002, Vol. 18, No. 1, 81-84.
    [17]凌猛,杭世珺.城市污水处理厂工艺方案模糊决策方法的应用[J],给水排水, 1998, Vol.24, No. 3, 6-9.
    [18]黄绍娃,胡志光.模糊综合评判法确定城市污水处理工艺[J].工业用水与废水, 2004, Vol. 35, No. 4, 12-14.
    [19]狄军贞,刘书贤.污水处理厂治理设施的模糊综合评价及优选[J].工程设计与建设, 2004, Vol. 36, No. 1, 40-42.
    [20]慕金波.环境工程评标方案的模糊优选模型及应用[J].江苏环境科技, 1997年第1期, 9-11.
    [21]慕金波.评定环境工程中标方案的AHP模型及应用[J].环境污染与防治, 1996, Vol. 18, No. 4, 37-46.
    [22]慕金波.层次分析法在评定最优环境工程方案中的应用[J].环境科学进展, 1997, Vol. 5, No. 7, 33-40.
    [23]慕金波.灰色物元分析法及其在环境治理工程方案评标中的应用[J].污染防治技术, 1997, Vol. 10, No. 1, 5-10.
    [24]张建锋,黄廷林.关中地区污水处理工艺选择的系统分析[J].环境工程, 1999, Vol. 17, No. 3: 61-64.
    [25]吴育华等.海口长流污水厂工艺方案多目标评价与选择[J].中国给水排水. 1999, Vol. 15, No. 4: 41-43.
    [26]张松滨.赋权优化层次分析与环境设施性能评价[J].甘肃环境研究与监测, 2002(15)2: 148-150.
    [27]杨健吴敏.城镇污水处理技术清洁性评价[J].环境保护, 2001(9): 26-29.
    [28]杨健吴敏. 3种活性污泥法处理工艺的生命周期能耗分析[J].上海环境科学, 2001, 20(12): 582-585.
    [29]杨健.厌氧水解-活性污泥法的生命周期能耗分析[J].环境保护科学, 2003, 29(115): 20-23.
    [30]杨健陆雍森施鼎方.运用生命周期分析(LCA)评估和选择废水处理工艺[J].工业用水与废水, 2000, 31(3): 4-6.
    [31] Lynn, W. R. , et al. System analysis for planning wastewater treatment plants [J]. Journal of water pollution control federation, 1962, 34: 565-581.
    [32] Evenson, D. E. et al. Preliminary selection of water treatment systems [J]. Journal of water pollution control federation, 1969, 41: 1845-1858.
    [33] Chia, S. S. , Defilippi, J. A. System optimization of water treatment plant process design [J]. Journal of environmental engineering division, ASCE 1970, 96: 409-421.
    [34] Rossman, L. A. Synthesis of waste treatment by implicit enumeration [J]. Journal of water pollution control federation, 1980, 52: 148-160.
    [35] Andrew Dixon, Mattthew Simon, Tom Burkitt. Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach [J]. Ecological Engineering, 2003(20): 297~308.
    [36] Manel Poch et al. , Designing and building real environmental decision support systems [J]. Environmental Modeling & Software, 2004(19): 857-873.
    [37] Adriaan R. Mels, et al. Sustainability criteria as a tool in the development of new sewage treatment methods [J]. Wat. Sci. Tech. 1999(39)5: 243-250.
    [38] Annelies J. Balkema, et al. Indicators for the sustainability assessment of wastewater treatment systems [J]. Urban Water, 2002(4)153-161.
    [39] Ulrika Palme et al. Sustainable development indicators for wastewater systems– researchers and indicator users in a co-operative case study [J]. Resource Conservation & Recycling, 2005(43): 293-311.
    [40] Bulter D. and Parkinson, J. Towards sustainable urban drainage [J]. Wat. Sci. Tech. , 1997(35)9: 53-63.
    [41] Hellstr?m, D. , Jeppsson, U and K?rrman, E. A framework for systems analysis of sustainable urban water management [J]. Environmental Impact Assessment Review. 2000(20): 311-321.
    [42] Lundin, M. , Molander, S. and Morrison, G. M. A set of indicators for the assessment of temporal variation in sustainability of sanitary systems [J]. Wat. Sci. Tech. , 1999(39)5: 235-242.
    [43] Mels, A. R. et al. , Sustainability indicators as a tool in the development of new sewage treatment methods [J]. Wat. Sci. Tech. , 1999(39)5: 243-250.
    [44] Otterpohl, R. , Grottker, M. and Lange, J. Sustainable water and wastewater management in urban areas [J]. Wat. Sci. Tech. 1997(35)9: 121-134.
    [45] Guanming Zeng et al. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis [J]. Journal of Environmental Management, 2007(82): 250-259.
    [46] Hans Brix How‘green’are aquaculture, constructed wetland and conventional wastewater treatment system? [J]. Wat. Sci. Tech. , 1999(40)3: 45-50.
    [47] Azar, C. , et al. Social–ecological sustainability [J]. Ecological Economics, 1996(18): 89-112.
    [48] F. J. Dennison, et al. Assessing management options for wastewater treatment works in the context of life cycle assessment [J]. Wat. Sci. Tech. 1998, 38(11): 23-30.
    [49] Erik Gr?nlund, Sustainability of wastewater treatment with microalgae in cold climate, evaluated with emergy and socio-ecological principles [J]. Ecological Engineering, 2004(24): 155-174.
    [50] Erik K?rrman. Strategies towards sustainable wastewater management [J]. UrbanWater, 2001(3): 63-72.
    [51] Henrik Aspegren et al. The urban water system- a future Swedish perspective [J]. Wat. Sci. Tech, 1997, Vol. 35, No. 9, 33-43.
    [52] R. M. Ashley et al. Assessment of the sustainability of alternatives for the disposal of domestic sanitary waste [J]. Wat. Sci. Tech. 1999(39)5: 251-258.
    [53]蓝盛芳,钦佩.生态系统的能值分析[J].应用生态学报. 2001, 12(1): 129~131.
    [54]李宏艳.带有模糊信息的多目标决策问题的改进灰色模糊算法[J].数学的实践与认识. 2003, 33(4): 54-59.
    [55]李鼎杜端甫.并行工程中的一类综合决策模型的研究[J].系统工程学报, 1998, 13(4): 66-73.
    [56]跃进.定量分析方法[M].北京:中国人民大学出版社, 2002. 8.
    [57] Hawang, C. L. and K. Yoon. Multiple attribute decision making– methods and application, a state of the art survey [M]. Springer– Verlag Berlin Heidelberg, 1981
    [58] Nijkamp, P. and A. van Delft. Multi– criteria analysis and regional decision making[M]. Martinus Nijhoff Social Science Division, Leiden, the Netherlands, 1977.
    [59] Satty, T. L. A scaling for priorities in hierarchical structures [J]. Journal of mathematical psychology, 1977, 15: 234-281.
    [60]王莲芬,许树柏.层次分析法引论.北京:中国人民大学出版社, 1990.
    [61]胡永宏,贺死辉.综合评价方法[M].北京:科学出版社, 2000.
    [62]陆雍森主编.环境评价.上海:同济大学出版社, 1999.
    [63]杨虹,万忠伦.价值工程中确定功能权重的方法[J].西华大学学报(自然科学版), 2005(24)2: 77-80.
    [64]王凡,张耀良.关于“权”及确定权重分配方法的探讨[J].系统工程, 1993, 11(5): 11-14.
    [65]杨宇.多指标综合评价中赋权方法评述[J].统计与决策, 2006, 7: 17-20.
    [66]陈雷,王延章.基于熵权系数与TOPSIS集成评价决策方法的研究[J].控制与决策, 2003, 18(4): 456-460.
    [67]蔡艺.主成分方法在综合评价中的应用[J].中国统计, 2005(2): 24-26.
    [68]王应明,傅国伟.主成分分析法在有限方案多目标决策中的应用[J].系统工程理论与应用. 1993, 2(2): 43-48.
    [69]鲁斐,李磊.主成分分析法在辽河水质评价中的应用[J].水利科技与经济, 2006, 12(10): 660-663.
    [70]叶晓枬,王志良.主成分分析法在水资源评价中的应用[J].河南大学学报(自然科学版), 2007, 37(3): 276-280.
    [71]王凯马庆国.基于因子分析定权法的中国制造业技术创新能力研究[J].中国地质大学学报(社会科学版). 2007, 7(2): 90-96.
    [72]王明涛.多指标综合评价中权数确定的离差、均方差决策方法[J].中国软科学, 1999(8): 100-101.
    [73] Golding, A. and Calpine, H. C. Some properties of pareto– optimal choices in decision problems [J] OMEGA, 1976, 4(2): 141-147.
    [74] MacCrimmon, K. R. Decision making among multiple– attribute alternatives : a survey and consolidated approach, RAND Memorandum. [] RM -4823- ARPA, 1968.
    [75] Dawes, R. M. Social selection based on multi-dimensional criteria [J]. Journal of Abnormal ad Social Psychology, 1964, 68(1): 104-109.
    [76] Luce, R. D. Semiorders and a theory of utility discrimination [J]. Economic, 1956, 24(2) : 178-191.
    [77]简祯富著.决策分析与管理—全面决策质量提升的架构与方法[M].北京:清华大学出版社, 2007.
    [78] Edwards W, Barron F H . SMARTS and SMARTER: improved simple methods for multiattribute utility measurement [J]. Organizational behavior and human decision processes, 1994, 60(3): 306~325.
    [79]高阳,陈常青.一种基于ELECTRE排序的简化方法[J].统计与决策, 2006, 5: 37-40.
    [80]王坚强.信息不完全确定的PROMETHEE方法及应用[J].系统工程与电子技术, 2005, 27(11): 1909-1913.
    [81]高洁,戴建新,王雪红.可拓决策方法综述[J].系统工程理论方法应用, 2004, 13(3): 264-269.
    [82]叶勇等.物元可拓法在地下水环境质量评价中的应用[J].水土保持研究, 2007, 14(2): 52-55.
    [83]胡永宏.对TOPSIS法用于综合评价的改进[J].数学的认识与实践, 2002, 32(4): 572-574.
    [84]秦寿康. TOPSIS价值函数模型[J].系统工程学报, 2003, 18(1): 37-43.
    [85]张建胜,吴祈宗.基于Vague集的TOPSIS [J].数学的实践与认识, 2006, 36(4): 79-84.
    [86] Hwang C. L. , Yoon, K. S. Multiple attribute decision making [M] Berlin: Spring, Verlag, 1981.
    [87]杨伦标高英仪著.模糊数学原理及应用[M].广州:华南理工大学出版社, 2000.
    [88]任善强.数学模型[M].重庆:重庆大学出版社, 2003.
    [89]邓聚龙著.灰预测与灰决策[M].武汉:华中科技大学出版社, 2002.
    [90]邓聚龙著.灰理论基础[M].武汉:华中科技大学出版社, 2002.
    [91]赵玮,岳德权. AHP的算法及其比较分析[J].数学的实践与认识, 1995(1): 25-46.
    [92]孙昭文等.层次分析法的判断矩阵一致性及其应用[J].天津大学学报, 1994(27)4: 487~494.
    [93]章志敏,赵继超.层次分析法的广义特征向量法[J].经济数学, 2000(4): 67-69.
    [94]辛杨. AHP在群决策中的应用研究[D].大连理工大学硕士学位论文, 2001.
    [95]秦寿康等.综合评价原理及应用(第一版)[M].北京:电子工业出版社, 2003.
    [96]柴巧珠.层次分析法的改进最小二乘排序法[J].南开大学学报(自然科学版). 1993(3): 49-56.
    [97]朱建军.层次分析法的若干问题研究及应用[D].东北大学博士学位论文, 2005年.
    [98]金菊良等.层次分析法在水资源工程环境影响评价中的应用[J].系统工程理论方法应用, 2004, 13(2): 187-192.
    [99]金菊良,丁晶.水资源系统工程[M].成都:四川科学技术出版社, 2002.
    [100]张礼兵等.确定水资源工程环境影响评价指标权重的方法[J].农业系统科学与综合研究, 2002, 18(3): 192-196.
    [101] Baskar S. , et al. Hybrid real coded genetic algorithm solution to economic dispatch problem [J]. Computers and electrical engineering, 2003, 29(3): 407-419.
    [102] Wang Y. Z. Using genetic algorithm methods to solve course scheduling problems [J]. Expert systems with applications, 2003, 25(1): 39-50.
    [103] Juidette H. , Saxena B. Improved genetic algorithm for the permutation flowshop scheduling problem [J]. Computers and operation research, 2004, 31(4): 593-606.
    [104] Saleh H. A. Chelouah R. The design of the global naviation satellite system surving networks using genetic algorithms [J]. Engineering application of artificial intelligence, 2004, 17(1): 111-122.
    [105] Hansen J. V. Genetic search methods in air traffic control [J]. Computers and operations research, 2004, 31(3): 445-459.
    [106]刘勇,康立山,陈毓屏.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社, 1997.
    [107] Man K. F. , Kwong K. S. Genetic algorithms concepts and designs [M]. London Spring, 1999.
    [108]国家发展改革委农村经济司.当前小城镇发展情况及建议[J].中国经贸导刊, 2003(22): 21-22.
    [109] 001年3月15日第九届全国人民代表大会第四次会议批准.中华人民共和国国民经济和社会发展第十个五年计划纲要.
    [110]毛天伦.关于加快重庆市小城镇发展的几点思考[J].重庆建筑大学学报(社科版). 2001, 2(4): 96-99.
    [111]郭上沂.加快四川小城镇建设促进区域经济发展的对策研究[J].理论与改革, 2001(1): 96-99.
    [112]宁夏回族自治区建设厅财政厅编制办公室等.关于加快宁夏回族自治区农村小城镇建设的实施意见[J].村镇建设, 1999(12): 4-6.
    [113]张志斌,李夏.甘肃小城镇可持续发展研究[J].中国人口·资源与环境, 2004, 14(5): 73-76.
    [114]莫海明等.广西民族地区小城镇可持续发展模式探讨[J].广西师范学院学报(自然科学版). 2003, 20(3): 30-34.
    [115]王海.新阶段新疆小城镇发展问题探析[J].干旱资源与环境. 2003, 17(4): 39-42.
    [116]刘亚臣汤铭谭主编.小城镇规划管理与政策法规(第一版)[M].北京:中国建筑出版社, 2004.
    [117]骆中钊,李宏伟,王炜编等编著.小城镇规划与建设管理[M].北京:化学工业出版社, 2005.
    [118]刘亚臣汤铭谭主编.小城镇规划管理与政策法规(第一版)[M].北京:中国建筑出版社, 2004 .
    [119]华中科技大学建筑城规学院,四川省城乡规划设计研究院.城市规划资料集第三分册:小城镇规划(第一版)[M].北京:中国建筑工业出版社, 2005.
    [120]孙炳彦,胡涛.关于小城镇环保工作的若干思考[J].环境保护, 2000(4): 31-34.
    [121]文一波.城市污水厂建设和运营费用的探讨[J].中国给水排水, 1999, Vol. 15, No. 9, 17-19.
    [122]杨健等.上海郊区小城镇污水处理实用技术研究[J].环境保护. 1999, 8: 14-17.
    [123]杨鲁豫,王琳,王宝贞.适宜中小城镇的水污染控制技术[J].中国给水排水, 2001, Vol. 17, No1, 23-25.
    [124]邵林广.南方城市污水处理工艺的选择[J].给水排水, 2000, Vol. 26, No. 6, 32-41.
    [125]顾润南.我国城市生活污水处理方法评述[J].环境保护, 2001(9): 46-47.
    [126]赵乐军,中小城镇污水处理厂生物除磷脱氮工艺的选择[J].天津市政设计, 2002, No. 1, 7-10.
    [127]周雹、谭振江.中、小型城市污水处理厂的优选工艺[J].中国给水排水, 2000, Vol. 16, No. 10, 21-24.
    [128]鄢恒珍等.小城镇污水处理实用技术分析[J].安全与环境工程, 2003, Vol. 10, No. 3: 31-34.
    [129]杭世珺.小城镇污水处理工程设计的反思与建议[J].给水排水. 2004, Vol. 30, No. 10: 17-21.
    [130]张世喜,陈新庚.珠江三角地区小城镇污水处理厂投资和运营模式探讨[J].中国环境管理, 2004(6): 48-51.
    [131]陈玉成等.三峡库区重庆段小城镇污水处理对策[J].中国给水排水, 2004, Vol. 20, No. 5: 28-31.
    [132]严素定等.三峡库区重庆段小城镇的污水现状与处理工艺优选[J].中国环境管理, 2004. 4: 33-35.
    [133]刘丽元.西北地区小城镇污水治理途径的探讨[J].基建优化. 2005, Vol. 26, No. 4, 76-78.
    [134]李成江,李晶.小城镇污水处理技术探讨[J].中小城镇市政污水处理工程技术工艺高级研讨会论文集, 25-28.
    [135]陈金銮;姜瑞需.浅议小城镇污水无害化、资源化处理技术及应用[J].中小城镇市政污水处理工程技术工艺高级研讨会论文集. 34-39.
    [136] Marcos Van Sperling. Comparison among the most frequently used systems for wastewater treatment in developing countries [J]. Wat. Sci. Tech. 1996, Vol. 33, No. 3: 59-72.
    [137] Marcos Van Sperling, Carlos Augusto de Lenmos Chernicharo. Urban wastewater treatment technologies and the implementation of discharge standards in developing countries [J]. Urban Water 4 (2002): 105-114.
    [138] Lettinga, G. Sustainable integrated biological wastewater treatment [J]. Wat. Sci. Tech. 1996, Vol. 33, No. 3: 85-98.
    [139] Innocent Nhapi. A framework for the decentralized management of wastewater in Zimbabwe [J]. PHYSICS and CHEMISTRY of the EARTH. 2004(29): 1265-1273.
    [140]傅国伟,程声通著.水污染控制系统规划[M].北京:清华大学出版社, 1985.
    [141]赫尔曼?E?戴利(H. E. Daly),肯尼思?N?汤森(编).珍惜地球——经济学、生态学、伦理学[M].北京:商务出版社, 2001.
    [142] Dubourg, W. R. Reflections on the meaning of sustainable development in the water sector [J]. Natural Resources Forum, 1997, 21(3): 191-200.
    [143] Meadows D H, et al. The limits to growth [M]. New York: Universe Books, 1972.
    [144] Kahn H. World economic development [M]. Boulder, Colorado: Westview Press, 1979.
    [145] WECD (World Commission on Environment and Development). In: Our Common Future [M]. Oxford: Oxford University Press, 1987.
    [146] Brown L R. Building a sustainable society [M]. New York: W. W. Norton, 1989.
    [147]魏一鸣傅小锋陈长杰著.中国可持续发展管理理论与实践[M].北京:科学出版社, 2005.
    [148]张坤民主编.可持续发展论[M].北京:中国环境科学出版社, 1997.
    [149]荆肇乾吕锡武.污水处理中磷回收理论与技术[J].安全与环境工程, 2005(12)1:29~32.
    [150]郝晓地编著.可持续污水-废物处理技术[M].北京:中国建筑工业出版社, 2006.
    [151]郝晓地等.采用数学模拟评价生物营养物去除工艺的除磷效果[J].中国给水排水, 2006(22)5: 30~35.
    [152]郝晓地等.磷回收提高生物除磷效果的验证[J].中国给水排水, 2006(22)17: 22~26.
    [153] Arun V, Mino T, Matsuo T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems [J]. Water Res, 1998, 22: 565-570.
    [154] Arvin E. Observation supporting phosphate by biologically mediated chemical precipitation a review [J]. Water Sci. Tech, 1983, 15(3~4): 43-63.
    [155] Battistoni P, et al. Phosphate removal in an-aerobic liquors by struvite crystallization with-out addition of chemicals: preliminary results[J]. Water Res. , 1997, 31: 2925-2929.
    [156]夏青等著. ISO 14020系列国际标准教程[M].北京:中国环境科学出版社, 2004.
    [157] Jules B. van Lier and Gatze Lettinga. Appropriae technologies for effective management of industrial and domestic waste water: the decentralized approach[J]. Wat. Sci. Tech. Vol. 40, No. 7, pp. 171-183, 1999.
    [158]叶大均.能源概论[M].北京:清华大学出版社, 1996.
    [159] W. F, Owen著.章北平,车武译.污水处理能耗与能效[M].北京:能源出版社, 1989.
    [160]严煦世,刘遂庆著.给水排水管网系统[M].北京:中国建筑工业出版社, 2002.
    [161]王洪臣主编.城市污水处理厂运行控制与维护管理[M].北京:科学出版社, 1999.
    [162]吉方英.排除厌氧富磷污水ERP_SBR除磷脱氮工艺研究[D].重庆大学博士学位论文, 2004.
    [163]陈永祥等. SBR处理城市生活污水的试验研究.环境科学与技术, 2001(6): 14~17.
    [164]沈耀良,赵丹.强化SBR工艺脱氮除磷效果的若干对策.中国给水排水, 2000, 16(7): 23~26.
    [165]高俊发王社平主编.污水处理厂工艺设计[M].北京:化学工业出版社, 2003.
    [167]郑俊,吴浩汀,程寒飞编著.曝气生物滤池污水处理新技术及工程实例[M].北京:化学工业出版社, 2002.
    [168] P. W. Westerman, J. R. Bicudo, A. Kantardjieff. Upflow biological aerated filters for treatment of flushed swine manure[J]. Bioresource technology. 2000, 74, 181-190.
    [169]严子春.折流曝气生物滤池处理城市污水的特性及其除磷脱氮效能研究[D].重庆大学博士学位论文, 2004.
    [170]张红晶.侧向流曝气生物滤池处理生活污水的特性及其除磷脱氮效能的研究[D].重庆大学博士学位论文, 2006.
    [171]王小平曹立明编著.遗传算法—理论、应用于软件实现[M].西安:西安交通大学出版社, 2003.
    [172] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning[M]. Addison-wesley Publishing Company, INC, New York. 1989.
    [173] Goldberg D E. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms [J]. In: Proceedings of the Fourth International Conference on Genetic Algorithms and Their Applications. San Diego, CA: Morgan Kaufann. 1991.
    [174] Lyer, Srikanth, K. Saxena, et al. Improved genetic algorithm for the permutation flowshop scheduling problem [J]. Computer and Operation Research, 2004, 31(4): 593-606.
    [175] Schaffer, J. D. et al. A study of control parameters affecting online performance of genetic algorithms for function optimization. Proc. 3rd. Conf. Genetic algorithms, 1989: 51-60.
    [176]席裕庚,柴天佑,恽为民.遗传算法综述.控制理论与应用, 1996, 13(6): 697-708.
    [177] Kreinovich V, Quitana C, Fuentes O. Genetic Algorithms: What Fitness Scaling Is Optimal? [J]. Cybernetics and Systems. 1993, 24(1): 9-36.
    [178]张文修梁怡编著.遗传算法的数学基础[M].西安:西安交通大学出版社, 2003.
    [179]徐泽水. AHP中两类标度的关系研究[J].系统工程理论与实践, 1999(7): 97~102.
    [180]刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].北京:科学出版社, 1999.
    [181]岳超源.决策理论与方法[M].北京:科学出版社, 2003.
    [182]穆冬.综合排序的双基点法的改进及灵敏度分析[J].系统工程理论与实践, 1993, 13(5).
    [183]肖新平.有时序多指标决策的关联分析及灵敏度分析[J].系统工程与电子技术, 1995.
    [184] Fiacco, A, V. Introduction to sensitivity and stability analysis in nonlinear programming [M]. Academic Press, New York, 1983.
    [185]左军.多目标决策中灵敏度分析的方法探讨[J].系统工程理论与实践. 1987, 7(3): 1-11.
    [186]樊治平,尤天慧,张全.多属性决策中基于加权模型的属性值灵敏度分析[J].东北大学学报(自然科学版), 2002, 23(1): 83-87. [187刘树林.邱宛华.广义双基点法的灵敏度分析理论研究[J].系统工程理论与实践, 1998, 3: 26-31.
    [188]杨健,吴超.区间数多属性决策中属性值的灵敏度分析及在潜艇作战上的应用[J].舰艇科学技术, 2006, 28(1): 92-95.
    [189]邓义华.多属性决策的灵敏度分析[D].南京理工大学, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700