龙眼多糖制备工艺及其抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼多糖(Longan polysaccharides, LP)是龙眼果肉中重要的活性物质之一,具有良好的抗氧化、抑制肿瘤和免疫调节等活性,近年来受到广泛关注。本文首先对7个广东省主栽龙眼品种的多糖含量和组成进行分析,筛选出高多糖含量品种;在此基础上优化和完善了龙眼多糖的高效提取工艺和制备工艺,并利用体外实验模型评价其抗氧化活性。主要结论如下:
     7个广东省主栽的龙眼品种中,储良鲜果肉中粗多糖含量为6.37±0.16mg(10.0g鲜重),显著高于其它品种。龙眼多糖属于杂多糖,单糖组成包括果糖、甘露糖、鼠李糖、葡萄糖、半乳糖、木糖和阿拉伯糖,其中葡萄糖、半乳糖、木糖和阿拉伯糖在7个龙眼品种中均存在且含量较高。储良龙眼粗多糖的单糖组成为果糖、鼠李糖、葡萄糖、半乳糖、木糖和阿拉伯糖,对应含量百分比为3.88%:5.27%:74.96%:6.06%:2.81%:6.99%。
     采用响应面法(Response Surface Methodology,RSM)对酶法提取和微波前处理-超声波提取龙眼多糖的工艺进行优化。酶法提取最佳工艺参数为:酶添加量1.2%、液料比6.0(mL/g)、酶解温度45.0℃、酶解时间187.0min;微波前处理-超声波提取最佳工艺参数为:微波功率640W,前处理时间60s,超声波功率为590W、液料比9.5(mL/g)、超声波时间8.5min。在此条件下,酶法提取龙眼多糖(Enzyme extraction longan polysaccharide,EELP)和微波前处理-超声波提取龙眼多糖(Microwave and ultrasonic extraction longan polysaccharide, MUELP)得率分别为12.23±0.15mg/g和11.03±0.38mg/g龙眼(干重)。
     对龙眼多糖制备工艺中滤渣清洗、除蛋白和乙醇沉淀工艺进行优化。最终确定滤渣清洗次数2次;三氯乙酸除蛋白浓度2%,除蛋白时间2h;EELP的醇沉浓度65%、醇沉时间12h,MUELP的醇沉浓度75%、醇沉时间18h。此工艺流程下,最终EELP和MUELP得率分别为9.17±0.32mg/g和8.11±0.28mg/g龙眼(干重),其中多糖含量分别为71.26±2.41%和70.53±3.53%。评价了龙眼多糖的急性毒性和抗氧化活性。小鼠急性毒理实验表明龙眼多糖属于实际无毒。
     抗氧化研究结果表明,两种龙眼多糖均具有良好的清除羟自由基、DPPH自由基和ABTS自由基功效,MUELP的IC50值分别为8.204±0.239、0.667±0.053和0.481±0.038mg/mL,EELP的IC50值分别为9.601±0.223、1.710±0.068和0.604±0.031mg/mL。龙眼多糖对超氧阴离子自由基清除较弱,多糖浓度50mg/mL时MUELP和EELP的自由基清除率分别为36.10%和18.94%;还原力测定方面,多糖浓度为25mg/mL时的,MUELP和EELP在700nm下吸光值分别为1.119±0.041和0.641±0.024。因此,MUELP比EELP具有更好的抗氧化活性。
Longan polysaccharides (LP) is one of the most important bioactive compounds in longan pulp. In recent years, it has been drawing close attention because of its bioactive function in immunoregulation, anti-tumor and antioxidant activities. In this research, the longan polysaccharides of 7 Guangdong main cultivars were studied and the high polysaccharide cultivar was chosen; the extraction and preparation of longan polysaccharide were optimized; the antioxidant activities of longan polysaccharide were evaluated. Main conclusions were summarized as follows:
     Chuliang longan contained 6.37±0.16 mg polysaccharide per 10.0 gram pulp weight, which was significantly higher than that of the other 6 longan cultivars (p<0.05). Longan polysaccharide was heteropolysaccharides which were composed of monosaccharides including fructose, rhamnose, mannose, glucose, galactose, xylose and arabonose. Glucose, galactose, xylose and arabonose were the main monosaccharide components of longan polysaccharide in the 7 cultivars. The monosaccharide components of Chuliang longan polysaccharide were fructose, rhamnose, glucose, galactose, xylose and arabonose, and the ratio of percentage composition were 3.88%:5.27%:74.96%:6.06%:2.81%:6.99%. After comprehensive consideration, Chuliang longan was selected as the high polysaccharide content cultivar and was studied in the following research.
     Single factor analysis and response surface methodology (RSM) were used to optimize the enzyme and microwave-ultrasonic extraction. The analysis result showed that, using enzymatic extraction method, the optimal conditions to obtain the highest yield were enzyme concentration 1.2%, water to raw material 6.0(mL/g), extraction temperature 45.0℃and extraction time 187.0min. Using microwave-ultrasonic extraction method, the optimal conditions to obtain the highest yield were microwave power 640W, microwave time 60s, ultrasonic power 590W, ratio of water to material 9.5(mL/g), ultrasonic time 8.5min. The actual yields of EELP and MUELP were 12.23±0.15mg/g and11.03±0.38mg/g, respectively.
     The preparations of EELP and MUELP were optimized, the fruit residue was determined to be washed twice; the trichloroacetic acid (TCA) processing to remove protein were determined to be with the concentration of 2% and the time of 2h; the alcohol precipitation processing were determined to be with the concentration of 65% and the time of 12h in the EELP and the concentration of 75% and the time of 18h in the MUELP. Under these preparations, the final yields of EELP and MUELP were 9.17±0.32mg/g and 8.11±0.28mg/g, and the polysaccharides contents were 71.26±2.41% and 70.53±3.53%, respectively.
     The acute toxicity and antioxidant activities of longan polysaccharide were evaluated. The result of acute toxicological study in mice showed that the longan polysaccharide is of actual non-toxic. The result of antioxidant activities showed that longan polysaccharides had good free radical scavenging abilities in removing hydroxyl radicals, 1,1-dipheny1-2-picrylhydrazyl(DPPH) radicals, 2,2’-azinobis-3-ethyl-benzothiazoline-6-sulphonic acid (ABTS) radicals. The IC50 value of MUELP were 8.204±0.239, 0.667±0.053 and 0.481±0.038mg/mL respectively; and the IC50 value of EELP were 9.601±0.223, 1.710±0.068 and 0.604±0.031mg/mL respectively. With the polysaccharides concentration of 50mg/mL, the superoxide anion radicals IC50 value of MUELP and EELP were 36.10% and 18.94% respectively. With the polysaccharides concentration of 25mg/mL, the OD value at 700nm of MUELP and EELP were 1.119±0.041 and 0.641±0.024, respectively. Therefore, MUELP had antioxidant activities better than EELP.
引文
[1]鲍素华,查学强,郝杰,罗建平.不同分子量铁皮石斛多糖体外抗氧化活性研究[J].食品科学,2009,30(21):123~127.
    [2]蔡长河,唐小浪,张爱玉,等.龙眼肉的食疗价值及其开发利用前景[J].食品科学,2002,23(8):328~330.
    [3]蔡孟深,李中军.糖化学[M].化学工业出版社,2006:315.
    [4]蔡英卿,赖钟雄,伍妙聪.龙眼不同品种各营养器官多糖含量分析[J].中国生态农业学报, 2007,15(4):86~88.
    [5]陈冠敏,陈润,张荣标.龙眼多糖口服液免疫调节功能的实验研究[J].预防医学情报杂志,2006,22(1):123~125.
    [6]陈丽华.龙眼壳多糖的提取、分离纯化与性质研究[D].重庆:西南大学,2009.
    [7]戴宏芬,黄炳雄,王晓容,等. 18个龙眼品种果肉氨基酸含量的HPLC测定[J].广东农业科学,2010,10:125~128.
    [8]杜冰,杨公明,刘长海,等.龙眼果汁发酵酸奶的研制[J].中国乳品工业,2008,36(8):41~43.
    [9]方积年,丁侃.天然药物-多糖的主要生物活性及分离纯化方法[J].中国天然药物,2007,5(5):338~347.
    [10]福建省莆田市龙升生物技术有限公司.龙眼多糖的加工方法.中国,200410077958[P],2006-12-13.
    [11]广东省统计年鉴,2006-09-10取自http://210.76.64.38/tjnj/table/11/11-31-c-index2.htmL
    [12]古小玲,李玉萍,梁伟红,等.中国龙眼产业发展概况[J].热带农业科学,2008,24(9):470~474.
    [13]黄爱萍,郑少泉.龙眼果肉黄酮乙醇法提取优化工艺研究[J].福建农业学报,2009,24(6):535~539.
    [14]黄秋云,林伟锋,陈中.液态深层发酵龙眼果醋的工艺优化[J].现代食品科技,2009,25(12):1434~1437.
    [15]黄玉玮,苗敬芝,曹泽虹,等.酶法提取灵芝多糖的工艺研究[J].食品科技,2009,34(6):217~220.
    [16]李博,屠幼英,梅鑫,等.响应面法优化超临界CO2提取茶籽多糖的工艺研究[J].高校化学工程学报,2010,24(5):897~902.
    [17]李雪华,龙盛京,谢云峰,等.龙眼多糖、荔枝多糖的分离提取及其抗氧化作用的探讨[J].广西医科大学学报,2003,21(3):342~344.
    [18]李维新,何志刚,林晓姿.龙眼果酒酿造菌株筛选及工艺优化[J].福建农业学报,2006,21(2):178~181.
    [19]李艳莉,钟里. 6种中药抑制酪氨酸酶活性的实验研究[J].时珍国医国药,2002,13(3):129~131.
    [20]贾琦,李雪华.龙眼肉多糖分离及结构研究[J].解放军药学学报,2009,25(1):46~48.
    [21]凌雪萍,李清彪,孙道华.龙眼多糖提取工艺的研究[J].厦门大学学报(自然科学版), 2007(46):369~371.
    [22]刘静波,林松毅.功能食品学[M].化学工业出版社,2008:34~35.
    [23]刘桓宇,袁金田,孙国峰,等.微波法提取龙胆多糖的工艺研究[J].中药材,2007,30(12):1605~1607.
    [24]罗傲雪,何兴金,范益军,等.超声波辅助热回流技术提取马鞭石斛多糖的工艺研究[J].时珍国医国药,2009,20(10):2522~2524.
    [25]农业部发展南亚热带作物办公室组编.中国热带南亚热带果树.北京:中国农业出版社,2001,91~97.
    [26]聂英涛,杨杰夫,陈健.龙眼多糖对大鼠游泳运动能力的影响[J].安徽农业科,2009,37 (34):16863~16864.
    [27]秦洁华.龙眼壳多糖的分离提取及其活性初步研究[D].广西:广西医科大学,2010.
    [28]上官新晨,陈木森,蒋艳,等.青钱柳多糖降血糖活性的研究[J].食品科技,2010,35(3):82~84.
    [29]涂宗才,王艳敏,刘成梅,等.动态超高压微射流技术在玉米花粉多糖提取中的应用[J].食品工业科技,2010,31(6):212~217.
    [30]王雪艳,陈发河,吴光斌.龙眼多糖清除自由基活性的研究,集美大学学报(自然科学版),2010,2:110~114.
    [31]王黎明,夏文水.茶多糖降血糖机制的体外研究[J].食品与生物技术学报,2010,29(3): 354~358.
    [32]王雪艳.龙眼多糖的提取纯化及其抗氧化活性研究[D].福建:集美大学,2009.
    [33]王玲,籍保平.龙眼多糖结构和性质的研究[J].食品研究与开发,2006(27):21~25.
    [34]王玲,籍保平.龙眼粗多糖提取的影响因素及工艺的研究[J].现代食品科技,2006(22): 53~56.
    [35]王斌,萱垣昇,李杰芬.灵芝多糖对小鼠脾脏树突状细胞的增殖作用[J].免疫学杂质,2006,22(3):283~285.
    [36]韦茂新,刘功德.龙眼干果生产新工艺[J].广西热带农业,2004,94(5):46~48.
    [37]文良娟,腾建文,于兰,等.龙眼果汁饮料的研制[J].食品科技,2002,9:55~56.
    [38]文良娟,王嵬.龙眼活性物质的提取及其抗氧化能力的研究[J].食品研究与开发,2008,29(9):37~41.
    [39]吴华慧,李雪华,邱莉.荔枝、龙眼果肉及荔枝、龙眼多糖清除活性氧自由基的研究[J].食品科学,2004,25(5):166~169.
    [40]谢明勇,聂少平.天然产物活性多糖结构与功能研究进展[J].中国食品学报,2010,10(2):1~11.
    [41]奚灏锵,袁根良,杜冰,等.超高压提取香菇多糖的研究[J].现代食品科技,2010,26(9):991~993.
    [42]肖仔君,黄国清.低醇龙眼果汁混合发酵工艺研究[J].广东农业科学,2010,6:137~139.
    [43]姚荣清,肖更生,陈卫东,等.龙眼酒酿造工艺研究[J].酿酒,2003,30(2):93~94.
    [44]阳佛送.龙眼多糖的提取、纯化、结构和抗氧化活性研究[D].广西:广西医科大学, 2008.
    [45]杨翠娴.龙眼多糖的提取、分离纯化及初步结构分析[D].福建:厦门大学,2007.
    [46]叶红.马尾藻多糖的分离纯化、生物活性及结构分析[D].江苏:南京农业大学,2008.
    [47]于深浩,周灿芳,万忠,等. 2009年广东优稀水果产业发展现状分析[J].广东农业科学,2010,5:217~219.
    [48]余荣华,周灿芳,万忠,等. 2009年广东荔枝龙眼产业发展现状分析[J].广东农业科学,2010,4:288~291.
    [49]赵雪迎,丁克俭,胡进维.植物多糖的研究进展[J].辽宁中医药大学学报,2008,10(3):140~141.
    [50]赵子剑,连琰,王国全,等.正交实验法优化二氧化碳超临界流体萃取茯苓多糖工艺参数[J].时珍国医国药,2008,19(7):1628~1629.
    [51]张义,高蓓,徐玉娟,等.顶空固相微萃取-气质联用方法分析龙眼中的挥发性化合物[J].食品科学,2010,31(16):156~160.
    [52]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1994.
    [53]张芸兰.复合酶法提取冬瓜多糖的研究[J].广西民族大学学报(自然科学版),2009,15(1):84~87.
    [54]张万秋,朱大勇,林治华.生物多糖的研究进展[J].重庆工学院学报(自然科学版),2008,22(2):39~42.
    [55]郑少泉.不同基因型龙眼果实中多糖含量的比较[J].果树学报,2006,23(2):232~236
    [56]郑少泉,姜帆,高慧颖.超声波法提取龙眼多糖工艺研究[J].中国食品学报,2008a,8: 76~79.
    [57]郑少泉,姜帆,蒋际谋.高多糖龙眼杂交新品系“高宝”的选育[J].福建农业学报,2008b,23 (4):387~391.
    [58]郑少泉,郑金贵.龙眼多糖对S-180肉瘤的抑制作用研究[J].营养学报,2009a,31(6): 619~620.
    [59]郑少泉,郑金贵,姜帆.龙眼果实中多糖积累与分配研究[J].福建果树,2009b,4:1~4.
    [60]郑公铭,徐良雄,谢海辉,等.龙眼果肉化学成分的研究[J].热带亚热带植物学报,2010,18(1):82~86.
    [61]中国预防医学科学院营养与食品卫生研究所.食品成分表[N].北京:人民卫生出版社,1991.
    [62]钟葵,王强.响应面法优化龙眼多糖热水浸提的工艺[J].化工进展,2010,29(4): 739~744.
    [63]朱俊洁,张守勤,王长征,等.破壁提取综合法提取灵芝孢子多糖的研究[J].农业机械学报,2004,35(3):184~185.
    [64] Chen YY, Gu XH, Huang SQ, et al. Optimization of ultrasonic/microwave assisted extraction(UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities[J]. International Journal of Biological Macromolecules, 2010, 46: 429~435.
    [65] Chen XP, Chen Y, Li SB, et al. Free redical scavenging of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats[J]. Carbohydrate Polymers, 2009, 77: 389~393.
    [66] Dardenne M. Role of thymic peptides as transmitters between the neuroendocrine and immunesystems. Neuroimmunomodulation, 1999, 6(1-2): 34~39.
    [67] Franz G. Polysaccharides in pharmacology: Current application and future concepts[J]. Planta Med, 1998, 55(6): 493~497.
    [68] Huang SQ, Ning ZX. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity[J]. International journal of biological Macromolecules, 2010, 47:336~341.
    [69] Jiang GX, Prasad KN, Jiang YM, et al. Extraction and structural identification of alkali-soluble polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp[J]. Innovative Food Science and Emerging Technologies, 2009, 10(4): 638~642.
    [70] Kong FL, Zhang MW, Kuang RB, et al. Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi(Litchi chinensis Sonn.)[J]. Carbohydrate Polymers, 2010, 81: 612~616.
    [71] Lowe JB, Marth JD. A genetic approach to mammalian glycan function[J]. Annual Review of Biochemistry, 2003, 72(1): 643~691.
    [72] Li JW, Ding SD, Ding XL. Optimazation of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. Jinsixiaozao[J]. Jounal of food engineering, 2007, 80: 176~183.
    [73] Lu JH, Meng QF, Ren XD, et al. Extraction and antitumor activity of polysaccharides from Tricholoma matsutake[J]. Journal of biotechnology, 2008,136: 460~465.
    [74] Matsuda H. Studies of cuticle drugs from natural sourcesⅣ: Inhibitory effects of Arctostaphulos plants on melanin biosynthesis[J]. BioPharm Bull, 1996, 19 (1): 153~157.
    [75] Metz T O, Alderson N L, Thorpe S R. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: A novel therapy for treatment of diabetic complications[J]. Archives of Biochemistry and Biophysics, 2003, 4(19): 41~49.
    [76] Nabanita C, Tuhin G, Sharmistha S, et al. Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity [J]. Food Chemistry, 2010,118: 823~829.
    [77] Nuchanart R, Somkid S, Luksamee W, et al. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract [J]. Food and Chemical Toxicology, 2007, 45: 328~336.
    [78] Okuyama E, Adenosine. The antiolytic-like principle of the Arillus of Euphoria Longana[J]. Planta Med, 1999, 65(2): 115~119.
    [79] Pan YM, Wang K, Huang SQ, et al. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel [J]. Food Chemistry, 2008, 106: 1264~1270.
    [80] Prasad KN, Jing H, John S, et al. Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp[J]. Innovative Food Science and Emerging Technologies, 2009, 10(4): 413-419.
    [81] Qiao DL, Ke CL, Hu B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii[J]. Carbohydrate Polymers, 2009, 78:199~204.
    [82] Ruan Z, Su J, Dai HC, et al. Characterization and immunomodulating activities of polysaccharidefrom Lentinus edodes[J]. International Immunopharmacology, 2005,5: 811~820
    [83] Rademacher TW, Parekh RB, Dwek RA. Glycobiology[J]. Annual Review of Biochemistry,1988,57: 785~838.
    [84] Tseng YH, Yang JH, Mau JL. Antioxidant properties of polysaccharides from Ganoderma Tsugae[J]. Food Chemistry, 2008, 107: 732~738.
    [85] Wang JL, Zhang J, Wang XF, et al. A comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method: Molecular structure and antioxidant activities evaluation[J]. International Journal of Biological Macromolecules, 2009, 45: 483~492.
    [86] Wang JL, Zhang J, Zhao BT, et al. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecular structure and antioxidant activities evaluation[J]. International Journal of Biological Macromolecules, 2010, 80: 84~93.
    [87] Wu Y, Cui SW, Tang J, et al. Optimazation of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology[J]. Food Chemistry, 2007,105: 1599~1605.
    [88] Varith J, Dijkanarukkul P, Achariyaviriya A, et al. Combined microwave-hot air drying of peeled longan[J]. Journal of Food Engineering, 2007, 81: 459~468.
    [89] Wang YJ, Cheng Z, Mao JW, et al. Optimization of ultrasonic-assisted extraction process of Poria cocos polysaccharides by response surface methodology[J]. Carbohydrate Polymers, 2009,77:713~717.
    [90] Yang XB, Gao XD, Han F, et al. Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma Herbarum YS4108[J]. Biochimie,2005,87(8): 747~754.
    [91] Yan YL, Yu CH, Chen J. Ultrasonic-assisted extraction optimized by response surface methodology, chemical composition and antioxidant activity of polysaccharides from Tremella mesenterica[J]. Carbohydrate polymers, 2011, 83: 217~224.
    [92] Yang B, Zhao MM, JOHN S, et al. Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp [J]. Food Chemistry, 2008a, 106: 685~690.
    [93] Yang B, Jiang YM, Zhao MM. Effects of ultrasonic extraction on the physical and chemical properties of polysaccharides from longan fruit pericarp [J].Polymer Degradation and Stability,2008b, 93: 268~272.
    [94] Yang B, Zhao MM, Jiang YM. Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp[J]. Food Chemistry, 2008c, 110: 294~300.
    [95] Yang B, Jiang YM, Wang R. Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp Original Research Article[J]. Food Chemistry, 2009a,112: 428~431.
    [96] Yang B, Jiang YM, Zhao MM, et al. Structural characterisation of polysaccharides purified fromlongan (Dimocarpus longan Lour.) fruit pericarp[J]. Food Chemistry, 2009b, 105: 609~614.
    [97] Yang B, Zhao MM, Jiang YM. Anti-glycated activity of polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave[J]. Food Chemistry, 2009c, 114: 629~633.
    [98] Yang B, Zhao MM, Prasad KN. Evaluation of radicals scavenging, immunity-modulatory and antitumor activities of longan polysaccharides with ultrasonic extraction on in S180 tumor mice models[J]. International Journal of Biological Macromolecules, 2010a,47: 356~360.
    [99] Yang B, Zhao MM, Prasad K N, et al. Effect of methylation on the structure and radical scavenging activity of polysaccharides from longan (Dimocarpus longan Lour.) fruit pericarp[J]. Food Chemistry, 2010b, 118: 364~368.
    [100] Yang B, Jiang YM, Shi J, et al. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit-A review[R]. Food Research International, 2010c, in press.
    [101] Yang CX, He N, Ling XP. The isolation and characterization of polysaccharides from longan pulp Original Research Article[J]. Separation and Purification Technology,2008, 63: 226~230.
    [102] Yang XP, Guo DY, Zhang JM, et al. Characterization and antitumor activity of pollen polysaccharide[J]. International Immunopharmacology, 2007, 7: 427~434.
    [103] Yang LQ, Zhang LM. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[R]. Carbohydrate Polymers, 2009, 76: 349~361.
    [104] Ying Z, Han XX, Li JR. Ultrasonic-assisted extraction of polysaccharides from mulberry leaves[J]. Food Chemistry, 2011, 127:1273~1279.
    [105] Yoshida T, Tsubaki S, Teramoto Y, et al. Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology[J]. Bioresource Technology, 2010, 101: 7820~7826.
    [106] Zhang Y, Gu M, Wang KP, et al. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes[J]. Fitoterapia, 2010, 81: 1163~1170.
    [107] Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology[J]. Carbohydrate Polymers, 2010, 80: 19~25.
    [108] Zhong K, Wang Q, He Y, He XH. Evaluation of radicals scavenging, immunity-modulatory and antitumor activities of longan polysaccharides with ultrasonic extraction on in S180 tumor mice models[J]. International Journal of Biological Macromolecules.2010, 47(3): 356~360.
    [109] Zou YF, Chen XF, Yang WY, et al. Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula Nannf.var.modesta L.T.Shen[J]. Carbohydrate Polymers, 2011,84:503~508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700