调峰发电厂厂用电系统可靠性分析与风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调峰电厂在峰谷差较大的电网中起着重要的调峰作用,其运行可靠性对电网的安全稳定运行具有重要意义。调峰发电厂设备启停、功率调节等较普通电厂更为频繁,对该类型电厂厂用电设备及系统的可靠性要求更为严格。本文对调峰用天然气发电厂厂用电系统的可靠性计算方法、风险评估方法以及可靠性提高措施的方法进行了较为全面系统的研究。
     本文采用符号动力学方法,对厂用电系统中的元件进行了可靠性及风险描述,并在此基础上构建了厂用电系统风险评估方法,并通过全寿命周期成本作为约束条件,对可靠性改进方法进行了分析。
     本文首先选取了一组适用于发电厂厂用电系统可靠性计算的指标,根据马尔科夫状态方程分别构建厂用电系统中功率元件和操作元件的可靠性模型。功率元件以包含正常、故障及计划停运的马尔科夫三状态模型予以模拟,操作元件以包含正常、计划停运、非计划停运及误动拒动予以模拟。根据各种状态之间的转化关系导出各状态的概率计算公式,结合厂用电设备历史故障记录对可靠性指标进行计算。应用上述计算方法对某天然气发电厂厂用电设备的可靠性进行了计算。
     在厂用电设备及系统可靠性模型的基础上,应用蒙特卡罗方法,对调峰用天然气发电厂厂用电系统的可靠性及风险评估进行了研究。根据发电厂历史发电量曲线构建多级水平负荷模型,然后采用[0,1]均匀分布模拟所有设备的实时状态,进行重复多次模拟,统计计算系统的可靠性指标。并在此基础上进行预想故障分析,计算所有会引起机组停运的故障概率,然后将之与电厂多级水平负荷模型进行比较,最后得到风险指标LOGP (缺发电概率)和EENG(缺发电量期望)。应用上述方法对某天然气发电厂厂用电系统的运行风险进行了评估分析。
     根据可靠性计算和风险评估结果,本文提出了调峰用天然气发电厂厂用电系统的可靠性改善措施。并根据全寿命周期成本理论,提出了可靠性优化措施的费用分解模型,包括设备投资费用、设备运行维护费、停电损失费用、退役成本以及其它费用。引入敏感性分析理论,评估发电厂风险对各设备可靠性的敏感性,根据分析结果对各方案进行技术性及基于LCC理论的经济性对比分析。应用上述方法制定了某天然气发电厂厂用电系统的可靠性改善优化措施。
Main peaking-load power plant plays an important role in a power grid with increasing peak-valley difference and its operation reliability, which are of great significance to the safe and stable operation of power grid. The start/stop and power regulation of the equipments are more frequent than those in ordinary power plants, therefore the requirements to the reliability of the equipments and systems are much more rigor. This paper carries out a comprehensive and systematic research on the reliability calculation methods, risk assessment methods and reliability improvement measures for auxiliary power system of peaking natural gas power plant.
     This paper adopts symbolic dynamics method to describe reliability and risk description for auxiliary power system. Based on this description, risk evaluation method is constructed, and Life Cycle Cost(LCC) is used as constraints to evaluate the effect of reliability improvement methods.
     Firstly, this paper selects a set of equipment reliability indicators applicable to the reliability calcution of auxiliary power system. The reliability model of power components and operation components of auxiliary power system are built respectively based on the Markov equations. The power components are simulated by a three-state Markov model which contains normal, failures and planned outages state, while the operation components are simulated with normal, planned outages, unplanned outages and malfunction state. The probability calculation formulas are derived according to the relationship between these states, and the reliability indicators are calculated based on the history equipment fault records of auxiliary power system. The proposed method is applied to calculate the reliability of the equipments of auxiliary power system of Huizhou LNG power plant.
     On the basis of reliability model of auxiliary power equipments and system, this paper carries out a study on the reliability and risk assessment of the auxiliary power system of peaking natural power plant based on Monte Carlo risk assessment theory. The multi-level load model of such power plant is built in accordance to the history power generation curve, then the reliability index for each load node of the system are calculated statistically by using the [0,1] uniform distribution, to study the real-time status of all devices and multiple simulations. By applying assumed failures on the basis of these results, the failure probability that may cause the unit outages is calculated and then compared with the multi-level load model of the power plant, therefore the risk index including LOGP (Loss of Generation Probability) and EENG (Expectations of Energy Not Generated) are resolved. The proposed method is applied to perform the operation risk assessment of auxiliary power system of Huizhou LNG power plant.
     According to the results of reliability calculation and risk assessment, this paper proposes the reliability improvement measures for the auxiliary power system of peaking natural gas power plant. The cost decomposition models of these measures, which contain the cost of equipments' investment, the cost of equipment operations and maintenances, the cost due to blackout loss and the cost of retirement, etc. are analyzed based on the full LCC theory. Sensitivity analysis theory is introduced to evaluate the sensitivity of the power plant risk to the reliability of the equipments. According to the analysis results, the comparation of these measures are performed based on the LCC theory from both the technical and economic aspects. The proposed method is applied to design the reliability improvement measures of auxiliary power system of Huizhou LNG power plant.
引文
[1]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展,2000,10(10):880-886.
    [2]中华人民共和国国家发展和改革委员会.中华人民共和国电力行业标准DL/T 861-2004[S].电力可靠性基本名词术语.北京:中国电力出版社.
    [3]Power Systems Reliability Subcommittee of the Power Systems. Engineering Committee of the IEEE IAS. IEEE Std 493-1998. IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems (IEEE Gold Book) [S]. USA:1998.8.
    [4]Transmission and Distribution Committee of the IEEE PES.IEEE Std 1366-2003. IEEE Guide for Electric Power Distribution Reliability Indices[S]. USA:2004.5.
    [5]D.P.Gaver, F.E.Montmeat, A.D.Patton.Power System Reliability:I-Measures of Reliability and Methods of Calculation[J]. IEEE Trans.On PAS,1964,83: 828-838.
    [6]F.E.Montmeat, A.D.Patton, J.Zemkoski, D.J.Cumming.Power System Reliability: Ⅱ-Applications and a Computer Program[J]. IEEE Trans.On PAS,1965,84: 636-643.
    [7]R.Billinton.Power System Reliability Evaluation[M].New York:Gordon and Breach Science Publishers,1980.
    [8]IEEE Committee Report.Bibliography on the Application of Probability Methods in Power System Reliability Evaluation[J].IEEE Trans.On PAS,1982,91: 649-660.
    [9]张焰,黎晓刚.配电网供电可靠性的递归算法[J].华东电力,2000,(11):5-8.
    [10]夏岩,刘明波,邱朝明.带有复杂分支子馈线的配电系统可靠性评估[J].电力系统自动化,2002,26(4):40-44.
    [11]万国成,任震,田翔.配电网可靠性评估的网络等值法模型研究[J].中国电机工程学报,2003,23(5):48-52.
    [12]万国成,任震,吴日昇,何毅思.混和法在复杂配电网可靠性评估中的应用[J].中国电机工程学报,2004,24(9):92-98.
    [13]W.H.Kersting, W.H.Phillips, R.Doyle.Distribution Feeder Reliability Studies[J]. IEEE Trans.On Industry Applications,1999,35(2):319-323.
    [14]蔡乐,邓佑满,朱小平.改进的配电网故障定位、隔离与恢复算法[J].电力系统自动化,2001,25(16):48-50,61.
    [15]侯星恒,肖峰.某电厂厂用电系统供电可靠性的改进[J].华电技术,2012,34(S1):19-25,91.
    [16]江红军,唐永钢,林繁.紫坪铺电厂10 kV厂用电系统可靠性分析[J].四川水力发电,2009,28(3):47-50.
    [17]韩天祥.LCC管理研究项目中的风险分析[J].上海电力,2004,(03):195-196
    [18]滕乐天,李力,韩天祥.以LCC理念进行可靠性管理的探讨与实践[J].上海电力,2005,(01):65-67
    [19]刘永嘉.设备综合管理的核心——LCC[J].上海电力,2004, (03):208-209
    [20]沈剑飞,张文泉.关于寿命周期成本(LCC)的探讨[J].价值工程,2008,(06):88-91
    [21]马晓久,石峰,刘鹏伟,白洁,李清.全寿命周期成本管理简介及应用分析[J].河南电力,2006,(04):18-21
    [22]吴江.全寿命周期管理理论在变电站设计过程中的应用研究[D]华北电力大学(北京),2010.
    [23]潘琪杰.电力设备全寿命周期管理的研究[D].华北电力大学(北京),2010.
    [24]Jeromin, Ingo; Backes, Jurgen; Balzer, Gerd; Huber, Richard.Life cycle cost analysis of transmission and distribution systems Electricity Distribution-Part 1,2009[C]. CIRED 2009.20th International Conference and Exhibition on,2009,1-4.
    [25]Schumaker, C.W.; Kankey, R.D.Life cycle cost management:the long term view[C].Aerospace and Electronics Conference,1989. NAECON 1989., Proceedings of the IEEE 1989 National,1989,1221-1225.
    [26]International Electrotechnical Commission (IEC),1996, Life Cycle Costing, Dependability Management-Part 3-3:Application Guide[S], International Standard IEC 60300-3-3.
    [27]Julia Nilsson, Lina Bertling. Maintenance Management of Wind Power Systems Using Condition Monitoring Systems—Life Cycle Cost Analysis for Two Case Studies[J]. IEEE Transactions on Energy Conversion,2008,22(1):223-229.
    [28]C.Meyer; R W.De Doncker.LCC analysis of different resonant circuits and solid-state circuit breakers for medium-voltage grids[J].IEEE Trans on Power Delivery,2006,3(21); 1414-1421.
    [29]罗云,金家善.重视设备寿命周期费用技术的研究与应用[J].中国设备工程,2003(1):11-13
    [30]Millward D.G..Life-cycle cost trade studies for hardness assurance[J].IEEE Trans on Nuclear Science,1996,6(43):3133-3138.
    [31]Gupta Y P.Life Cycle Cost Models and Associated Uncertainties.Electronics Systems Effectiveness and Life Cycle Costing[C].Berlin Springer,1993.535-549.
    [32]韩天祥,黄华炜,陆一春.LCC管理技术在国外电力系统的研究与应用[J].上海电力,2004(3);92-194.
    [33]Shimakage.T.Wu.K.Kato.T.Okamoto.T.Suzuoki.Y.Life-cycle-cost comparison of different degradation diagnosis methods for cables [J]. Properties and Applications of Dielectric Materials,2003(3):990-993.
    [34]张怡,滕乐天,凌平.浅析LCC管理在上海电力系统的应用[J].上海电力,2004, (03):179-181
    [35]吴奕亮,金家善,辜健,罗云.寿命周期费用技术及其应用要点[J].上海电力,2004(4):283-289.
    [36]腾乐天,凌平,黄玉,韩天祥.泰和变电站220kVGIS设备LCC模型和计算[J].中国设备工程,2005(6):5-8.
    [37]夏业勤, 史有德.电力变压器组件的LCC管理与变电站的经济运行[J].变压器,2001,(08):85
    [38]陈奕善.LCC技术在火电厂的应用[J].上海电力,2004(03):270-271
    [39]纪伟.全寿命周期设计理念在输电线路工程设计中的应用[J].江苏电机工程,2009(06):43-44
    [40]郭青.输电线路建设工程全寿命周期管理的探讨[J].山西电力,2008:88-92
    [41]邵长利, 乔光林.±500kV直流输电线路绝缘设计方案全寿命费用决策[J].吉林电力,2006,(02):5-7
    [42]R.E.Brown, S.Gupta, R.D.Christie, S.S.Venkata, R.Fletcher.Distribution System Reliability Assessment Using Hierarchical Markov Modeling[J].IEEE Trans.On Power Delivery,1996,11(4),1929-1934.
    [43]卢锦玲,栗然,刘艳,顾雪平.基于状态空间法的地区环式供电网可靠性分析[J].电力系统自动化,2003,28(11):21-24.
    [44]张万礼,张扬.电力系统可靠性评估中开关的三状态马尔可夫模型[J].中国电机工程学报,1989,9(6):59-63,54.
    [45]R.Billinton, Hua Chen, Jiaqi Zhou.Generalized n+2 State System Markov Model for Station-Oriented Reliability Evaluation[J].IEEE Trans.On Power Systems, 1998,12(4):1511-1518.
    [46]陆志峰,周家启,阳少华,陈希英,杨杰.多元件备用系统可靠性计算研究[J].中国电机工程学报,2002,22(6):52-55,61.
    [47]李志民,李卫星,刘迎春.辐射状配电系统可靠性评估的故障遍历算法[J].电力系统自动化,2002,26(2):53-56.
    [48]李卫星,李志民,刘迎春.复杂辐射状配电系统的可靠性评估[J].中国电机工程学报,2003,23(3):69-83,89.
    [49]Reliability Assessment With Application to Uninterruptible Power Supply[J]. IEEE Trans.On Power Systems,2004,19(3):1326-1333.
    [50]C.M.Rocco S., W.Klindt.Distribution Systems Reliability Uncertainty Evaluation Using an Interval Arithmetic Approach[C].Proc.of the 2nd International Caracas Conference on Devices, Circuits and Systems, March 1998:421-425.
    [51]张鹏,王守相,王海珍.配电系统可靠性评估的改进区间分析方法[J].电力系统自动化,2003,28(18):50-55.
    [52]任震,万官泉,黄雯莹.参数不确定的配电系统可靠性区间评估[J].中国电机工程学报,2003,23(12):68-83.
    [53]肖湘宁编著.电能质量分析与控制[M].北京:中国电力出版社,2004年
    [54]Primen Study, The cost of power disturbances to industrial and digital economy companies[M], June,2001
    [55]Blevins J., Von Dollen D., McGranaghan M., Reliability and quality of supply for the grid of the future understanding the economics (CEIDS) [C],PowerCon 2004 on Power System Technology, Singapore,2004.Vol.1,254-259
    [56]冯永青,张伯明,吴文传,孙宏斌,何云良.基于可信性理论的电力系统运行风险评估(一)运行风险的提出与发展[J].电力系统自动化,2006,30(1),17~23.
    [57]陈为化,江全元,曹一家.基于模糊神经网络的电力系统连锁故障风险评估[J].浙江大学学报,2007,41(6):973~976.
    [58]赵渊,谢开贵.电网概率风险评估中元件可靠性参数的不确定性分析[J].电力系统自动化,2011,35(4):6-11.
    [59]陆波,唐国庆.基于风险的安全评估方法在电力系统中的应用[J].电力系统自动化,2000,24(22),61-64.
    [60]刘森森,陈为化,江全元.基于并行计算的电力系统风险评估[J].浙江大学学报,2009,43(3),589~595.
    [61]姚瑶,于继来.计及风电备用风险的电力系统多目标混合优化调度[J].电力系统自动化,2011,35(22):118-124.
    [62]谢绍宇,王秀丽,王锡凡等.电力系统的分割多目标风险分析框架及算法[J].中国电机工程学报,2011,31(34):53-60.
    [63]刘铠滢,蔡述涛,张尧等.基于风险评判的电网规划方法[J].中国电机工程学报,2007,27(22):69-73.
    [64]Kai Wang, Wenjiang Pei, Shaoping Wang,et al. Symbolic Vector Dynamics Approach to Initial Condition and Control Parameters Estimation of Coupled Map Lattices [J]. IEEE Trans. On Circuits and Systems.2008,55(4):1116-1124
    [65]Kai Wang, Wenjiang Pei, Haishan Xia, and Zhenya He. SYMBOLIC VECTOR DYNAMICS FOR PROCESSING CHAOTIC SIGNALS Ⅱ:Noise Reduction[C]. the IEEE Int. Conference Neural Networks & Signal. Zhejiang, China.2008
    [66]J. Schweizer and T. Schimming. Symbolic Dynamics for Processing Chaotic Signals—Ⅰ:Noise Reduction of Chaotic Sequences[J]. IEEE Trans. On Circuits and Systems.2001,48(11):1269-1282
    [67]X. Jin,Y. Guo,S. Sarkar, et al. Anomaly Detection In Nuclear Power Plants via Symbolic Dynamic Filtering[J]. IEEE Trans on Nuclear Science.2010,58(1):1-12
    [68]P. Caminal, M. Vallverdu, B. Giraldo, et al. Optimized Symbolic Dynamics Approach for the Analysis of the Respiratory Pattern[J]. IEEE Trans On Biomedical Engineering.2005,52(11):1832-1839
    [69]V. Baier, M. Baumert, P. Caminal, et al. Hidden Markov Models Based on Symbolic Dynamics for Statistical Modeling of Cardiovascular Control in Hypertensive Pregnancy Disorders [J].IEEE Trans. On Biomedical Engineering.2006,53(1):140-143
    [70]G.M. Maggio, Z. Galias. Applications of Symbolic Dynamics to Differential Chaos Shift Keying[J].IEEE Trans. On Circuits and Systems.2002,49(12):1729-1735
    [71]P. Caminal, M. Vallverdu, B. Giraldo, et al. Optimized Symbolic Dynamics Approach for the Analysis of the Respiratory Pattern[J]. IEEE Trans. On Biomedical Engineering.2006,52(11):1832-1839
    [72]何永秀,戴爱英,杨卫红,等.基于模糊理论的城市电网风险识别与评价[J].电网技术,2010,34(9):127-132.
    [73]王瑞祥,夏莹,熊小伏.计及气象因素的输电线路维修风险分析[J].电网技术,2010,34(1):220-222.
    [74]王博,游大海,尹项根,等.基于多因素分析的复杂电力系统安全风险评估体系[J].电网技术,2011,35(1):40-45.
    [75]何剑,孙华东,刘明松.基于扩展状态空间分割法的含风电场电力系统运行备用风险评估[J].电网技术,2012,36(3):257-263.
    [76]张国华,张建华,杨志栋,等.电力系统N-K故障的风险评估方法[J].电网技术,2009,33(5):17-21.
    [77]Roy Billinton, Zhaoming Pan. Historic performance-based distribution system risk assessment[J]. IEEE Transactions on Power Delivery.2004,19 (4): 1759-1765.
    [78]Sree RamaKumar Yeddanapudi, Yuan Li, James D. McCalley. Risk-based allocation of distribution system maintenance resources[J]. IEEE Transactions on Power Systems.2008,23(2):287-295.
    [79]Wenyuan Li, Jiaqi Zhou, Kaigui Xie, et al. Power system risk assessment using a hybrid method of fuzzy set and monte carlo simulation[J]. IEEE Trans. On Power Systems,2008,23(2):336-343.
    [80]Yongqing Feng, Wenchuan Wu, Boming Zhang, et al. Power system operation risk assessment using credibility theory[J]. IEEE Trans. On Power Systems, 2008,23(3):1309-1318.
    [81]Jin X, Guo Y, Sarkar S, et al. Anomaly detection in nuclear power plants via symbolic dynamic filtering[J]. IEEE Trans on Nuclear Science.2010,58(1): 1-12.
    [82]刘铠滢,蔡述涛,张尧.基于风险评判的电网规划方法[J].中国电机工程学报.2007,27(22):69-73.
    [83]刘剑,刘开培,周仕杰,等.基于LS-SVM的变压器最优维护周期研究[J].中国电机工程学报,2012,32(22):94-103
    [84]刘汉生,刘剑,李俊娥等.基于全寿命周期成本评估的特高压直流输电线路导线选型[J].高电压技术.2012,38(2):310-315.
    [85]刘娜,高文胜,谈克雄,等.基于故障树的电力变压器维修周期的仿真分析[J].高电压技术,2003,29(9):19-21.
    [86]袁志坚,孙才新,李剑,等.基于模糊多属性群决策的变压器状态维修策略研究[J].电力系统自动化,2004,28(11):66-70.
    [87]彭卉,张焰,张彦魁,等.发电机组最佳计划维修周期研究[J].中国电机工程学报,2003,23(7):41-45,66.
    [88]黄弦超,张粒子,舒隽,等.配电网检修计划优化模型[J].电力系统自动化.2007,31(1):33-37.
    [89]冯永青,吴文传,张伯明,等.基于可信性理论的输电网短期线路检修计划[J].中国电机工程学报.2007,27(4):65-71.
    [90]许旭锋,黄民翔,王婷婷,等.基于模糊机会约束二层规划的配电网检修计划优化[J].电工技术学报,2010,25(3):157-163.
    [91]Wan H, McCalley J D, Vittal V. Risk based voltage security assessment[J]. IEEE Transactions on Power Systems,2000,15(4):1247-1254.
    [92]Backlund F, Hannu J. Can we make maintenance decisions on risk analysis results[J]. Journal of Quality in Maintenance Engineering,2002,8(1):77-91.
    [93]Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.
    [94]刘涵,李琦,刘丁,等.基于最小二乘支持向量机的电站锅炉空预器热点检测系统研究[J].中国电机工程学报,2005,25(3):147-152.
    [95]董晓峰,顾煜炯,杨昆等.基于模糊粗糙集的案例推理在发电设备RCM分析中的应用[J].中国电机工程学报,2009,29(32):30-36.
    [96]莫娟,王雪,董明,等.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167.
    [97]朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J].中国电机工程学报,2005,25(10):159-165.
    [98]顾玉炯,董玉亮,杨昆.基于模糊评判和RCM分析的发电设备状态综合评价[J].中国电机工程学报,2004,24(6):159-165.
    [99]孙和义,浦昭邦,赵学增.基于模糊神经网络高压电气设备绝缘状况评价方法研究[J].电力自动化设备,2007,27(1):5-8.
    [100]徐大可.基于神经网络和模糊数学的变电设备绝缘诊断技术[J].电力自动化设备,2002,22(1):66-68.
    [101]赵登福,林谋,李彦明,等.用L-M算法的神经网络诊断充油设备绝缘故障[J].高电压技术,2004,30(7):4-6,16.
    [102]Khan F N, Lau A P T, Zhaohui Li. Statistical analysis of optical signal-to-noise ratio monitoring using delay-tap sampling[J]. IEEE Photonics Technology Letters,2010,22(3):149-151.
    [103]Hinow, M.; Mevissen, M. Substation Maintenance Strategy Adaptation forLife-Cycle Cost Reduction Using Genetic Algorithm[J].IEEE Transactions on Power Delivery.2011,26 (1):197-204
    [104]Nilsson, J.; Bertling, L. Maintenance Management of Wind Power Systems Using Condition Monitoring Systems—Life Cycle CostAnalysis for Two Case Studies[J]. IEEE Transactions on Energy Conversion,2007 22(1):223-229
    105] Karlsson, D., Wallin, L., Olovsson, H.-E.,et al. Reliability and lite cycle cost estimates of 400 kV substation layouts[J]. IEEE Transactions on Power Delivery.1997,12(4):1486-1492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700