分布式发电中三相三电平并网逆变器的若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式发电以其发电方式灵活、能源利用率高、环境污染小等优点成为近年来发展较快的一种供电模式。并网逆变器作为分布式发电连接电网的接口,在风力发电、光伏发电和燃料电池发电等分布式发电中具有重要的作用,甚至在一定程度上决定了分布式发电所能提供的电能质量。分布式发电并网逆变器所接入的电网通常都是相对较弱的配电网,容易受负载的影响而发生畸变,也可能因短路等故障而产生三相不平衡现象。多电平逆变器不通过器件的直接串联提高了变流器的电压,随着分布式发电功率等级的提高,多电平逆变器有望在分布式发电中得到广泛应用。在分布式发电的并网技术标准中,孤岛检测、低电压穿越、有功功率和无功功率的控制都涉及并网逆变器的两项关键技术:锁相技术和并网逆变器的控制技术。所以本文主要选择电网谐波和不平衡条件下的锁相方法、中点钳位型三电平并网逆变器的控制方法作为重点内容开展研究。
     针对小功率分布式发电通常接入的单相电网,本文比较了几种典型的单相电网锁相方法,深入分析了其在理论上或实用中的优点和不足,评估了在电网谐波情况下的性能,然后在此基础上提出了一种改进的单相畸变电网锁相方法,改进方法的核心部分是一个由主模块和多个谐波模块组成的交错耦合反馈结构,其中主模块是依据梯度下降法来估测基波幅值频率的锁相环,谐波模块是简单的二阶陷波滤波器。主模块作为主要的功能模块来估测输入信号中的基波分量,谐波模块配置在谐波频率处将得到的谐波分量反馈回输入信号。改进的方法易于实现,不但在电压信号严重畸变时具有较高的锁相精度,而且在电压信号发生突变时还具有较快的响应速度。
     针对三相不平衡电网,本文介绍了三相不平衡电网的一些常用锁相算法,分析了这些算法的基本原理和优缺点,在此基础上提出了一种基于静止坐标系下直接梯度下降法的锁相环。该锁相环结构简单,不需要将电网电压变换到同步旋转坐标系,在静止坐标系下通过数值算法求解根据梯度下降原理得到的非线性方程组,直接估测出正负序分量的幅值、相位和频率。通过实验评估了该锁相方法的性能,实验结果表明,所提方法对对输入电压的噪声不敏感,在三相电压不平衡时稳态精度高,在电网发生不平衡故障时,响应速度快,即使电网电压在故障后相位、幅值和频率均有大幅跳变,也基本能在两个工频周期以内完成锁相。
     针对三电平并网逆变器的控制策略,本文提出了一种有限集最优预测(Finite Set Optimal Predictive, FSOP)控制方法,该方法将27个开关矢量看成一个有限集,然后在此有限集中搜索使罚函数最小的开关矢量,其中罚函数是由输出电流误差、中点不平衡电压和器件开关次数组成的加权和。本文详细推导了中点钳位型三电平并网逆变器的状态空间模型,并给出了FSOP控制方法的设计步骤和程序流程图,最后通过仿真和实验评估了FSOP控制方法的性能。实验结果表明,与传统方法相比,FSOP控制方法跟踪参考电流和平衡中点电压的速度快,平均开关频率低,对电网谐波扰动不敏感,对模型参数具有一定的鲁棒性,通过调整罚函数中的加权系数,该方法还可以非常灵活方便的优化并网逆变器的综合性能。
     针对三电平并网逆变器的工程实践问题,本文提出了一种适用于多电平并网逆变器的高效仿真方法。多电平逆变器的控制方法复杂,拓扑结构还在不断发展,在对多电平逆变器的拓扑结构及控制算法没有准确掌握的基础上,直接进行实物实验需要花费较多的人力、物力,还存在很多安全隐患。所以,非常需要一种高性能的多电平逆变器的仿真方法,仿真方法与实物的差别越小越好。本文设计并实现了一种基于Saber软件的高性能仿真方法,该方法对影响控制系统性能的死区时间、量化误差、数字延迟等因素都进行了有效的模拟,仿真速度快,仿真结果可靠性高,并可方便移植到实物系统中。该仿真方法对控制算法还具有离线调试功能,能细致入微地分析算法的具体实现细节,可以作为工具来探索一些高级的控制方法。本文还介绍了比例谐振(PR)控制器在定点型DSP中实现时遇到的问题,介绍了实验样机的硬件和软件保护方法,给出了实验现场的部分照片。
Distributed generations develop rapidly in recently years with substantial benefits, including flexible electricity production, high energy utilization and low environment pollution. Grid-connected inverters which are the interface of grid and wind power generation, photovoltaic power generation and fuel cell power generation play an important role in distributed generations. The grid connected by distributed generations is usually weak and may be distorted due to nonlinear loads and unbalanced due to short-circuit faults. With the increase of distributed generation power ratings, multi-level inverters are expected to be widely used in distributed generations since the voltage rating is increased without direct parallel switching devices. In the standard of grid-connected inverters in distributed generations, islanding detection, low voltage ride through, active and reactive power control involve two important technologies, which are the phase-locked loop (PLL) technology and the inverter control strategy. So in this paper, the research focuses on the PLL technology in distorted and unbalanced grid and the control strategy of neutral point clamped three-level inverter.
     Based on the fact that the low-power distributed generation is usually connected to single-phase grid, this paper compared several typical single-phase PLL methods, analyzed the advantages and disadvantages in theory and practice, and evaluated the performance in distorted grid. On the basics of above work, this paper proposed a modified PLL method especially for distorted grid. The proposed PLL method has a coupling feedback structure composed of a main module aiming to estimate fundamental component and multi notch filters aiming to get harmonic components. The main module is an amplitude-frequency-phase-locked loop (AFPLL) using gradient descent method and the harmonic modules are simple second order notch filters (NF). The proposed PLL method can be easily implemented in DSP and the experimental results show that the propose PLL not only can eliminate steady state error in harmonic distorted grid voltage, but also has a quick response when grid voltage suddenly changes.
     For unbalanced three-phase grid voltage, this paper firstly analyzed the basic principle of commonly used PLL methods, and then proposed a PLL method to estimate positive and negative components with gradient descent algorithm in stationary reference frame. The proposed method has a very simple structure and does not require transformation of grid voltage form stationary reference frame to synchronous reference frame. It can estimate the amplitude, phase angle and frequency of positive and negative components by solving a nonlinear equation set with gradient descent algorithm. The performance of the PLL method is verified by experiments, and the experimental results show that the proposed PLL has a quick response when grid voltage suddenly becomes unbalanced. The response time of the PLL is within two frequency cycles even if all the amplitude, phase angle and frequency have large changes.
     As for the control strategy of neutral point clamped three-level inverter, this paper proposed a finite set optimal predictive (FSOP) control method. In the proposed method, the optimal switching vector is selected from a finite set according to a cost function. The finite set is composed of27switching vectors, and the cost function is composed of the error of output current, the neutral point unbalanced voltage and the switching times of device. The state space model of neutral point clamped three-level grid-connected inverter is detailed derived and the flowchart of FSOP control is given. Finally, the performance of FSOP control is verified though simulations and experiments. Experimental results show that FSOP control has a quick response in tracking output reference current and balancing neutral point voltage, insensitive to harmonic distorted voltage and model parameters. FSOP control has a flexible control purposes and we can optimize the synthesize performance just by adjusting weighting coefficients of cost function.
     As for engineering practice, this paper proposed a high performance simulation methodology for multi-level inverters. In comparison with two-level inverters, the control algorithm of multilevel inverters is very sophisticated and many new control algorithms have been proposed recently. Without a full understanding of the control algorithm, the experiment will take both money and time even with safety issues. Therefore, an effective simulation methodology for multilevel inverters is needed. The simulation methodology can simulate the factors that have great impact on control performance such as dead band, digital delay, and quantization error. The simulation results are more convincing and can be easily ported to an actual system. The simulation methodology also provides an off-line debugging function, which will be helpful for exploring advanced control algorithms. This paper also described the implementation problem of PR controller in fixed point DSP. The software and hardware protection methods and some experiment photos are also demonstrated.
引文
[1]Porate K B, Thakre K L, Bodhe G L. Impact of wind power on generation economy and emission from coal based thermal power plant[J]. International Journal of Electrical Power & Energy Systems.2013, 44(1):889-896.
    [2]Dinglin L, Yingjie C, Kun Z, et al. Economic evaluation of wind-powered pumped storage system[J]. Systems Engineering Procedia.2012,4(1):107-115.
    [3]Liu S, Lin C. Development and perspective of promising energy plants for bioethanol production in Taiwan[J]. Renewable Energy.2009,34(8):1902-1907.
    [4]潜勇.《京都议定书》的废止与再续[J].海洋世界.2012(12):48-49.
    [5]王绍武.《京都议定书》的执行情况[J].气候变化研究进展.2013(1):78.
    [6]京都议定书.新华资料http://news.xinhuanet.com/ziliao/2002-09/03/content_548525.htm
    [7]中国节能减排目标.新华时政http://news.xinhuanet.com/politics/2009-11/26/content_12545939.htm
    [8]我国中长期发电能力及电力需求发展预测.国家能源局网站http://www.nea.gov.cn/2013-02/22/c_132185515.htm
    [9]李光辉,郭宪蓉.我国煤炭交易市场发展现状与对策[J].中国煤炭.2012(5):5-8.
    [10]王震.我国煤炭进出口现状及展望[J].煤炭经济研究.2012(7):20-24.
    [11]张瑞胜.浅谈我国煤炭资源的利用现状[J].科技风.2011(7):255.
    [12]曹梓轲,何良挽,廖凌.从环境空气容量的角度分析区域新建火电机组的潜力[J].能源技术经济.2011(11):62-64.
    [13]杨振.火电行业环境压力空间均衡分析[J].华北电力大学学报(自然科学版).2011(2):70-74.
    [14]杜刚,党晓强,刘华.新世纪风力发电技术中的若干问题分析[J].电气时代.2011(3):50-52.
    [15]戴高昕.风力发电相关问题研究[J].绿色科技.2011(8):241-243.
    [16]工业统计信息.国家统计数据库http://219.235.129.58/welcome.do
    [17]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化.2010(2):10-14.
    [18]钱科军,袁越,石晓丹,等.分布式发电的环境效益分析[J].中国电机工程学报.2008(29):11-15.
    [19]能源发展“十二五”规划.国家能源局网站http://www.nea.gov.cn/2013-01/28/c_132132808.htm
    [20]国家电网关于做好分布式光伏发电并网服务工作的意见.中国电力网http://www.chinapower.com.cn/article/1215/art1215445.asp
    [21]国家电网关于做好分布式电源并网服务工作的意见.北极星电力网 http://news.bjx.com.cn/html/20130228/419898.shtml
    [22]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化.2007(19):100-107.
    [23]王军.带分布式发电的配电网谐波研究[D].中国科学院研究生院(电工研究所),2006.
    [24]孙云莲.新能源及分布式发电技术[M].中国电力出版社,2009.
    [25]Bollen M H J, Hassan F. Intergration of Distributed Generation in the Power System[M]. IEEE press, 2011.
    [26]薛迎成,邰能灵.国际上分布式电源的互联标准介绍[J].南方电网技术.2008,2(6):14-17.
    [27]王继东,张小静,杜旭浩,等.光伏发电与风力发电的并网技术标准[J].电力自动化设备.2011(11):1-7.
    [28]Standard for Interconnecting Distributed Resources With Electric Power Systems[S].2003.
    [29]GB/T 19963-2011.风电场接入电网技术规定[S].2011.
    [30]Rodriguez J, Jih-Sheng L, Fang Z P. Multilevel inverters:a survey of topologies, controls, and applications[J]. Industrial Electronics, IEEE Transactions on.2002,49(4):724-738.
    [31]Lezana P, Pou J, Meynard T A, et al. Survey on Fault Operation on Multilevel Inverters[J]. Industrial Electronics, IEEE Transactions on.2010,57(7):2207-221.8.
    [32]Malinowski M, Gopakumar K, Rodriguez J, et al. A Survey on Cascaded Multilevel Inverters[J]. Industrial Electronics, IEEE Transactions on.2010,57(7):2197-2206.
    [33]陈权.电压型多电平变换器若干关键技术研究[D].合肥工业大学,2007.
    [34]彭方正,钱照明,罗吉盖斯,等.现代多电平逆变器拓扑[J].变流技术与电力牵引.2006(5):6-11.
    [35]张艳莉,费万民,吕征宇.多电平功率变换器主电路拓扑结构综述[J].电气自动化.2006(1):3-6.
    [36]王琛琛,李永东.多电平变换器拓扑关系及新型拓扑[J].电工技术学报.2011(1):92-99.
    [37]刘凤君.多电平逆变技术及应用[M].机械工业出版社,2007.
    [38]谭刚雷,郝润科,朱军.双馈变速恒频风力发电系统矢量控制模型的研究[J].电气自动化.2010(4):66-70.
    [39]郑重,杨耕.双馈风力发电系统功率控制的相关问题研究[J].电力电子.2010(2):35-39.
    [40]魏伟,许胜辉.风力发电及相关技术综述[J].微电机.2009(4):66-68.
    [41]祝贺,徐建源,张明理,等.风力发电技术发展现状及关键问题[J].华东电力.2009(2):314-316.
    [42]周天佑,郭育华.双馈风力发电系统网侧变流器的控制及仿真[J].电气开关.2010(2):31-33.
    [43]王全胜,郭纯生,曹桂荣.直驱式风力发电系统并网控制策略研究[J].电气自动化.2010(4):71-74.
    [44]熊亮,邹轩.直驱式风力发电系统的控制方法研究[J].电测与仪表.2010(2):31-34.
    [45]李建林,朱颖,胡书举,等.风力发电系统中大功率变流器的应用[J].高电压技术.2009(1):169-175.
    [46]樊友民,钱洋.风能及风力发电问题[J].发电设备.2009(6):464-466.
    [47]姜燕,陈顺,黄守道,等.直驱型永磁风力发电系统的电网同步化方法研究[J].电网技术.2010(11):182-187.
    [48]Kasem Alaboudy A H, Zeineldin H H, Kirtley J L. Microgrid Stability Characterization Subsequent to Fault-Triggered Islanding Incidents[J]. Power Delivery, IEEE Transactions on.2012,27(2):658-669.
    [49]Basak P, Saha A K, Chowdhury S, et al. Microgrid:Control techniques and modeling[C]. Universities Power Engineering Conference (UPEC),2009 Proceedings of the 44th International,2009:1-5.
    [50]Khodayar M E, Barati M, Shahidehpour M. Integration of High Reliability Distribution System in Microgrid Operation[J]. Smart Grid, IEEE Transactions on.2012,3(4):1997-2006.
    [51]Wang Y, Ai X, Gao Y. Microgrid's operation-management containing distributed generation system[C]. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT),2011 4th International Conference on,2011:703-707.
    [52]胡海松,张保会,张嵩,等.微网中的储能设备及飞轮储能特性的研究[J].电网与清洁能源.2010(4):21-24.
    [53]杨卫东,姚建国,杨胜春.储能技术对未来电网发展的作用分析[J].水电自动化与大坝监测.2012(2):17-20.
    [54]Rui S, Zhongyu W, Centeno V A. Power system islanding detection & identification using topology approach and decision tree[C]. Power and Energy Society General Meeting,2011 IEEE, 2011:1-6.
    [55]Jouybari-Moghaddam H, Hosseinian S H, Vahidi B. Active distribution networks islanding issues:An introduction[C]. Environment and Electrical Engineering (EEEIC),2012 11th International Conference on,2012:719-724.
    [56]Mahat P, Zhe C, Bak-Jensen B. Review of islanding detection methods for distributed generation[C]. Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008. Third International Conference on,2008:2743-2748.
    [57]Samuelsson O, Strath N. Islanding detection and connection requirements[C]. Power Engineering Society General Meeting,2007. IEEE,2007:1-6.
    [58]程启明,王映斐,程尹曼,等.分布式发电并网系统中孤岛检测方法的综述研究[J].电力系统保 护与控制.2011(6):147-154.
    [59]Young-Gui L, Hye-Won L, Yeon-Hee K, et al. Islanding detection for a micro-grid based on the active and reactive power in the time domain[C], Advanced Power System Automation and Protection (APAP),2011 International Conference on,2011:1956-1961.
    [60]贺眉眉,李华强,甘立勇,等.RLC负荷模型分布式发电孤岛检测方法研究[J].电力系统保护与控制.2011(6):7-11.
    [61]Samantaray S R, Pujhari T M, Subudhi B D. A new approach to islanding detection in distributed generations[C]. Power Systems,2009. ICPS'09. International Conference on,2009:1-6.
    [62]Byunggyu Y, Youngseok J, Junghun S, et al. A Robust Anti-islanding Method for Grid-Connected Photovoltaic Inverter[C]. Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on,2006:2242-2245.
    [63]Jeraputra C, Enjeti P N. Development of a robust anti-islanding algorithm for utility interconnection of distributed fuel cell powered generation[J]. Power Electronics, IEEE Transactions on.2004,19(5): 1163-1170.
    [64]杨滔.三相三电平光伏并网发电系统中若干关键技术的研究[D].浙江大学,2012.
    [65]王立乔,孙孝峰.分布式发电系统中的光伏发电技术[M].2010.
    [66]Kim J E, Hwang J S. Islanding detection method of distributed generation units connected to power distribution system[C]. Power System Technology,2000. Proceedings. PowerCon 2000. International Conference on,2000:643-647.
    [67]Rajabi-Ghahnavie A, Parniani M, Fotuhi-Firuzabad M. Investigating the effects of reactive power on islanding detection[C]. Power System Technology,2004. PowerCon 2004.2004 International Conference on,2004:1067-1071.
    [68]Fei W, Chengcheng Z, Zengqiang M. Anti-islanding Detection and Protection for Grid Connected PV System Using Instantaneous Power Theory[C]. Industrial and Information Systems,2009. IIS'09. International Conference on,2009:413-416.
    [69]Jin B J, Hee-Jun K, Soo H B, et al. An improved method for anti-islanding by reactive power control[C]. Electrical Machines and Systems,2005. ICEMS 2005. Proceedings of the Eighth International Conference on,2005:965-970.
    [70]Hua G, Dewei X, Bin W, et al. Active Islanding Detection for Inverter-Based Distributed Generation Systems With Power Control Interface[J]. Energy Conversion, IEEE Transactions on.2011,26(4): 1063-1072.
    [71]谢东,张兴.主动移频式孤岛检测法产生稀释效应机理的分析[J].电力系统保护与控制.2013(4):84-90.
    [72]Zeineldin H H, Conti S. Sandia frequency shift parameter selection for multi-inverter systems to eliminate non-detection zone[J]. Renewable Power Generation, IET.2011,5(2):175-183.
    [73]Zeineldin H H, Salama M M A. Impact of Load Frequency Dependence on the NDZ and Performance of the SFS Islanding Detection Method[J]. Industrial Electronics, IEEE Transactions on.2011,58(1): 139-146.
    [74]Jung Y, Choi J, Yu B, et al. A Novel Active Frequency Drift Method of Islanding Prevention for the grid-connected Photovoltaic Inverter[C]. Power Electronics Specialists Conference,2005. PESC'05. IEEE 36th,2005:1915-1921.
    [75]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters:a survey[J]. Industrial Electronics, IEEE Transactions on.1998,45(5):691-703.
    [76]Erika T, Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter[J]. Power Electronics, IEEE Transactions on.2003,18(3):888-895.
    [77]Erika T, Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter[J]. Power Electronics, IEEE Transactions on.2003,18(3):888-895.
    [78]Papavasiliou A, Papathanassiou S A, Manias S N, et al. Current Control of a Voltage Source Inverter Connected to the Grid via LCL Filter[C]. Power Electronics Specialists Conference,2007. PESC 2007. IEEE,2007:2379-2384.
    [79]张兴.高等电力电子技术[M].机械工业出版社,2011.
    [80]鲍陈磊,阮新波,王学华,等.基于PI调节器和电容电流反馈有源阻尼的LCL型并网逆变器闭环参数设计[J].中国电机工程学报.2012(25):133-142.
    [81]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变器双闭环入网电流控制技术[J].中国电机工程学报.2009(27):36-41.
    [82]张兴,张崇巍.PWM整流器及其控制[M].2012.
    [83]沈国桥,徐德鸿.LCL滤波并网逆变器的分裂电容法电流控制[J].中国电机工程学报.2008(18):36-41.
    [84]Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. Electric Power Applications, IEE Proceedings-.2006, 153(5):750-762.
    [85]Timbus A, Liserre M, Teodorescu R, et al. Evaluation of Current Controllers for Distributed Power Generation Systems[J]. Power Electronics, IEEE Transactions on.2009,24(3):654-664.
    [86]Lascu C, Asiminoaei L, Boldea I, et al. High Performance Current Controller for Selective Harmonic Compensation in Active Power Filters[J]. Power Electronics, IEEE Transactions on.2007,22(5): 1826-1835.
    [87]Guoqiao S, Xuancai Z, Jun Z, et al. A New Feedback Method for PR Current Control of LCL-Filter-Based Grid-Connected Inverter[J]. Industrial Electronics, IEEE Transactions on.2010, 57(6):2033-2041.
    [88]Newman M J, Holmes D G. Delta operator digital filters for high performance inverter applications[J]. Power Electronics, IEEE Transactions on.2003,18(1):447-454.
    [89]Kauraniemi J, Laakso T I, Hartimo I, et al. Delta operator realizations of direct-form IIR filters[J]. Circuits and Systems Ⅱ:Analog and Digital Signal Processing, IEEE Transactions on.1998,45(1): 41-52.
    [90]Zhou Y, Duan S, Liu F, et al. Research on digital implementation of proportional-resonant controller based on a three-phase PV grid-connected system[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008:2746-2749.
    [91]Yepes A G, Freijedo F D, Doval-Gandoy J, et al. Effects of Discretization Methods on the Performance of Resonant Controllers[J]. Power Electronics, IEEE Transactions on.2010,25(7):1692-1712.
    [92]王斯然,吕征宇.LCL型并网逆变器中重复控制方法研究明.中国电机工程学报.2010(27):69-75.
    [93]刘飞,邹云屏,李辉.基于重复控制的电压源型逆变器输出电流波形控制方法[J].中国电机工程学报.2005(19):58-63.
    [94]Sha D, Wu D, Liao X. Implementation of three-phase grid connected inverters with SVPWM-based repetitive control[C]. Control Conference (CCC),2010 29th Chinese,2010:4903-4906.
    [95]Xuehua W, Xinbo R, Shangwei L, et al. Full Feedforward of Grid Voltage for Grid-Connected Inverter With LCL Filter to Suppress Current Distortion Due to Grid Voltage Harmonics[J]. Power Electronics, IEEE Transactions on.2010,25(12):3119-3127.
    [96]Abeyasekera T, Johnson C M, Atkinson D J, et al. Suppression of line voltage related distortion in current controlled grid connected inverters[J]. Power Electronics, IEEE Transactions on.2005,20(6): 1393-1401.
    [97]Kukrer O. Deadbeat control of a three-phase inverter with an output LC filter[J]. Power Electronics, IEEE Transactions on.1996,11(1):16-23.
    [98]刘晓雷,张晓,李静.基于无差拍控制的三电平有源滤波器研究[J].变频器世界.2011(12):108-111.
    [99]杨勇,阮毅,叶斌英,等.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报.2009(33):40-46.
    [100]李新瑞,马文忠.NPC型三电平逆变器中点电位平衡算法的研究[J].电气应用.2010(2):58-62.
    [101]Pou J, Pindado R, Boroyevich D, et al. Limits of the neutral-point balance in back-to-back-connected three-level converters[J]. Power Electronics, IEEE Transactions on.2004,19(3):722-731.
    [102]Celanovic N, Boroyevich D. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters[J]. Power Electronics, IEEE Transactions on.2000,15(2):242-249.
    [103]李启明.三电平SVPWM算法研究及仿真[D].合肥工业大学,2008.
    [104]桂红云.三电平变换器控制策略的研究[D].浙江大学,2005.
    [105]龚博,程善美,秦忆,等.基于区间选择的三电平中点电压平衡研究[J].电力电子技术.2012(7):18-20.
    [106]Cungang H, Qunjing W, Guoli L. Research on neutral-point potential balancing for three-level NPC voltage source inverter[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008:1659-1664.
    [107]Lewicki A, Krzeminski Z, Abu-Rub H. Space-Vector Pulsewidth Modulation for Three-Level NPC Converter With the Neutral Point Voltage Control [J]. Industrial Electronics, IEEE Transactions on. 2011,58(11):5076-5086.
    [108]范必双,谭冠政,樊绍胜,等.一种新的基于混合空间矢量调制的三电平逆变器直流侧电容电压平衡研究[J].中国电机工程学报.2012(27):135-141.
    [109]Grigoletto F B, Pinheiro H. A space vector PWM modulation scheme for back-to-back three-level diode-clamped converters[C]. Power Electronics Conference,2009. Brazilian,2009:1058-1065.
    [1]陈自强,黄守道,曾智波,等.新型锁相技术在单相系统中的应用研究[J].计算机仿真.2011(1):315-318.
    [2]张兴,张崇巍.PWM整流器及其控制[M].北京:机械工业出版社,2012.
    [3]刘森森.电网受干扰时VIENNA整流器同步与控制方法的研究[D].浙江大学,2012.
    [4]Karimi-Ghartemani M, Iravani M R. A nonlinear adaptive filter for online signal analysis in power systems:applications[J]. Power Delivery, IEEE Transactions on.2002,17(2):617-622.
    [5]Boyra M, Thomas J L. A review on synchronization methods for grid-connected three-phase VSC under unbalanced and distorted conditions[C]. Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on,2011:1-10.
    [6]袁江伟,吕征宇.一种新型的单相并网系统锁相环[J].电力电子技术.2011(7):81-82.
    [7]陈顺,黄守道,王德强,等.基于改进瞬时无功理论的单相锁相环[J].电力电子技术.2009(10):89-90.
    [8]Amuda L N, Cardoso Filho B J, Silva S M, et al. Wide bandwidth single and three-phase PLL structures for grid-tied PV systems[C]. Photovoltaic Specialists Conference,2000. Conference Record of the Twenty-Eighth IEEE,2000:1660-1663.
    [9]Silva S M, Lopes B M, Filho B J C, et al. Performance evaluation of PLL algorithms for single-phase grid-connected systems[C]. Industry Applications Conference,2004.39th IAS Annual Meeting. Conference Record of the 2004 IEEE,2004:2259-2263.
    [10]Clarke D W. On the design of adaptive notch filters[J]. International Journal of Adaptive Control and Signal Processing.2001,15(7):715-744.
    [11]储昭碧.基于自适应陷波滤波器的电力信号时频分析[D].合肥工业大学,2009.
    [12]储昭碧,张崇巍,冯小英.基于自适应陷波滤波器的频率和幅值估计[J].自动化学报.2010(1):60-66.
    [13]Liu H, Ortega R, Damm G. A globally convergent frequency estimator [J]. Automatic Control, IEEE Transactions on.1999,44(4):698-713.
    [14]Riedle B, Kokotovic P. Integral manifolds of slow adaptation [J]. Automatic Control, IEEE Transactions on.1986,31(4):316-324.
    [15]Mojiri M, Bakhshai A R. Stability analysis of periodic orbit of an adaptive notch filter for frequency estimation of a periodic signal[J]. Automatica.2007,43(3):450-455.
    [16]Mojiri M, Karimi-Ghartemani M, Bakhshai A. Time-Domain Signal Analysis Using Adaptive Notch Filter[J]. Signal Processing, IEEE Transactions on.2007,55(1):85-93.
    [17]Mojiri M, Karimi-Ghartemani M, Bakhshai A. Estimation of Power System Frequency Using an Adaptive Notch Filter[J]. Instrumentation and Measurement, IEEE Transactions on.2007,56(6): 2470-2477.
    [18]Ciobotaru M, Teodorescu R, Blaabjerg F. A New Single-Phase PLL Structure Based on Second Order Generalized Integrator[C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE, 2006:1-6.
    [19]Rodriguez P, Luna A, Candela I, et al. Grid synchronization of power converters using multiple second order generalized integrators[C]. Industrial Electronics,2008. IECON 2008.34th Annual Conference of IEEE,2008:755-760.
    [20]Hoffmann N, Lohde R, Fischer M, et al. A review on fundamental grid-voltage detection methods under highly distorted conditions in distributed power-generation networks[C]. Energy Conversion Congress and Exposition (ECCE),2011 IEEE,2011:3045-3052.
    [21]金曼,苏建徽.光伏并网逆变器中的单相数字锁相环研究[J].电力电子技术.2011(6):6-8.
    [22]Lujun W, Damin Z, Chong Z, et al. A high performance PLL for polluted utility grid based on cascade adaptive notch filters[C]. Power Electronics and Motion Control Conference (IPEMC),2012 7th International,2012:615-619.
    [23]王继东,张小静,杜旭浩,等.光伏发电与风力发电的并网技术标准[J].电力自动化设备.2011(11):1-7.
    [24]Karimi-Ghartemani M, Ziarani A K. Performance characterization of a non-linear system as both an adaptive notch filter and a phase-locked loop[J]. International journal of adaptive control and signal processing.2004,18(1):23-53.
    [25]王惠文.梯度法的步长与收敛性[D].中国科学技术大学,2003.
    [26]薛迎成,邰能灵.国际上分布式电源的互联标准介绍[J].南方电网技术.2008,2(6):14-17.
    [1]Freijedo F D, Doval-Gandoy J, Lopez O, et al. Tuning of Phase-Locked Loops for Power Converters Under Distorted Utility Conditions[J]. Industry Applications, IEEE Transactions on.2009,45(6): 2039-2047.
    [2]Chung S K. Phase-locked loop for grid-connected three-phase power conversion systems[J]. Electric Power Applications, IEE Proceedings-.2000,147(3):213-219.
    [3]Panda S R, Babu B C. Phase estimation for grid synchronization using CORDIC algorithm with SRF-PLL[C]. Electrical, Electronics and Computer Science (SCEECS),2012 IEEE Students'Conference on,2012:1-4.
    [4]庞浩,俎云霄,王赞基.一种新型的全数字锁相环[J].中国电机工程学报.2003(2):41-45.
    [5]张兴,张崇巍.PWM整流器及其控制[M].2012.
    [6]Boyra M, Thomas J L. A review on synchronization methods for grid-connected three-phase VSC under unbalanced and distorted conditions[C]. Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on,2011:1-10.
    [7]林百娟.三相电压不平衡条件下锁相环的设计与实现[D].内蒙古工业大学,2009.
    [8]Karimi-Ghartemani M, Khajehoddin S A, Jain P K, et al. Addressing DC Component in PLL and Notch Filter Algorithms[J]. Power Electronics, IEEE Transactions on.2012,27(1):78-86.
    [9]Gao S, Barnes M. Phase-locked loop for AC systems:Analyses and comparisons[C]. Power Electronics, Machines and Drives (PEMD 2012),6th IET International Conference on,2012:1-6.
    [10]高作毅,罗显通,黄翰.瞬时对称分量法及其在故障暂态测距中的应用[J].电气自动化.2011(3):77-80.
    [11]车学哲,沈凤龙,王建辉,等.基于瞬时对称分量法的电网无功补偿方法[J].电力系统及其自动化学报.2012(2):107-112.
    [12]Sang-Joon L, Jun-Koo K, Seung-Ki S. A new phase detecting method for power conversion systems considering distorted conditions in power system[C]. Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE,1999:2167-2172.
    [13]Yazdani D, Mojiri M, Bakhshai A, et al. A Fast and Accurate Synchronization Technique for Extraction of Symmetrical Components [J]. Power Electronics, IEEE Transactions on.2009,24(3):674-684.
    [14]Clarke D W. On the design of adaptive notch filters[J]. International Journal of Adaptive Control and Signal Processing.2001,15(7):715-744.
    [15]Ciobotaru M, Teodorescu R, Blaabjerg F. A New Single-Phase PLL Structure Based on Second Order Generalized Integrator[C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE, 2006:1-6.
    [16]Rodri X, Guez P, Luna A, et al. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions[J]. Power Electronics, IEEE Transactions on.2012,27(1):99-112.
    [17]Rodriguez P, Teodorescu R, Candela I, et al. New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions[C]. Power Electronics Specialists Conference,2006. PESC'06.37th IEEE,2006:1-7.
    [18]刘森森,杭丽君,姚文熙,等.电网故障时电力电子变流器的直接解耦同步法[J].中国电机工程学报.2011(21):93-99.
    [19]田桂珍,王生铁,林百娟,等.电压不平衡时风电系统中基于双同步变换的锁相环设计[J].电气传动.2010(7):53-57.
    [20]周鹏,贺益康,胡家兵.电网不平衡状态下风电机组运行控制中电压同步信号的检测[J].电工技术学报.2008(5):108-113.
    [21]张治俊,李辉,张煦,等.基于单/双同步坐标系的软件锁相环建模和仿真[J].电力系统保护与控制.2011(11):138-144.
    [22]Rodriguez P, Pou J, Bergas J, et al. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control[J]. Power Electronics, IEEE Transactions on.2007,22(2):584-592.
    [23]田桂珍,王生铁,林百娟,等.电压不平衡时风电系统中基于双同步变换的锁相环设计[J].电气传动.2010(7):53-57.
    [24]周鹏,贺益康.电网电压不对称且谐波畸变时基波电压同步信号的检测[J].仪器仪表学报.2010(1):78-84.
    [25]吴记群,李双科.电网电压不对称条件下的电压同步信号的检测[J].低压电器.2011(11):44-47.
    [26]Karimi-Ghartemani M, Ziarani A K. Performance characterization of a non-linear system as both an adaptive notch filter and a phase-locked loop[J]. International journal of adaptive control and signal processing.2004,18(1):23-53.
    [27]王惠文.梯度法的步长与收敛性[D].中国科学技术大学,2003.
    [1]Timbus A, Liserre M, Teodorescu R, et al. Evaluation of Current Controllers for Distributed Power Generation Systems[J]. Power Electronics, IEEE Transactions on.2009,24(3):654-664.
    [2]Castilla M, Miret J, Matas J, et al. Linear Current Control Scheme With Series Resonant Harmonic Compensator for Single-Phase Grid-Connected Photovoltaic Inverters[J]. Industrial Electronics, IEEE Transactions on.2008,55(7):2724-2733.
    [3]杨淑英,张兴,张崇巍,等.LCL滤波电压源并网逆变器多环控制策略设计[J].电力系统自动化.2011(5):66-70.
    [4]Da Silva E R C, Cipriano Dos Santos E, Jacobina C B. Pulsewidth Modulation Strategies[J]. Industrial Electronics Magazine, IEEE.2011,5(2):37-45.
    [5]姜旭,肖湘宁,赵洋,等.改进的多电平SVPWM及其广义算法研究[J].中国电机工程学报.2007(4):90-95.
    [6]Alonso O. Marroyo L, Sanchis P, et al. Analysis of neutral-point voltage balancing problem in three-level neutral-point-clamped inverters with SVPWM modulation[C]. IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the],2002:920-925.
    [7]Pou J, Pindado R, Boroyevich D, et al. Limits of the neutral-point balance in back-to-back-connected three-level converters [J]. Power Electronics, IEEE Transactions on.2004,19(3):722-731.
    [8]Kui-Jun L, Byoung-Gun P, Rae-Young K, et al. Robust Predictive Current Controller Based on a Disturbance Estimator in a Three-Phase Grid-Connected Inverter[J]. Power Electronics, IEEE Transactions on.2012,27(1):276-283.
    [9]Shang L, Sun D, Hu J. Sliding-mode-based direct power control of grid-connected voltage-sourced inverters under unbalanced network conditions[J]. Power Electronics, IET.2011,4(5):570-579.
    [10]Singh M, Chandra A. Application of Adaptive Network-Based Fuzzy Inference System for Sensorless Control of PMSG-Based Wind Turbine With Nonlinear-Load-Compensation Capabilities [J]. Power Electronics, IEEE Transactions on.2011,26(1):165-175.
    [11]王仕韬.基于一种半直驱式风力发电装置的整流器研究[D].浙江大学,2011.
    [12]杨勇,阮毅,叶斌英,等.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报.2009(33):40-46.
    [13]Kukrer O. Deadbeat control of a three-phase inverter with an output LC filter[J]. Power Electronics, IEEE Transactions on.1996,11(1):16-23.
    [14]Khambadkone A, Holtz J. Low switching frequency and high dynamic pulsewidth modulation based on field-orientation for high-power inverter drive[J]. Power Electronics, IEEE Transactions on.1992,7(4): 627-632.
    [15]Holtz J, Stadtfeld S. A predictive controller for the stator current vector of AC machines fed from a switched voltage source[C]. Proc.IPEC,1983:1665-1675.
    [16]Lezana P, Aguilera R, Quevedo D E. Model Predictive Control of an Asymmetric Flying Capacitor Converter[J]. Industrial Electronics, IEEE Transactions on.2009,56(6):1839-1846.
    [17]Aguilera R P, Lezana P, Quevedo D E. Finite-Control-Set Model Predictive Control With Improved Steady-State Performance[J]. Industrial Informatics, IEEE Transactions on.2013,9(2):658-667.
    [18]Jos R, Jorge P, Csar A S, et al. Predictive Current Control of a Voltage Source Inverter[J]. Industrial Electronics, IEEE Transactions on.2007,54(1):495-503.
    [19]Cortes P, Kazmierkowski M P, Kennel R M, et al. Predictive Control in Power Electronics and Drives[J]. Industrial Electronics, IEEE Transactions on.2008,55(12):4312-4324.
    [20]Papafotiou G, Kley J, Papadopoulos K G, et al. Model Predictive Direct Torque Part II Implementation and Experimental Evaluation[J]. Industrial Electronics, IEEE Transactions on.2009, 56(6):1906-1915.
    [21]Geyer T, Papafotiou G, Morari M. Model Predictive Direct Torque Control Part I Concept, Algorithm, and Analysis[J]. Industrial Electronics, IEEE Transactions on.2009,56(6):1894-1905.
    [22]杨勇,赵方平,阮毅,等.三相并网逆变器模型电流预测控制技术[J].电工技术学报.2011(6):153-159.
    [23]Larrinaga S A, Vidal M A R, Oyarbide E, et al. Predictive Control Strategy for DC/AC Converters Based on Direct Power Control[J]. Industrial Electronics, IEEE Transactions on.2007,54(3):1261-1271.
    [24]Antoniewicz P, Kazmierkowski M P, Aurtenechea S, et al. Comparative study of two predictive direct power control algorithms for three-phase AC/DC converters[C]. Power Electronics and Applications, 2007 European Conference on,2007:1-10.
    [25]Aurtenechea S, Rodriguez M A, Oyarbide E, et al. Predictive Direct Power Control-A New Control Strategy for DC/AC Converters[C]. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,2006:1661-1666.
    [26]Antoniewicz P, Kazmierkowski M P, Cortes P, et al. Predictive Direct Power Control Algorithm for Three Phase AC/DC Converter[C]. EUROCON,2007. The International Conference on, 2007:1530-1534.
    [27]Vargas R, Cortes P, Ammann U, et al. Predictive Control of a Three-Phase Neutral-Point-Clamped Inverter[J]. Industrial Electronics, IEEE Transactions on.2007,54(5):2697-2705.
    [28]Barros J D, Silva J F. Optimal Predictive Control of Three-Phase NPC Multilevel Converter for Power Quality Applications[J]. Industrial Electronics, IEEE Transactions on.2008,55(10):3670-3681.
    [29]Barros J, Silva F, Jesus E. Fast predictive optimal control of NPC multilevel converters[J]. Industrial Electronics, IEEE Transactions on.2012, PP(99):1.
    [30]王斯然,吕征宇.LCL型并网逆变器中重复控制方法研究[J].中国电机工程学报.2010(27):69-75.
    [31]Teodorescu R, Blaabjerg F, Liserre M, et al. Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. Electric Power Applications, IEE Proceedings-.2006, 153(5):750-762.
    [1]贾辰东.并网三电平变流系统的设计[D].浙江大学,2008.
    [2]王建.三电平电压型PWM整流器直接功率控制研究[D].天津大学,2012.
    [3]Rabinovici R, Baimel D, Tomasik J, et al. Series space vector modulation for multi-level cascaded H-bridge inverters[J]. Power Electronics, IET.2010,3(6):843-857.
    [4]Keivani H, Askari M R, Kavehnia F, et al. Novel Multi-Carrier PWM Method for a Three-Phase Cascaded H-Bridge Multi-Level Inverter[C]. Universities Power Engineering Conference,2006. UPEC'06. Proceedings of the 41st International,2006:593-597.
    [5]Shuai L, Corzine K A, Fikse T H. Advanced Control of Cascaded Multilevel Drives Based on P-Q Theory[C]. Electric Machines and Drives,2005 IEEE International Conference on,2005:1415-1422.
    [6]Wei-Bing B, Jian-Yu B. Modeling and simulation of multilevel current source inverter based on SIMetrix/SIMPLIS[C]. Computer Application and System Modeling (ICCASM), the 2010 International Conference on,2010:466-470.
    [7]Chwirka S. Using the powerful SABER simulator for simulation, modeling, and analysis of power systems, circuits, and devices[C]. Computers in Power Electronics.the 7th Workshop on,2000:172-176.
    [8]Vlach M. Modeling and simulation with Saber[C]. ASIC Seminar and Exhibit,1990:11.
    [9]Nichols K G, Lin J T, Brown A D, et al. Reliability of circuit-level simulation[C]. SPICE:Surviving Problems in Circuit Evaluation, IEE Colloquium on,1993:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700