大功率三电平变频器功率器件损耗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率变频器采用多电平技术可有效地降低变频器输出电压的谐波成分,改善其输出性能。然而随着电平数的增多,变频器中的功率器件会大幅度增加,同时对其控制器也提出了更高的要求。因此,无论是从实用性还是控制复杂性方面,三电平变频器都具有较强的竞争优势。
     变频器随着其容量的不断提升,功率器件的损耗也急剧增加,散热问题已成为大功率三电平变频器研发过程中的关键问题之一。现场应用表明,散热性能的好坏直接影响到变频器的可靠性以及使用寿命,恶劣的情况下甚至能直接导致功率器件的损坏。变频器的发热主要是由功率器件的损耗引起的,同时功率器件本身又对温度非常敏感,温度的变化会影响功率器件的导通和关断特性,从而影响变频器的工作性能,因此准确地分析功率器件的损耗特性可优化变频器的散热设计,保障变频器的稳定可靠运行。
     作为功率器件损耗研究的基础,本文对三电平变频器常用的载波比较正弦脉宽调制(SPWM)和空间矢量脉宽调制(SVPWM)进行了分析,阐明了两种调制方法下输出电压的谐波特性,并分析了两者之间的本质关系。在功率器件损耗计算时,SVPWM的等效调制函数可近似采用正弦波注入三次谐波的方法。
     在分析了中点钳位型(NPC)三电平变频器在不同负载工况下功率器件的工作特性的基础上,根据功率器件的损耗模型提出了一套考虑结温效应的功率器件损耗计算方法,采用热阻等效电路模型计算了功率器件的结温,并分析了功率器件的损耗和结温随调制度和负载阻抗角的变化规律。
     针对NPC三电平变频器功率器件损耗和结温不平衡的缺陷,分析了有源钳位型(ANPC)三电平变频器的工作原理,通过对冗余零电压状态下不同电流通路的合理选择可实现功率器件损耗和结温平衡。在分析了已有调整策略的基础上提出了一种改进PWM方法,可实现功率器件最优结温平衡。同时在分析了ANPC三电平变频器不同负载工况下功率器件工作特性的基础上,提出了考虑结温效应的功率器件损耗计算方法。
     在分析了ANPC三电平变频器功率器件开路和短路状态的基础上,利用零电压状态冗余的优势,提出了ANPC三电平变频器单个功率器件开路或短路故障状态下的容错运行控制方法。为了验证容错控制方法的可行性,提出了容错控制下功率器件的损耗计算方法。
The device’s losses increase dramatically with the expanded capability of three level converters and the heat dissipation issue has become one of the key problems during the converter developing process. Industrial application indicates that the heat dissipation system affects the converter’s reliability and life time directly and some of the power devices could be damaged immediately with a worse heat dissipation system. It is commonly known that the devices are very sensitive to the heat which is generally caused by the losses. The variations of device’s junction temperature affect the conduction and switching characteristics and thus the converter’s performance as well. So it is very important to get the precise device’s losses since the loss information could optimize the heat dissipation system which guarantees the converter’s stable and reliable operation.
     Firstly, as the basis for the loss research, the commonly used carrier based sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) were analyzed. Secondly, power device’s operation principles of neutral point clamped (NPC) three level in different load conditions were analyzed. Based on the loss model of the devices, the loss calculation method which took the junction temperature effect into consideration was proposed. Thirdly, Point to NPC three level converter power device’s loss and junction temperature unbalance problem, the operating principle of active NPC (ANPC) three level was analyzed. Based on the analysis of on hand modulation strategies, an improved PWM method was proposed which has better junction temperature balance ability. Finally, taking the advantage of redundancy zero voltage output states, the fault tolerant operation control method of ANPC three level converter under single device open circuit or short circuit fault was proposed. Furthermore, the loss calculation method under fault tolerant operation was also proposed to evaluate the feasibility of the control method.
引文
[1]仲明振,赵相宾.高压变频器应用手册[M].北京:机械工业出版社,2009.
    [2]A Nabae,I Takahashi,H Akagi A New Neutral—Point—Clamped PVc2VI Inverter[J]IEEETransactions on IndustryApplications,1981,17(5):518-523
    [3]S Bernet Recent developments of high power converters for industry and tractionapplication[J]IEEE Transactions on Power Electronics,2000,15(6):1102—1117
    [4]J Rodriguez,Jihsheng Lai,Zhengpeng Fang Multilevel inverters:a survey of topologies,controls,and applications[J]IEEE Transactions on Industrial Electronics,2002,49(4):724—738
    [5]D Krug,S Bernet,S S Fazel,et al Comparison of 2 3一kV medium—voltage multilevelconverters for industrial medium-voltage drives[J] IEEE Transaction on IndustrialElectronics,2007,54(6):2979—2992
    [6]J Rodriguez,S Bernet,Bin Wu,et al Multilevel voltage—source—converter topologies forindustrial medium—voltage drives[J]IEEE Transaction on Industrial Electronics,2007,54(6):2930—2945
    [7]H Abu—Rub,J Holtz,J Rodriguez,et al Medium—voltage multilevel converters—state of theart,challenges,and requirements in industrial applications[J]IEEE Transaction on IndustrialElectronics 2010,57(8):2581—2596
    [8]温春雪,张利红,李建林,等.二电平PWM整流器川于直驱风力发电系统[J]高电压技术,2008,24(1):191—195.
    [9]杨勇,阮毅,张朝艺,等.基于背靠背二电平电压变换器的直驱式风力发电系统[J].电网技术,2009,33(18):148—155.
    [10]T Funaki,J C Balda,J Junghans,et al Power conversion with SiC Devices at extremelyhigh ambient temperatures[J]IEEE Transactions on Power Electronics,22(4):1321—1329
    [11]D Planson,D Toumier,P Bevilacqua,et al SiC power semiconductor devices for newapplications in power electronics[C]Power Electronics and Motion Control Conference,2008:2457—2463
    [12]倚鹏.高压变频器的产产品和市场状况[J].变频器世界,2006(3):14—16.
    [13]马建彬,郭培彬.国产高压变频器在煤矿主扇风机中的应用[J].变频器世界,2006(9):45—49.
    [14]蒋国止,白太平.国产高压大功率变频器在油田注水系统巾的应用[J].变频器世界,2006 (6):63—68.
    [15]绳伟辉,李崇坚,朱春毅,等.大功率IGCT二电平变流器卒间矢量PW2VI调制算法[J]电工技术学报,2007,22(8):1-6.
    [16]张崇巍,苑春明,张兴.中点电何平衡的三电平逆变器SVPWM简化算法及其实现[J]电气传动,2008,38(11):37—41.
    [17]钟玉林,赵争鸣.改进式SHEPWM对三电平变频器系统的共模电压利轴电压的抑制作用[J],电工技术学报,2009,24(6):48—55.[1 8]姚文熙,工斯然,刘森森,等.三电平空间矢量调制中的共模分量[J].电工技术学报,2009,24(4):108—113.
    [19]胡存刚,工群京,严辉,等.NPC三电平逆变器SHE—PWM开关模式[J].合肥业大学学报,2008,31(1):48—51.
    [20]赵争鸣,白华,袁立强.基于IGCT的高压三电平变频器若干关键技术问题思考.变频器世界,2007(7):30—34.
    [21]刘文华,宋强,严干贵,等.基于三电平中点钳何逆变器的高压变频调速器.清清大学学报,2003,43(3):357—360.
    [22]袁立强.基于IGCT的多电平平变换器若干关键问题研究[D].北京:清华大学,2004.
    [23]金舜.交流电动机:极管钳位三电平逆变器PW2VI控制策略的研究[D].西安:西安理工大学,2006.
    [24]王小峰.三相多电平变流器电压平衡、钳位策略与调整技术研究[D].杭州:浙江大学,2007.
    [25]刘健.新型三电平高压变频调速关键技术及成套装备研发[D].武汉:华中科技大学,2008.
    [26]王丹,毛承雄,范澍,等.高压变频器散热系统的设计[J].电力电子技术,2005,39 (2):115—117.
    [27]黄炜,何人望,周瑜.高压变频器散热系统的研究与设计[J].华东交通大学学报,2006,23(5):105—108.
    [28]续明进,张皓,董武.高压变频器散热与通风的设计[J].变频器世界,2006(5):68—71.
    [29]刘军祥,夏俊利.高压大功率变频器的两种冷划方式比较[J].高压变频器,2008(5):56—58.
    [30]赵争鸣,白华,张海涛,等.三电平变频器中的IGBT失效机理分析[J].电力电子,2004,2(5):30一24.
    [31]钱照明,盛况.大功率半导体器件的发展与展望[J].大功率变流技术,2010(1):1—9.
    [32]F Wakemen,G Li,A Golland New fami~of 4 5kV Press—pack IGBTs[C]Conferenceproceedings on PCIM,2005:1—6
    [33]亢宝位.IGBT发展概述[J].电力电子,2006(5):10-15.
    [34]R Teichmann,S Bernet A comparison of three—level conve~ers versus two—level convertersfor low-voltage drives,traction,and utility applications[J]IEEE Transactions on IndustryApplication 2005,41(3):855—865
    [35]G Majumdar,T Minato Recent and future IGBT evolution[C]Power ConversionConference Nagoya,2007:355—359
    [36]M Momose,K Kumada,H Wakimoto,et al A 600V super low-loss IGBT with advancedmicro—P structure for the next generation IBM[C]22nd International Symposium on PowerSemiconductor Devices&IC’s 2010:379—382
    [37]Yulin Zhong,Xuhui Wen,Jun Liu,et al Development of a 450A/600V 6-in一1一packageintelligent power module(IPM)[c]2ndIEEE International Symposium on Power Electronicsfor Distributed Generation Systems 2010:654—657
    [38]R H Baker,L H Bannister Electric power converter[P]U S Patent 3867643,Feb 1 8,1975
    [39]竺伟,陈伯时,周鹤良,等.单儿串联式多电平高压变频器的起源、现状和展望[J].电气传动,2006,36(6):3-7.
    [40]吴国祥,江友华.级联型多电平高压变频器研究[J].电机与控制应用,2007,34(1):34—38.
    [41]罗德荣,王耀南,葛找强,等.级联型高压变频器控制算法的研究及实现[J].电工技术学报,2010,25(1):104—110.
    [42]K Corzine Operation and design of multilevel inverters[R]Developed for the Office of Naval Research,USA,2005
    [43]李水东,饶建业.大容量多电平变换器拓扑现状与进展[J].电气技术,2008(9):7-12.
    [44]P w Hammond Medium voltage PW2VI drive and method[P]U S Patent 5625545,Apr 29,1997
    [45]S S Fazel Investigation and comparison of multi—level converter for medium voltageapplication[D],Technical University ofBerlin,Germany,2007
    [46]吴凤江,赵克,孙力,等.一种新型四象限级联型多电平逆变器拓扑[J].电工技术学报,2008,23(4):81—86.
    [47]Z Cheng,B Wu A novel switching sequence design for five—level NPC/H—bridge inverterswith improved output voltage spectrum and minimized device switching frequency[J]IEEETransaction on Power Electronics,2007,22(6):2138—2145
    [48]单庆晓,李永东,潘孟春.级联型逆变器的新进展[J].电工技术学报,2004,19(2):1—9.
    [49]L M Tolbert,F Z Peng,T G Habetler Multilevel converter for large electric drives[J]IEEETransaction on IndustrialApplication,1999,35(1):36—44
    [50]J Holtz,N Oikonomou Neutral point potential balancing algorithm at low-modulation indexfor three—level inverter mediurn voltage drives[J]IEEE Transaction on Industrial Application,2007,43(3):761—768
    [51]L Bor—Ren Analysis and implementation of a three—level PWM rectifier/inverter[J]IEEETransaction on Aerospace and Electronic systems,2000,36(3):948—956
    [52]R C Portillo,M M Parts,J I Leon,et al Modeling Strategy for back—to—back three—levelconverters applied to high—power wind turbines[J]IEEE Transaction on Industrial Electronics,2006,53(5):1483—1491
    [53]S Alepuz,S Busquets—Monge,J Bordonau,et al Interfacing renewable energy sources to theutility grid using a three—level inverter[J]IEEE Transaction on Industrial Electronics,2006,53(5):1504—1511
    [54]王羽中,邢岩,方宇,等.理想电网条件下可再生能源发电三电平并网逆变器[J].电力系统自动化,2010,24(3):58—62.
    [55]姜卫东,王群京,陈权,等.考虑中点电压不平衡的中点钳何型三电平逆变器空间矢量调制方法[J].中国电机工程学报,2008,28(30):20—26.
    [56]金红元,邹云屏,林磊,等.三电平PWM整流器双环控制技术及中点电压平衡控制技术的研究[J].中国电机工程学报,2006,26(20):64—68.
    [57]陈新,李春燕,严仰光.采用三电平数宁控制的三相逆变器[J].电工技术学报,2006,21 (12):71—78.
    [58]王小峰,邓焰,何湘宁.三相三电平二极管钳何型整流器的单载波调制和中点平衡控制策略研究[J].中国电机工程学报,2006,26(8):7-11.
    [59]L G Franquelo,J L Rodriguez,J Leon,et al The age of multilevel converter arrives[J]IEEE Industrial Electronics Magazine,2008,2(2):28—39
    [60]Yituo Li,Wenlong Qu Equivalent neutral point voltage control strategies in neutral—pointdiode—clamped three—level converter[C]IEEE 6“International Power Electronics and MotionControl Conference,2009:1440—1444
    [61]K Siva Kumar,S De,K Gopakurnar,et al Neutral—point balancing of neutral—point clamped three—level inverter wlth a front end switched rectiner dc source for the full modulation range[J]IET Power Electronics,2009,2(5):527—534
    [62]T Bruckner,S Bernet Loss balancing in three—level voltage source inverters applying activeNPC switches[C]IEEEPowerElectronics SpecialistsConference,2001:1135 1140
    [63]O Apeldoom,B~degard,P Steimer,et al A 16 MVA ANPC—PEBB with 6kA IGCTs[C]Fourtieth IndustryApplications ConferenceAnnual Meeting,Vol 2,2005:81 8-824
    [64]T A Meynard,H Foch Multilevel Conversion:High Voltage Choppers and Voltage—SourceInverters[C]IEEE Power Electronics Specialists Conference,1992:397—403
    [65]S Fazel,S Bernet,D Krug,et al Design and comparison of 4一kV neutral—point—clamped,flying—capacitor,and series—connected H—bridge multilevel converters[J]IEEE Transaction onIndustrial Electronics,2007,43(4):1032—1040
    [66]A Shukla,A Ghosh,A Joshi Capacitor voltage balancing schemes in flying capacitormultilevel inverters[C]Power Electronics Specialists Conference,2007:2367—2372
    [67]In—Dong Kim,Eui—Cheol Nho,Heung—Geun Kim A generalized undeland snubbber for flyingcapacitor multilevel inverter and converter[J]IEEE Transaction on Industrial Electronics,2004,51(6):1290—1296
    [68]Won—Kyo Lee,Soo—Yeol Kim,Jong—Su Yoon,et al A comparison of the carrier—based PWMtechniques for voltage balance of flying capacitor in the flying capacitor multilevelinverter[C]Applied Power Electronics Conference and Exposition,2006:1653—1658
    [69]B P Mcgrath,D G Holmes Analytical determination of the capacitor voltage balancingdynamics for three—phase flying capacitor converter[J]IEEE Transaction on IndustryApplications,2009,45(4):1425—1433
    [70]O Sivkov,J Pavelka Analysis of capacitor dividers for multilevel inverter[C]13th Power electronics and motion control conference,2008:221—228
    [71]王鸿雁,王小峰,张超,等.飞跨电容多电平逆变器的新型载波PWM方法[J].电工技术学报,2006,21(2):63—67.
    [72]王鸿雁,邓焰,赵荣祥,等.飞跨电容多电平逆变器开关损耗最小PWM方法[J].中国电机工程学报,2004,24(8):51-55.
    [73]王小峰,俐湘宁,邓焰.载波交叠特性PWM方法在飞跨电容多电平逆变器中的应用研究[J].中国电机工程学报,2007,27(10):98—102.
    [74]S Figarado,K Sivakumar,R Ramchand,et al Five—level inverter scheme for an open—endwinding induction machine with less number of switches[J]IET Power Electronics,201 0,2(4):637—647
    [75]N Hatti,K Hasegawa,H Akagi A 6 6一kV Transformerless motor drive using a five—leveldiode—clamped PW2VI inverter for energy savings ofpumps and blowers[J]IEEE Transactionson Power Electronics,2009,24(3):796—803
    [76]胡书举,李建林,许洪化.一种二极管钳何五电平H桥逆变器的应用[J].变流技术与电力牵引,2008(4):20—24.
    [77]F Kieferndorf,M Basler,L A Sperpa,et al A new-medium voltage drive system based onANPC一5L technology[C]IEEE International Conference on Industrial Technology,2010:643—649
    [78]P Barbosa,P Steimer,J Steinke,et al Active—neutral—point—clamped(ANPC)multilevelconverter technology[C]European Conference on Power Electronics and Applications,2005:1—10
    [79]F Kieferndorf,M Basler,L A Serpa,et al ANPC一5L technology applied to medium voltagevariable speed drives appllcatlons[c]International Symposium on Power ElectronicsElectricalDrivesAutomation andMotion,2010:1718—1725
    [80]钱照明,张军明,谢小高,等.电力电子系统集成研究进展于现状[J].电工技术学报,2006,21(3):1—14.
    [81]张帆.大功率集成化电力电子模块关键技术研究[D].杭州:浙江大学,2006.
    [82]马伟明.电力集成技术[J].电工技术学报,2005,20(1):16-20.
    [83]P K Steimer Power electronics building blocks—a platform—based approach to powerelectronics[C]IEEEPowerEngineering SocietyGeneralMeeting,2003(3):1360—1365
    [84]M Hagiwara,K Nishimura,H Akagi A Medium—Voltage Motor Drive With a ModularMultilevel PWM Inverter[J] IEEE Transactions on Power Electronics,2010,25(7):1786—1799
    [85]A Korn,M Winkelnkemper,P Steimer Low-Output Frequency Operation of the ModularMulti—Level Converter[C]IEEE Energy Conversion Congress and Exposition(ECCE),201O:3993—3997
    [86]Wang Kui,Li Yongdong,Zheng zedong voltage balancing control and experiments of a novelmodular multilevel converter[c]IEEE Energy Conversion Congress and Exposition(ECCE),2010:3691—3686
    [87]袁登科,陶生桂.三电平逆变器PWM方法分析与比较[J].电气应用,2005,24(7):48—52.
    [88]Wemxi Yao,Haibing Hu,Zhengyu Lu Comparisons of space-vector modulation andcarrier—based modulation of multilevel inverter[J]IEEE Transactions on Power Electronics,2008,23(1):45—51
    [89]李海三.基于IGCT的中压大容量三电平NPC逆变器PWM技术和缓冲电路的研究[D].北京:中科院电工研究所,2005.
    [90]康劲松,巫影,张烨,等.三电平变流器多载波PWM控制技术研究[J].同济大学学报,2010,38(1):124—129.
    [91]袁登科.二极管钳位型三电平逆变器正弦脉宽调制方法比较[J].变频器世界,2007(8):47—50.
    [92]w H Lau,Bin Zhou,Henry S H Chung Compact Analytical solutions for determining thespectral characteristics of multicarrier—based multilevel PWM[J]IEEE Transaction onCircuits and Systems,2004,51(8):1577—1585
    [93] Jun Li, A. Q. Huang, Zhaoming Qian, et al. A novel carrier-based PWM method for 3-levelNPC inverter utilizing control freedom degree[C]. IEEE Power Electronics SpecialistsConference, 2007: 1899-1904.
    [94] Hongyan Wang, Rongxiang Zhao, Yan Deng, et al. Novel carrier-based PWM methods formultilevel inverter[C]. 29 Annual Conference of the IEEE Industrial Electronics Society, Vol.3, 2003: 2777-2782.
    [95] Wanmin Fei, Yanli Zhang, Xinbo Ruan. Solving the SHEPWM Nonlinear Equations forthree-level voltage inverter based on computed initial values[C]. Twenty Second Annual IEEEApplied Power Electronics Conference, 2007: 1084-1088.
    [96] J. A. Pontt, J. R. Rodriguez, A. Liendo. Network-friendly low-switching-frequency multipulsehigh-power three-level PWM rectifier[J]. IEEE Transactions on Industrial Electronics, 2009,56(4): 1254-1262.
    [97] J. R. Well, B. M. Nee, P. L. Chapman, et al. Selective harmonic control: a general problemformulation and selected solutions[J]. IEEE Transaction on Power Electronics, 2005, 20(6):1337-1345.
    [98]张水吕,赵争鸣,张颖超.三电平逆变器SHEEPWM多组解特性比较及实验[J].电工技术学报,2007,22(3):60—65.
    [99]张艳莉,费万民,吕征宇,等.三电平逆变器SHEPWM方法及其应用研究[J].电工技术学报,2004,19(1):16-20.
    [100]胡存刚.多电平二极管钳位型逆变器PWM控制方法及相关问题的研究[D].合肥:合肥工业大学,2008.
    [101]桂红云,姚文熙,吕征宇.基于控制因子三电平空间矢量方法的研究[J].电力电子技术,2005,39(1):25—28.
    [102]宋文祥,陈国呈,武慧,等.一种具有中点电位平衡功能的三电空间矢量调制方法及其实现[J].中国电机工程学报,2006,26(12):95—100.
    [103]绳伟辉,李崇坚,朱春毅,等.大功率IGCT三电平变流器空间矢量PWM调制算法[J].电工技术学报,2007,22(8):1-6.
    [104]桂红云,姚文熙,吕征宁.DSP空间矢量控制三电平逆变器的研究[J].电力系统自动化,2004,28(11):62—65.
    [105]Jae Hyeong Seo, Chang Ho Choi, Dong Seok Hyun. A New Simplified Space-Vector PWMMethod for Three-Level Inverter [J]. IEEE Transactions on Power Electronics, 2001, 16(4):545-550.
    [106]S. Busquets_Monge, J. Borduau, D. Boroyevich, et al. The nearest three virtual space vectorPWM-a modulation for the comprehensive neutral-point balancing in the three-level NPCmverter[J]. IEEE Power Electronics Letters, 2004, 2(1): 11-15.
    [107]A. K. Gupta, A. M. Khambadkone. A space vector PWM scheme for multilevel invertersbased on two-level space vertor PWM[J]. IEEE Transactions on Industrial Electronics, 2006,53(5): 1631-1639.
    [108]A. K. Gupta, A. M. Khambadkone. A simple space vector PWM scheme to operate athree-level NPC inverter at high modulation index including overmodulation region, withneutral point balancing[J]. IEEE Transaction on Industrial Application 2007, 43(3): 751-760.
    [109]S. Busquets_Monge, J. Borduau, D. Boroyevich, et al. The nearest three virtual space vectorPWM-a modulation for the comprehensive neutral-point balancing in the three-level NPCmverter[J]. IEEE Power Electronics Letters, 2004, 2(1): 11-15.
    [110]姜卫东,杜少武,史晓锋,等.中点钳位型三电平逆变器空间矢量与虚拟空间矢量的混合调制方法[J].中国电机工程学报,2009,29(1 8):47—53.
    [111]张永吕,赵争鸣,张颖超,等.三电平变频凋速系统SVPWM利SHEPWM混合调制方法的研究[J].中国电机工程学报,2007,27(16):72—77.
    [112]Chung Dae-Woong, Kim Joohn-Sheok, Sul Seung-Ki. United Voltage Modulation Techniquefor Real-Time Three-Phase Power Conversion[J]. IEEE Transactions on IndustryApplications, 1998, 34 (2): 374-380.
    [113]S. R. Bowes, L. Yen-Shin. The relationship between space-vector modulation andregular-sampled PWM[J]. IEEE Transactions on industrial Electronics, 1997, 44(5): 670-679.
    [114]Z. Keliang, W. Danwei. Relationship between space-vector modulation and three-phasecarrier-based PWM: a comprehensive analysis[J]. IEEE Transactions on Industrial Electronics,2002,49(1): 186-196.
    [115]庄朝晖,熊有伦.一种简单的三电平逆变器PWM控制算法[J].电工技术学报,2001,16(2):47—50.
    [116]吴洪洋,何湘宁。多电平载波PWM法与SVPWM法之间的本质联系及其应用[J].中国电机工程学报,2002,22(5):10-15.
    [117]宋强,刘文华,陈远华.多电平逆变器载波调制与空间矢量调制的等效关系[J].电力系统自动化,2004,28(19):36—41.
    [118]M Hiller,R Sommer,M Beuermann Converter topologies and power semiconductors forindustrial medium voltage converters[C]IEEE Industry Applications Society Annual Meeting,2008:1—8
    [119]毛鹏,谢少军,许泽刚.IGBT模块的开关暂态模型及损耗分析[J].中国电机工程学报2010,30(15):40—47.
    [120]Kuang Sheng,B w Williams,S J Finney AReview-ofIGBTmodels[J]IEEE Transactionson Power Electronics, 2000, 15(6): 1250-1266.
    [121]A. N. Githiari, B. M. Gordon, R. A. Mcmacon, et al. A comparison of IGBT models for use in circuit design[J]. IEEE Transactions on Power Electronics, 1999, 14(4): 607-614.
    [122]熊妍,沈燕群,江剑,等.IGBT损耗计算和损耗模型研究[J].电源技术应用.2006,9(5):55—60.
    [123]A. R. Hefner. A dynamic electro-thermal model for the IGBT[J]. IEEE Transactions onIndustry Applications, 1994, 30(2): 394-405.
    [124] A. R. Hefner. Analytical modeling of device-circuit interactions for the power insulated gatebipolar transistor (IGBT)[J]. IEEE Transactions on Industry Applications, 1990, 26(6):995-1005.
    [125]A. R. Hefner. An improved understanding for the transient operation of the power insulatedgate bipolar transistor (IGBT)[J]. IEEE Transactions on Power Electronics, 1990, 5(4):459-468.
    [126] A. R. Hefner. An investigation of the drive circuit requirements for the power insulated gatebipolar transistor (IGBT)[J]. IEEE Transactions on Power Electronics, 1991, 6(2): 208-219.
    [127]R. Kraus, K. Hoffmann. An analytical model of IGBTs with low emitter efficiency[C]. 5International Symposium on Power Semiconductor Devices and ICs, 1993: 30-34.
    [128]R. Kraus, P. Turkes, J. Sigg. Physics-based models of power semiconductor devices for thecircuit simulator SPICE[C]. 29 Annual IEEE Power Electronics Specialists Conference, Vol.2, 1998: 1726-1731.
    [129]R. Kraus, H. J. Mattausch. Status and trends of power semiconductor device models forcircuit simulation[J]. IEEE Transactions on Power Electronics, 1998, 13(3): 452-465.
    [130]K. Sheng, S. J. Fmney, B. W. Williams. Fast and accurate IGBT model for PSpice[J].Electronics Letters, 1996, 32(25): 2294-2295.
    [131]K. Sheng, S. J. Finney, B. W. Williams. A new analytical IGBT model with improvedelectrical characteristics^]. IEEE Transactions on Power Electronics, 1999, 14(1): 98-107.
    [132]Wong. EMTP modeling of IGBT dynamic performance for power dissipation estimation[J].IEEE Transactions on Industry Applications, 1997,33(1): 64-71.
    [133]Wanying Kang, H. Ahn, M. A. E. Nokali. A parameter extraction algorithm for an IGBTbehavioral model[J]. IEEE Transactions on Power Electronics, 2004, 19(6): 1365-1371.
    [134]唐勇,李平,谢象佐.一种Hefner IGBT模型门极电容参数的提取方法[J].电力电子技术,2009,43(5):81—83.
    [135]F Casanellas Losses in PWM inverters using IGBT[J]IEE Proceedings Electric PowerApplications,1994,141(5):235—239
    [136]P. A. Dahono, Y. Sato, T. Kataoka. IEE Proceedings Electric Power Application[J], 1995,142(4): 225-232.
    [137]E Blaabjerg, U. Jaeger, S. Munk-Nielsen, et al. Power losses in PWM-VSI inverter usingNPTorPTIGBTdevices[J]. IEEE Transaction on Power Electronics, 1995, 10(3): 358-367.
    [138]F. Balaabjerg, J. K. Pedersen, S. Sigurjonsson, et al. An extended model of power losses inhard-switched IGBT-inverters[C]. 31 IEEE Industry Applications Conference AnnualMeeting, 1996: 1454-1463.
    [139]许德伟,朱东起,黄立培,等.电力半导体器件和装置的功率损耗研究[J].清华大学学报(自然科学版),2000,40(4):5-8.
    [140]Dewei Xu, Haiwei Lu, Lipei Huang, et al. Power loss and junction temperature analysis ofpower semiconductor devices[J]. IEEE Transactions on Industry Applications, 2002, 38(5):1426-1431.
    [141]Zhiguo Pan, Xinjian Jiang, haiwei Lu, et al. Junction temperature analysis of IGBTdevices[C]. Power Electronics and Motion Control Conference, Vol. 3, 2003: 1068-1073.
    [142]S. Azuma, M. Kimata, M. Seto,et al. Research on the power loss and junction temperature ofpower semiconductor devices for inverter[C]. IEEE International Vehicle ElectronicsConference, 1999: 183-187.
    [143]M. C. Cavalcanti, E. R. da Silva, C. B. Jacobina, et al. Comparative evaluation of losses insoft and hard-switched inverters[C]. 38 Industry Application Conference Annual Meeting,Vol. 3, 2003:1912-1917.
    [144]M. H. Bierhoff, F. W. Fuchs. Semoconductor losses in voltage source and current sourceIGBT converters based on analytical derivation[C]. 35 Annual IEEE Power ElectronicsSpecialists Conference, 2004: 2837-2842.
    [145]Dimensioning program IPOSIM for loss and thermal calculation of Infineon IGBT modules.Technical Documentation, http://www. Infineon.com.
    [146]ABB HiPakTM IGBT Module 5SNA 1500E330300. Doc. No. 5SYA 1595-00 July 07, ABBSwitzerland Ltd.
    [147]胡建辉,李锦庚,邹继斌,等.变频器中IGBT模块损耗计算及散热系统设计[J].电工技术学报2009,24(3):159—163.
    [148]杨有涛,刘娇宏,杨荣,等.低压大容量逆变器功率损耗的一种估算方法[J].电气传动自动化,2009,3(54):54—56.
    [149]赵振波,陈子颖.IPOSIM—IGBT仿真工具在变频器设计中的应用[J].变频器世界,2007 (5):83—87.
    [150]F Mancilla-David, G Venkataramanan. Analytical modeling of semiconductor losses in threelevel inverter for FACTS applications[C]. 34 Annual Conference of IEEE IndustrialElectronics, 2008: 3219-3226.
    [151]S. Busquets-Monge, J. Bordonau, J. A. Beristain. Comparison of losses and thermalperformance of a three-level three-phase neutral-point-clamped dc-ac converter under aconventional NTV and the NTV2 modulation strategies[C]. 32n Annual Conference on IEEEIndustrial Electronics, 2006: 4819-1824.
    [152]S. S. Fazel, D. Krug, S. Bernet. Comparison of power semiconductor utilization, losses andharmonic spectra of state-of-the-art 4.16 kV multi-level voltage source converters[C].European Conference on Power Electronics and Applications, 2005:1-11.
    [153]D. A. B. Zambra, C. Rech, F. A. S. Goncalves, et al. Power losses analysis and coolingsystem design of three topologies of multilevel inverters[C]. IEEE Power ElectronicsSpecialists Conference, 2008: 4290-4295.
    [154]L. Clotea, A. Forcos, C. Marinescu, et al. Power losses analysis of two-level and three-levelneutral clamped inverters for a wind pump storage system[C]. 12 International Conferenceon Optimization of Electrical and Electronic Equipment, 2010: 1174-1179.
    [155]S. Diecherhoff, S. Bernet, D. Krug. Power loss-oriented evaluation of high voltage IGBTsand multilevel converters in transformerless traction applications[J]. IEEE Transactions onPower Electronics, 2005, 20(6): 1328-1336.
    [156]Tae-Jin Kim, Dae-Wook Kang, Yo-Han Lee, et al. The analysis of conduction and switchinglosses in multi-level inverter system[C]. IEEE 32n Annual Power Electronics SpecialistsConference, Vol. 3, 2001: 1363-1368.
    [157]A. Bendre, R. Cuzner, S. Krstic. Three-level converter system[J]. IEEE Industrial ApplicationMagazine, 2009, 15(2): 12-23.
    [158]王群京,陈权,姜卫东,等.中点钳位型三电平逆变器通态损耗分析[J].电工技术学报,2007,22(3):66—71.
    [159]陈权,王群京,姜卫东,等。二极管钳位型三电平变换器开关损耗分析[J]电工技术学报2008,23(2):68—75.
    [160]陈权,工群京,郑常宝.三电平变换器PWM控制通态损耗分析[J].电气传动,2009,39(11):38—41.
    [161]史晓锋,杜少武,姜卫东.中点钳位型三电平逆变器脉宽调制时的损耗特性[J].电工技术学报,2009,24(12):124—131.
    [162]陶永止.大功率三电平异步电动机矢量控制系统研究[D].徐州:中国矿业大学,2007.
    [163]周卫平,吴正国,唐劲松,等.SVPWM的等效算法及SVPWM与SPWM的本质联[J].电机工程学报,2006,26(2):133—137.
    [164]宋文祥,艾芊,云伟俊,等.基于矢量分区的三电平SVPWM模式零序分量分析[J].电工技术学报,2009,24(12):102—108.
    [165]李浩.大功率三电平变换器关键技术及同步电机传动控制系统研究[D].徐州:中国矿业大学,2010.
    [166]A. D. Rajapakse, A. M. Gole, P. L. Wilson. Electromagnetic transients simulation models foraccurate representation of switching losses and thermal performance in power electronicsystems[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 319-327.
    [167]T. Hopkins, R. Tiziani. Transient thermal impedance considerations in power semiconductorapplication[J]. Automotive Power Electronics, 1989, (9):28-29.
    [168]陈明,汪波,唐勇.IGBT动态热阻抗曲线提取实验研究[J].电力电子技术,2010,44 (9):101—103.
    [169]朱英文,陆晓东.大功率半导休器件用散热器风冷热阻计算[J].电力电子,2009(6):47—51.
    [170]叶宗彬.大功率提升机二电平双馈调速关键技术研究[D].徐州:中国矿业大学,2010.
    [171]中压变频器ACS2000,400—1000kVA,60—69kV产品手册.北京ABB电气传动系统有限公司,2010.
    [172]D. Floricau, E. Floricau, G. Gateau. Three-level active NPC Converter: PWM Strategies andloss distribution[C]. 34 Annual Conference of IEEE Industrial Electronics, 2008: 3333-3338.
    [173]D. Floricau, E. Floricau, M. Dumitrescu. Natural doubling of the apparent switchingfrequency using three-level ANPC converter[C]. International School on Nonsinusoidalcurrents and compensation, 2008: 1-6.
    [174]D. Floricau, C. L. Popescu, M. O. Popescu, et al. A comparison of efficiency for three-levelNPC and Active NPC voltage source converters[C]. Compatibility and Power Electronics,2009:331-336.
    [175]Jung-Dae Lee, Tae-Jin Kim, Jae-Chul Lee, et al. A novel fault detection of an open-switchfault in the NPC inverter system[C]. 33 IEEE Industrial Electronics Conference, 2007:1565-1569.
    [176]Gun-Tae Lee, Tae-Jin Kim, Dae-Wook Kang, et al. Control method of NPC inverter forcontinuous operation under one phase fault condition[C]. 39 IEEE Industry ApplicationsConference, 2004: 2188-2193.
    [177]Liliang Gao, J. E. Fletcher, D. S. Reay. Operation of three- and five- phase diode-clampedthree-level inverters under open-circuit fault conditions[C]. International Conference onPower Engineering, Energy and Electrical Drives, 2007: 417-422.
    [178]Shengming Li, L. Xu. Strategies of fault tolerant operation for three-level PWM inverters[J].IEEE Transactions on Power Electronics, 2006, 22(4): 933-940.
    [179]S. Ceballos, J. Pou, E. Robles, et al. Three-leg fault-tolerant neutral-point-clampedconverter[C]. IEEE International Symposium on Industrial Electronics, 2007: 3186-3191.
    [180]S. Ceballos, J. Pou, E. Robles, et al. Three-level converter topologies with switch breakdownfault-tolerance capability [J]. IEEE Transactions on Industrial Electronics, 2008, 55(3):982-995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700