硅、铝醇盐水解聚合机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气凝胶是一种纳米粒子或高聚物分子相互聚集而形成的具有超低密度的多孔材料,以纳米多孔网络结构为骨架,气体填充在多孔网络结构中。因此,气凝胶是目前世界上最轻的固体材料,密度可低至0.002g/cm3,有“固态烟”之称。由醇盐制备的气凝胶是一种典型的低密度多孔材料,具有极低导热系数、极大表面积、低导电系数,是隔热材料、吸附剂、传感器、催化剂载体和无机填充物的理想材料,在工业生产和航空、航天领域有广泛应用前景。控制醇盐的水解、聚合是制备理想气凝胶的关键步骤。气凝胶的形成和微观结构演化由多步复杂的化学、物理过程构成,主要表现在以下几个方面:1)胶粒的形成过程复杂。目前大部分胶粒还是主要通过化学方法来制备,即通过醇盐前驱体的水解聚合过程来实现,它是一个前驱体水解、聚合、再水解、再聚合的多步过程,形成机制复杂且随机性强;2)胶粒的内部和表面结构难以测量。胶粒尺寸在1-00nm之间,既非典型的微观体系亦非典型的宏观体系;3)胶粒的性质“特殊”,它处于原子簇和大分子的过渡区,具有很强的表面效应、小尺寸效应和宏观量子隧道效应,给实验研究带来了困难;4)凝胶化过程涉及到胶粒之间的缩合过程,也是一个复杂的化学、物理过程。由于醇盐水解、聚合过程中同时存在许多复杂的反应,从实验上人们无法把某个过程抽取出来,给实验研究带来困难。因此,本文利用量子化学的优势,从原子、分子水平认识典型气凝胶的组织演化规律,采用“自下而上”的方法揭示醇盐水解、聚合过程及其溶胶、凝胶行为,为特殊性能气凝胶的制备提供必要的理论指导。
     量子化学是理论化学的一个重要分支,是应用量子力学的基本原理和方法研究化学问题的一门基础科学,是近代结构化学和计算化学的主要理论基础。自20世纪60年代以来,基于计算机技术的发展,量子化学取得了明显成功和巨大发展。某些计算结果已经达到可替代实验的水平,其中也不乏计算超过实验、起到纠正作用的例证。量子化学的迅速发展已经使化学理论计算上升到几乎与实验比肩的高度。计算机和计算机软件也变成了一种“化学实验仪器”,成为教学和科研的有力助手,量子化学也由一门新兴边缘学科发展为化学的理论工具。密度泛函方法是目前发展最快、普及最为广泛的理论方法。由于DFT方法考虑了电子相关性,计算精度可与HF微扰方法相当,但计算时间却大为减少。密度泛函方法是目前唯一有可能应用于大分子体系的第一性原理计算方法。而在应用方面,90%以上的计算都是基于密度泛函理论而完成的。
     硅、铝醇盐经水解、聚合可制备典型的晶态和非晶态气凝胶,其组织演化规律具有代表性。本文拟用量子化学方法研究其水解、聚合形成寡聚体的反应机理,使用的方法是目前最为流行的密度泛函理论的B3LYP方法,采用连续介质模型CPCM模拟溶剂环境和溶剂化效应,对寡聚体的聚集过程进行系统的理论研究;研究不同取代基、亲核试剂和电解质存在下,醇盐在中性、酸性、碱性介质中的水解、聚合机制,进而阐明各种因素对寡聚体形貌的影响。主要工作如下:
     一、Al(OC3H7)3的水解-聚合机理
     三丙氧基铝Al(OC3H7)3气溶胶可用以制备为典型的超级隔热材料,被用于运载火箭和人造航天器中。为充分理解Al(OC3H7)3水解和寡聚过程的基本化学问题,本文在B3LYP/6-311G(d,p)基组水平上、用CPCM溶剂化模型研究了其单体、
     二聚体和三聚体的结构以及在中性和碱性环境下的水解机理。本文研究表明,无论在中性还是碱性溶液中,一级水解都很容易进行。在碱性溶液中,由于形成带负电荷物种时放出大量的热,所以前驱体更倾向于先聚合。
     铝醇盐在溶液中至少以二聚体的形式存在,且聚合过程不需要能垒。计算结果还表明,对一级水解过程,在碱性溶液下的水解比中性条件的水解在能量上更有利。在中性条件下,1) Al(OC3H7)3被含有五配位桥原子铝和四配位铝原子的Al-O四原子环连接在一起;2)从铝原子上水解掉丙氧基比从桥氧原子上有更低的能垒;3)部分水解产物能够聚合为带有桥OH基和桥氧原子的寡聚物。
     二、硅醇盐Si(OR)4水解、寡聚反应机理的密度泛函研究
     硅气溶胶具有许多显著而独特的性质,但硅醇盐Si(OR)4溶胶-凝胶起始阶段的水解与寡聚机理仍未得到充分研究。在B3LYP/6-31G(d,p)基组水平密度泛函计算的基础上,考虑到计算时间,本文采用气相平衡结构在更高的B3LYP/6-311++G(d,p)基组水平上进行CPCM单点计算。单点计算的能量用气相中的零点能进行校正。由于M06-2X泛函在主族元素热化学上的优异表现,对于甲基和乙基对取代基R的影响,本文选取M06-2X泛函在6-311++G(d,p)基组水平上用G09进行单点计算,用气相中对自由能的校正值修正单点计算的HF能量。研究结果表明,M06-2X计算结果使自由能垒和总能垒失去了明显特征,因此B3LYP方法在此体系上有更好的表现。因此本文采用B3LYP方法在中性、酸性和碱性溶液中对Si(OR)4水解与寡聚反应进行了充分研究。
     研究发现,在酸性溶液中,前驱体Si(OCH3)4倾向于水解而不是聚合,并且水解过程在能量上更为有利,而且在酸性和碱性条件下水解更容易。同时发现:(1)水解过程的能垒明显低于聚合过程;(2)在酸性条件下H+使前驱体不能水解完全;(3)H+阻止水解产物聚合成环。
     在碱性溶液中,水解产物通过SNl机理聚合,且聚集速率更快而形成更加紧密的气凝胶。本文的计算也证明了随后的成环反应在能量上是不利。
     三、Al(OH)3聚合机理研究
     铝醇盐前驱体是缺电子分子,容易与水、醇配位,由铝醇盐制备气凝胶的反应速率将比较快,而且反应机理特殊,铝醇盐或Al(OH)3单体的聚合往往不需要能垒,而且反应放出大量的热。因此,以Al(OH)3的聚合过程为模板研究Al203气凝胶的组织演化规律更具有实际意义。本文将在B3LYP/6-311++G**基组水平上对所有物种进行结构优化并计算频率以获取零点能,溶液环境用溶剂模型(CPCM)模拟在同一基组水平进行单点计算,并用气相中的零点能对此能量进行校正。
     在中性条件下,本文首先在Al(OH)3周围配位1-6个水分子以确定Al(OH)3在水中的配位方式和存在形式。随着外围水分子逐渐增加,自由能降低值迅速减少,因此,Al以四配位和五配位为主。同时,为了说明方法的可靠性,本文选取M06-2X泛函在6-311++G(d,p)基组水平上进行单点计算,用气相中对自由能的校正值修正单点计算的HF能量。计算结果表明,B3LYP方法单点计算比M06-2X更可靠的。在碱性溶液中,计算表明,OH与Al(OH)3配位形成[Al(OH)4]-,使自由能显著降低179.7kJ/mol。氢转移的能垒很大,说明单体不以[AlO(OH)2]-的形式存在。
     本文对Al(OH)3在碱性溶液中的二聚表明,单体倾向于聚合为水溶性大的多羟基化合物。在中性二聚中,Al(OH)3的聚合以及桥位羟基氢的转移在能量上都是有利的,但最稳定的构型是由2个桥羟基连接的AlO四元环结构,自由能降低达-233.3kJ/mol。且其中的氢相互远离,难以通过氢转移脱水。
     最稳定二聚体与Al(OH)3的中性三聚过程十分复杂。本文研究了3种三聚体的脱水过程。研究表明,第一步脱水生成Al-O四元环的过程较容易,但生成笼状结构的过程具有太高的能垒;第二个桥羟基氢转移而进一步脱水的过程也很难。因此,Al(OH)3倾向于自发形成四配位化合物,并聚合为Al-O四元环连接的链状结构向三维笼状结构发展。
     四、吡咯-2-羧酸脱羧机理的密度泛函研究
     脱羧通常是由质子或酶催化的分解过程。本文在B3LYP/6-311++G**基组水平上进行结构优化,然后在同一基组水平下用CPCM溶剂模型单点计算并用气相的零点能进行校正。
     本文首先研究了直接脱羧和仅由一个水分子协助的脱羧过程以考虑质子和水的作用。在没有任何催化剂的情况下,吡咯-2-羧酸的羧基氢转移到α碳上把二氧化碳赶出。在一个水分子协助下,水分子把羧基水化,然后发生氢转移生成吡咯和碳酸,能垒降低到49.74kcal/mol,但水化过程的能垒也高达47.48kcal/mol。Gaussian03程序包的计算结果表明,在H30+的协助下,吡咯-2-羧酸的脱羧机理涉及到水加成到羧基上,然后C-C键断裂而生成质子化的碳酸。C-C键断裂的势垒显著地降低到9.77kcal/mol,总势垒也降低到3399kcal/mol。
     由于醇盐的水解和聚合是相互竞争的,在实验上不能把任何一个孤立出来进行研究,本文对硅、铝醇盐的水解、聚合和寡聚体的结构演化进行了系统的比较研究,主要特色和创新点体现在:
     (1)用量子化学方法对硅、铝醇盐的水解、聚合机理进行了系统研究,弄清了在不同条件下寡聚体形成链状、网状、笼状还是环状结构,用溶剂模型CPCM模拟了溶液环境;
     (2)对硅、铝醇盐前驱体的水解聚合过程及胶核的形成机制进行了研究,探讨了二聚体、三聚体的形成机理,以及总结了更大的有序聚集体的组织规律;
     (3)对于硅醇盐的水解-聚合机理,本文弄清了不同烷氧基和不同溶液条件(中性、酸性和碱性)对前驱体水解速率和水解、聚合机理的影响;
     (4)对铝醇盐体系,虽然水解很容易进行,但聚合过程均不需要能垒,倾向于快速聚合,但对于硅醇盐体系,在酸性和碱性条件下水解更容易,但水解均快于聚合过程;水分子的协助能加速铝醇盐的水解,但对硅醇盐的水解无帮助;中性条件下,Al(OH)3倾向于自发形成四配位化合物,并聚合为Al-O四元环连接而成的链状结构向三维笼状结构发展,但在碱性条件下,单体倾向于聚合为水溶性大的多羟基化合物。
     (5)利用量子化学的优势,从原子、分子水平认识了硅、铝气凝胶的形成机制,揭示了其水解、聚合过程及其溶胶、凝胶行为,为实验制备理想的气凝胶材料提供了必要的理论指导。
Aerogels made from alkoxides are representative low-density and high porosity materials, and possess desirable physical properties such as extremely low thermal conductivity, high acoustic impedance, large specific surface area, and low relative dielectric constants. As a reults, aerogels, the lightest solid materials in the world with the density lower than0.002g/cm3, are also known as frozen smoke. They are ideal candidates for various applications, such as thermal super-insulators, adsorbents, sensors, catalyst carriers and inorganic fillers, and have broad application prospects in launch vehicles and manned spacecrafts as well as in the industrial manufacture. To produce ideal aerogels, it is crucial to control the hydrolysis and oligomerization of alkoxides. However, the formation and microstructrural evolution of aerogels comprise intricate multistep chemical and physical processes, which can be represented as:1) the formation of colloidal particles is rather complicated. Currently most colloidal particles are prepared by chemical methods, viz. by the hydrolysis and oligomerization of alkoxide precursors, and the nelceation is interwoven with hydrolysis and oligomerization, so the formation mechanisms with high randomicity are very complex;2) The internal and surface structures are unmeasurable. Colloidal particles with the size between1-100nm belong to neither the representative macroscopical system nor the representative microscopical system. To experimental measurements, the particles are too small;3) The properties of colloidal particles are unique. They lie in the transition region between atomic clusters and macromolecules, so have strong surface effect, small-size effect and macroscopic quantum tunneling effect, which bring puzzledom to experimental studies;4) Gelation processes involve the condensation of colloidal particles, and are also chemically and physically complicated. Because the multitude of reactions occur simultaneously in solution, it is difficult to extract information from experimental data. Therefore, this dissertation will clarify the formation mechanisms of typical aerogels at the atomic and molecular level, unpuzzle the hydrolysis-condensation reactions and the sol-gel behavious of alkoxides by using the bottom-up method, and provide necessary theoretical guidance for the preparation of aerogels with unique properties.
     Quantum chemistry is an important branch of theoretical chemistry, is an elementary natural science to solve chemical problems with the basic principles and methods of quantum mechanics, and is the fundamental theoretical foundation of modern structural chemistry and computational chemistry. Since1960s, based on the development of computer technology, quantum chemistry has acquired significant successes and enormous achievements. Some computational results have already achieved the level to supersede experimental ones, and among them there are cases that the computation exceeds and rectifies experiments. The rapid development of quantum chemistry has made it as important as experiments. As a result, computer and computer software become a kind of "chemical experimental instruments" and a strong assistant of teaching and scientific research, so quantum chemistry evolves from a new peripheral discipline to the theoretical tool of chemistry. Now density functional theory (DFT) is the fastest growing and the most popularly accepted theoretical method. Since1990s DFT was greatly refined to better model the exchange and correlation interactions, and its calculation accuracy is comparable with the Hartree-Fock (HF) perturbation method, but the computational time is greatly reduced. Density function theory is currently the exclusive method that may be applied to the first-principle calculation of macromolecular systems. Now more than90%calculations are accomplished with the DFT methods.
     Silicon and aluminum aerogels are typical non-crystalline and crystalline aerogels prepared from the hydrolysis and condensation of silicon and aluminum alkoxides, and their miscrostructure evolution are representative. This work will employ the B3LYP quantum chemistry approaches with the conductor-like polarizable continuum model (CPCM) approximation to systematically elucidate the hydrolysis and oligomerization mechanisms as well as the condensation mechanisms of oligomers; to investigate their hydrolysis and oligomerization processes with different substituents in existence in neutral, acidic and alkaline solutions to further understant the influence of various conditions on the morphology of oligomers. The main roles of this dissertation are stated as follows:
     (1) Mechanisms of hydrolysis-oligomerization of Al(OC3H7)3
     As one of the representative super insulating materials, the aluminum trioxypropyl Al(OC3H7)3aerogel may be applied in launch vehicles and manned spacecrafts. In this study, the structures and hydrolysis mechanisms of the monomer, dimers and trimers of Al(OC3H7)3in neutral and alkaline environments were studied at B3LYP/6-31G(d,p) level combined with the CPCM solvation model to understand the fundamental chemistry of Al(OC3H7)3hydrolysis and oligomerization. Calculations show that the first-order hydrolyses of the monomer and oligomers are energetically favorable in both alkaline and neutral solutions. In alkaline solutions, they are apt to oligomerize than to hydrolyze due to the large binding energies in the formation of anionic species.
     Aluminum alkoxides exist at least in the form of dimmers, and the condensation does not need barriers. For the oligomers under neutral condition,1)Al(OC3H7)3is linked by four-membered Al-O rings with penta-coordinated bridging and tetra-coordinated Al atoms;2) the hydrolyzed propoxy groups will be expelled by solvent molecules;3) partly hydrolyzed species can condense to oligomers with bridging OH groups or O atoms.
     (2) DFT investigation on the mechanisms of silicon alkoxides Si(OR)4hydrolysis-oligomerization Reactions
     Silica aerogels possess a variety of unique and remarkable properties, but the mechanisms of the hydrolysis and oligomerization of silicon alkoxides Si(OR)4in the initial stage of sol-gel processes are still not well understood. On the basis of density functional theory full optimizations at B3LYP/6-31G(d,p) level, considering the computational time requirement, the CPCM single point energy (SPE) calculations with the gas-phase equilibrium geometries were carried out at the more rigorous B3LYP/6-311++G(d,p) basis set level of theory. The SPE energies were scaled by the zero-point energies in gas phase. The CPCM SPE calculations were also performed with G09package at M06-2X/6-311++G(d,p) level to compare the reactivity of methyl-and ethyl-substituted species because of the good performance of the M06-2X functional in the main-group thermochemistry. The M06-2X CPCM energies were scaled with thermal corrections to Gibbs free energies in gas phase. The M06-2X results show that both the free energy barriers and total barriers at M06-2X/6-311++G(d,p) level are unfeatured, and B3LYP may be better in this reaction system. We will employ the B3LYP method to systematically investigate the hydrolysis-oligomerization mechanisms of Si(OR)4in neutral, acidic and alkaline solutions.
     Calculations show that, in acidic solutions, the precursor Si(OCH3)4is inclined to hydrolyze than to condense, and the hydrolysis processes is energetically more favorable than the neutral ones. Moreover, hydrolyses under alkaline and acidic conditions are much easier than those in neutral solutions. In acidic solutions:1) the precursor Si(OCH3)4is inclined to hydrolyze than to condense;2) the precursor does not hydrolyze completely;3) proton blocks the cationic dimers to cyclize.
     In alkaline solutions, the hydrolysis products oligomerize via a SN1dimerization mechanism, and the condensation rates will be fast to form denser colloidal aerogels. This theoretical model also testifies that the succedent cyclization reactions are energetically unfavorable.
     (3) Mechanistic investigations on Al(OH)3oligomerization
     The aluminum alkoxide precursors are electron-deficient compounds, and inclined to coordinate with water and alcohols. If we use aluminum alkoxides as precursors to manufacture aerogels, the hydrolysis and oligomerization reactions wil! be fast, and the reaction mechanisms will be unique. Commonly, the oligomerization of aluminum alkoxide or Al(OH)3precursor bears no energy barrier, and release a large energy. As a result, it will be much more valuable to regard the oligomerization of Al(OH)3as the prototype reaction for the evolution of Al2O3aerogels. In the present work, all species were fully optimized at B3LYP/6-311++G**basis set level followed by frequency calculations to obtain the zero-point energies. Single-point energy calculations using the CPCM solvation model were performed at the same basis set level of theory to model the liquid environment, and the SPE total free energies were corrected with the zero-point energies in gas phase.
     Under neutral conditions,1-6water molecules were placed explicitly around Al(OH)3in order to ascertain its coordination modes and existing forms. Along with the increase of water molecules, the free energy reductions decrease remarkably, so Al atoms are mostly tetra-coordinated and penta-coordinated. Similarly, the CPCM SPE calculations were also performed with G09package at M06-2X/6-311++G(d,p) level to testify the reliability of the B3LYP method, and the The M06-2X CPCM energies were scaled with thermal corrections to Gibbs free energies in gas phase. The SPE calculations suggest that the B3LYP results are better than the M06-2X ones. In alkaline solutions, the complexation of OH-and Al(OH)3to form [Al(OH)4]-decreases the free energy significantly by179.7kJ/mol. The hydrogen-transfer barrier of [Al(OH)4]-is large, suggesting that the monomer does not exist in the form of [AlO(OH)2]-.
     The dimerization of Al(OH)3in weak and strong alkaline solutions was also investigated, and the computational results show that Al(OH)3is apt to condensed into more soluble polyhydroxy compounds. The neutral dimerization of Al(OH)3and the shift of bridging hydroxyl hydrogen are energetically favorable. But the most stable geometry is an Al-O four-membered ring structure linked by two bridging hydroxyls, decreasing the free energy by-233.3kJ/mol, where the hydrogen atoms are too far to dehydrate via hydrogen transfers.
     The trimerization of the most stable dimer and Al(OH)3in neutral solutions is very intricate. Here the dehydration processes of3trimers are investigated. The theoretical model shows that the first step, viz. the formation of Al-O tetraatomic rings is all easy to take place, but the proceses leading to cage-like structures bears much higher barrers; further dehydration to the second bridging hydroxyl hydrogen is also energetically unfavorable. In a word, Al(OH)3is inclined to form tetra-coordinated oligomers spontaneously, and then develops into three-dimensional cage-like structures connected together with Al-O tetraatomic rings.
     (4) DFT investigation on the decarboxylation of pyrrole-2-carboxylic acid
     Decarboxylation is normally a dissociative process, commonly catalyzed by proton or enzymes. Structural optimization was performed at B3LYP/6-311++G**basis set level, followed by single point energy calculation with the CPCM solvation model. Then the CPCM energies were corrected with the zero-point energes in gas phase.
     The direct decarboxylation and decarboxylation aided with water were investigated to consider the functions of proton and water. Without any catalysts, the carboxyl hydrogen of pyrrole-2-carboxylic acid shifts to the α-carbon to expel CO2. With the aid of water, the carboxyl group was hydrated by H2O, and then hydrogen transfer occurs to form pyrrole and carbonic acid. The potential energy of this step decreases slightly to49.74kcal/mol, but the hydration of the carboxyl group also bears a relatively high potential energy of47.48kcal/mol. The calculations with GaussianO3package show that, with the assistance of H3O, the decarboxylation mechanism of pyrrole-2-carboxylic acid involves the addition of water to the carboxyl group, and the C-C bond cleavage leading to the protonated carbonic acid. The potential energy of the C-C rupture decreases significantly to9.77kcal/mol, and the total energy barrier decreases to33.99kcal/mol.
     Because of the competition of the alkoxide hydrolyses and oligomerizations, none of them can be isolated experimentally, this dissertation will carry out a systematical comparative study on the hydrolysis and oligomerization of silicon and aluminum alkoxides as well as their microstructure evolution. The research highlights and innovations are listed as follows:
     1) By using quantum chemistry method, the hydrolysis and oligomerization mechanism were investigated systematically to ascertain the chain, reticular, cage-like or ring structures of oligomers, which will help us to understand the evolution rules of alkoxides, and the liquid environment was modeled with the CPCM solvation model;
     2) This dissertation probed into the hydrolysis and condensation reactions of silicon and aluminum alkoxides as well as the nucleation mechanisms to discuss the formation of dimers, trimers to ascertain the evolution rules of larger orderly congeries;
     3) For the hydrolysis-oligomerization mechanism of silicon alkoxides, the influence of different alkoxy groups and solution conditions (neutral, alkaline or acidic) on the hydrolysis rates as well as the hydrolysis-condensation mechanisms of precursors was clarified.
     (4) For the aluminum alkoxide systems, although the hydrolyses are energetically very favorable, the precursors are apt to condense rapidly via non-barrier processes; for the silicon alkoxide systems, the hydrolyses under acidic and alkaline conditions are much easier, but hydrolysis rates are all faster than the oligomeration. An additional coordinated water molecule can favor and accelerate the hydrolyses of aluminum alkoxides, but does not help to the Si(OCH3)4hydrolysis. In neutral solutions, Al(OH)3is inclined to form tetra-coordinated oligomers, then develops into three-dimensional structures connected together with Al-O tetra-atomic rings, but is apt to condense into more soluble polyhydroxy compounds under alkaline conditions.
     5) Using the advantages of quantum chemistry, this dissertation clarified the formation mechanisms of silicon and aluminum aerogels at the atomic and molecular level, unpuzzled the hydrolysis-condensation reactions and the sol-gel behavious of alkoxides, and provided necessary theoretical guidance for the preparation of aerogels with unique properties.
引文
[1]Platt, J.R. Science,1966,154,745.
    [2]蒋华良,沈建华,罗小民,陈凯先.计算化学与有机化学和生命科学.杜灿屏,刘鲁生,张恒主编,21世纪有机化学发展战略.北京:化学工业出版社,2002,233-247.
    [3]陈德展主编.化之道(化学卷).济南:山东科学技术出版社,2007,33-55.
    [4]Harich, S. A.; Wang, C. C.; Yang, X. M.; Chao, S. D.; Skodje, R. T. Nature 2002, 419,281.
    [5]Alexander, M. H., Capecchi, G; Werner, N. J. Science 2003,296,715.
    [6]陈志达.量子化学的第二次革命——1998年诺贝尔化学家简介,大学化学,1999,14(3),3-6.
    [7]刘中立,21世纪的物理有机化学.杜灿屏,刘鲁生,张恒主编,21世纪有机化学发展战略.北京:化学工业出版社,2002,221-225.
    [8]Zhang, M. X.; Eaton, P. E.; Gilardi, R. Angew. Chem. Int. Ed.2000,39,401.
    [9]Service, R. F. Science 2000,287,564.
    [10]Bender, C. F.; Schaefer Ⅲ, H. F. J. Am. Chem. Soc.1970,92,4984.
    [11]苏成勇.浅谈结构化学的发展及其与配位超分子化学的关系.国家自然科学基金委组编,梁文平、杨俊林、陈拥军、李灿主编,新世纪的物理化学——学科前沿与展望.北京:科学出版社,2004,21-30.
    [12]宋心琦.化学的明天.南宁:广西教育出版社,1999,50-57.
    [13]程学礼,赵燕云,Gaussian03程序结构优化在教学中的应用.泰山学院学报,2010,32(6),104-106.
    [14]Paniagua, J. C.; Mota, F.; Sole, A.; Vilaseca, E. J. Chem. Ediu.2008,85 (9), 1288.
    [15]Hinchliffe, A. Computational Quantum Chemistry. New York:Wiley,1988, 1-112.
    [16]Matsen, F. A. J. Am. Chem. Soc.1957,79 (17),4820.
    [17]Lowdin, P. J. Phys. Chem.,1957,61 (1),55-68.
    [18]Hameka, H. F. J. Am. Chem. Soc.1966,88 (20),4767.
    [19]王箴.量子化学简介.化学世界,1980,(5),156.
    [20]龙威.理论研究中的量子化学计算方法.宁夏师范学院学报(自然科学),2010,31(3),43-47.
    [21]盛六四,邱文元,杜奇石.量子化学新进展-Computational microscope简介.化学通报,1996,(7),18-19.
    [22]胡红智,马思渝.计算化学实验.北京:北京师范大学出版社,2008,1.
    [23]邵学广,蔡文生.化学信息学(第二版).北京:科学出版社,2005,1-3.
    [24]缪强.化学信息学导论(第一版).北京:高等教育出版社,2001,1-7.
    [25]Li, S.; Ma, J.; Jiang, Y. J. Chem. Phys.2003,118,5730.
    [26]杨频,张士国.分子力学的基本原理,大学化学,1990,5(4),9-12.
    [27]王鸿飞,杨俊林.第5章物理化学进展.张礼和主编,化学学科进展.北京:化学工业出版社,2005,201-227.
    [28]王鸿飞,邵久书.面向新世纪的物理化学学科前沿与发展趋势与分子反应动力学研究前沿.国家自然科学基金委员会化学科学部组编.新世纪的物理化学—学科前沿与展望.北京:科学出版社,2004,211-231
    [29]吴凯,杨俊林,高飞雪.物理化学研究进展.中国科学技术协会主编,中国化工学会编著.2006-2007化学学科反正报告.北京:中国科学技术出版社,2007,91-92.
    [30]袁履冰,姜文凤.物理有机化学导论(第二版)[M],大连理工大学出版社,
    2004,3-6
    [31]Xiao, C.; Xu, X.; Liu, S.; Wang, T.; Dong, W., Yang, T.; Sun, Z, Dai, D.; Xu, X.; Zhang, D. H.; Yang, X. Science 2011,333,440.
    [32]Li, D.; Huang, X.; Han, K.; Zhan, C.-G. J. Am. Chem. Soc.2011,133 (19),7416.
    [33]Yuan, K.; Dixon, R. N.; Yang, X. Acc. Chem. Res.2011,44 (5),369-378.
    [34]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计——原理、方法及应用,上海:上海科学技术出版社,2000,22-71.
    [35]Newton, M. D.; Lathan, W. A.; Hehre, W. J.; Pople, J. A. J. Chem. Phys.1969,51, 3927.
    [36]"Publisher's note:Sir John A. Pople,1925-2004". J. Comput. Chem.2004,25 (9), fmv-vii.
    [37]Available online from http://www.bannedbygaussian.org/.
    [38]Giles, J. Nature 2004,429 (6989),231.
    [39]龚赛.ABO3型掺杂材料的电子结构与光学特性研究.徐州:中国矿业大学硕士学位论文,2010,13-18.
    [40]Thomas, L. H. "The calculation of atomic fields". Proc. Cambridge Phil. Soc. 1927,23 (5),545.
    [41]Fermi, E. "Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo". Rend. Accad. Naz. Lincei 1927,6,602.
    [42]Dewar, M. J. S. J. Am. Chem. Soc.,1961,53 (1),253.
    [43]Salahub, D.; Zerner, M. C. Chapter 1 Quantum Chemistry Throughout the Periodic Table, In The Challenge of d and f Electrons. ACS Symposium Series, American Chemical Society:Washington, DC.1989,394,1-16.
    [44]Pitzer, R. M. J. Chem. Theory Comput.2011,7,2346-2347.
    [45]Li, W.-K.; Blinder, S. M. J. Chem. Educ.2011,88 (1),71-73.
    [46]Hohenberg, P.; Kohn, W. Phys. Rev.1964,136 (3B), B864-B871.
    [47]Kohn, W.; Sham, L. J.1965,140 (4A), A1133-A1138.
    [48]Parr, R. G; Yang, W. Density-Functional Theory of Atoms and Molecules. Oxford:Oxford University,1989, vi.
    [49]Head-Gordon, M. J. Phys. Chem.1996,100,13213-13225.
    [50]莫依,黎乐民.密度泛函计算条件对结果精度的影响.高等学校化学学报,2001,22(1),81-85.
    [51]徐光宪.21世纪理论化学的挑战和机遇.结构化学,2002,21(5):463-469.
    [52]刘文剑.相对论量子化学新进展.化学进展,2007,19(6):833-851.39
    [53]张松林.过渡金属催化的偶合反应机理的量子化学研究合肥:中国科学技术大学博士学位论文,2010,13-17
    [54]胡章勇.过渡金属铜、金和银催化炔类的密度泛函研究.重庆:西南大学硕士学位论文,2010,15-24.
    [55]常进.量子化学方法在计算化合物物理、化学、生物学性质中的应用.兰州:兰州大学硕士学位论文,2009,1-26.
    [56]李玉芳.氮杂芳香类高能化合物的密度泛函理论研究.南京:南京理工大学硕士学位论文,2009,10-16.
    [57]王连宾.小分子电子激发态的量子化学研究.开封:河南大学硕士学位论文,2007,7-12.
    [58]蒋宁.密度泛函理论研究金属配合物催化氧还原及酞菁输运性质.北京:北京工业大学硕士学位论文,2010,15-23.
    [59]任慧.量子化学理论在现代化学中应用的研究.北京:北京化工大学博士学位论文,2008,1-39.
    [60]Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev.2003,103,1793-1873.
    [61]Pople, J. A.; Adamson, R. D.; Gill, P. M W. J. Phys. Chem.1996,100, 6348-6353
    [62]Srebro, M.; Govind, N.; de Jong, W. A.; Autschbach, J.Jf. Phys. Chem. A 2011, 115(40),10930-10949.
    [63]Wang, T.; Liang, Y.; Yu, Z.-X. J. Am. Chem. Soc.2011,133,13762-13763.
    [64]Wang, T.; Liang, Y.; Yu, Z.-X. J. Am. Chem. Soc.2011,133,9343-9353.
    [65]Gottle, A. J.; Dixon, I. M; Alary, F.; Heully, J.-L.; Boggio-Pasqua, M. J. Am. Chem. Soc.2011,133,9172-9174.
    [66]Garcia-Melchor, M; Fuentes, B.; Lledos, A.; Casares, J. A.; Ujaque, G.; Espinet, P. J. Am. Chem. Soc.2011,133,13519-13526.
    [67]Yao, Z.-K.; Yu, Z.-X. J. Am. Chem. Soc.2011,133,10864-10877.
    [68]王莹.溶剂效应的量子化学研究.成都:四川大学硕士学位论文,2006,1-33
    [69]蒋华良,陈凯先,嵇汝运.溶剂效应量子化学研究进展.化学通报,1995,(4),1-6.
    [70]黄蕾.溶剂效应对有机反应影响的分析科技信息,2010,(13):158-159.
    [71]Karelson, M.; Lobanov, V. S.; Katritzky, A. R. Chem. Rev.1996,96,1027-1044.
    [72]Sinanoglu, O.; Abdulnar, S. "Effect of Water and Other Solvents on the Structure of Biopolymers". Fed. Proc. Suppl. (No 15) 1965,24 (Pt 3),12.
    [73]董博,陈飞武,韦美菊.溶剂效应计算中两种积分方法的比较研究.物理化学学报,2010,26(4):1043-1050.
    [74]涂喆研,李象远,傅克祥,何福城.溶剂-导体界面电子转移溶剂重组能的球-界面模型.物理化学学报,2009,25(1):1-5.
    [75]Shi, F.; Liu, J. X.; Song K.; Wang, Z. Y. J. Non-Cryst. Solids,2010,356 (43), 2241-2246.
    [76]Cheng, X.; Liu, Y.; Chen, D. J. Phys. Chent. A 2011,115,4719-4728.
    [77]Harry Teicher:Colloidal silica aquasols. Monsanto,1968:CA Patent 799440.
    [1]X.Cheng, Y Liu,D.Chen,J.Phys.Chem.A 2011,115,4719.
    [2]Kistler,S.S.Nature 1931,127,741.
    [3]Pekala,R.W.J.Mater.Sci.1989,24,3221
    [4]Pierre,A.C.; Pajonk,G. M.Chem.Rev 2002,102,4243.
    [5]Henry,M.; Jolivet,J.P.; Livage,J.Struct. Bond 1992,77,153.
    [6]Bruschi,L.; Mistura,G.; Lifeng Liu,L.;Lee,W.;Ulrich Gosele,U.;Coasne,B. Langmuuir 2010,26,11894.
    [7]Zhang,Z.;Pinnavaia,J.P.Langmuir 2010,26,10063.
    [8]Bi,S.;Wang,C.; Cao,Q.; Zhang,C.Coord.Chem.Rev.2004,248,441.
    [9]Swaddle,T.W.;Rosenqvist,J.;Yu,P.;Bylaska,E.,Phillips,B.L.;Casey,W.H. Science 2005,308,1450.
    [10]Gianotto,A.K.;Rawlinson,J.W.;Cossel,K.C.; Olson,J..E.;Appelhans,A.D.; Groenewold,G. S. J. Am.Chem.Soc.2004,26,8275.
    [11]Sipos,P J.Mol.Liq.2009,146,1.
    [12]Hemmati,M.; Wilson,M.;Madden,P.A.J.Phys.Chem.B 1999,103,4023.
    [13]Lubin,M.I.; Bylaska,E.J.;Weare,J.H.Chem.Phys.Lett.2000,322,447.
    [14]Hung,P.K.; Vinh,L.T.;Nghiep,D.M,:Nguyen,P N.J.Phys.Condens.Mater. 2006, 18, 9309.
    [15]Ranea, V A.; Carmichael, I.; Schneider, W. F. J. Phys. Chem. C 2009, 113, 2149.
    [16]Tobias Johnson, J. R.; Panas, I. Phys. Chem. Chem. Phys. 2001, 3, 5482.
    [17]Xiao, F.; Zhang, B.; Lee, C. J Environ. Sci. 2008, 20, 907.
    [18]Tossell, J. A. J. Magi. Reson. 1998, 135, 203.
    [ 19]Saukkoriipi, J.; Laasonen, K. J Chem. Theory Comput. 2010, 6, 993.
    [20]Wander, M. C. F.; Rustad, J. R.; Casey, W. H. J. Phys. Chem. A 2010, 114, 1917.
    [21 ]Saukkoriipi, J.; Laasonen, K. J. Phys. Chem. A 2008, 112, 10873.
    [22]Liu, Y; Lin, H.; Mou, C.; Cheng, B.; Cheng, C. Stud. Sup f Sci. Catal. 2003, 146, 311.
    [23]Kurihara, L. K.; Suib, S. L. Chem. Mater. 1993, 5, 609-613.
    [24]Liu, Y.; Lin, H.; Mou, C. J. Chin. Chem. Soc. 2005, 52, 717.
    [25]Wu, J.; Li, X.; Du, W.; Dong, C.; Li, L-1. Mater. Chem. 2007, 17, 2233.
    [26]Qian, K.; Wan, J.; Liu, F.; Girault, H. H.; Liu, B.; Yu, C. ASC Nano 2009, 3,3656
    [27]Cheng, X.; Zhao, Y; Li, L.; Li, Z. Chin. J. Strut. Chem. 2010, 29, 833.
    [28]Hanauer, H.; Puchta, R.; Clark, T.; van Eldik, R. Inotg. Chem. 2007, 46, 1112.
    [29]Trinh, T. T.; Jansen, A. P. J.; van Santen, R. A. ,I. Phys. Chem. B 2006, 110, 23099.
    [30]Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V G; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Oritz, J. V; Stefanov, B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, revision D.01, Gaussian, Inc.: Wallingford CT, 2004.
    [31]Gonzalez, C.; Schlegel, H. B-1 Chem. Phys. 1990, 91, 5523.
    [32]Gonzalez, C.; Schlegel, H. B. J Chem. Phys. 1989, 90, 2154.
    [33]Cossi, M.; Scalmam, G.; Rega, N.; Barone V. J. Comp. Chem. 2003, 24, 669.
    [34]Ho, J.; Coote, M. L. Theor. Chem. Acc. 2010, 125, 3.
    [35]Fu, Q. -S.; Song, B. -A. hat. J. Quantum Chem. 2008, 108, 1107.
    [36]Filippov, O. A.; Tsupreva, V N.; Epstein, L. M.; Lledos, A.; Shubina, E. S. J. Phys. Chem. A 2008, 112, 8198.
    [37]Catak, S.; D'hooghe, M.; de Kimpe, N.; Waroquier, M.; van Speybroeck, V J. Org. Chem. 2010, 75, 885.
    [38]Smith, M. B. J. Phys. Chem. 1967, 71, 364.
    [39]Thomas, F.; Masion, A.; Bottero, J. Y.; Rouiller, J.; Genevrier, F.; Boudot, D. Environ. Sci. Technol 1991, 25, 1553.
    [40]Bottero, J. Y; Cases, J. M.; Fiessinger, F.; Poirier, J. E. J. Phys. Chem. 1980, 8-1, 2933.
    [41]Wengrovius, J. H.; Garbauskas, M. F.; Williams, E. A.; Going, R. C.; Donahue, P. E.; Smith, J. F. J. Am. ('hem. Soc. 1986, 108, 982.
    [42]Bartlett J. R.; J. Woolfrey, L. Chem. Mater. 1996, 8, 1167.
    [1]X. Cheng, D. Chen and Y. Liu, ChemPhysChem 2012,3, DOI: 10.1002/cphc.201200115.
    [2]R. Maloney and J. Sakamoto, J. Non-Cryst. Solids 2011,357,2059-2062.
    [3]B. Fu, H. Luo, F. Wang, G. Churu, K. T. Chu, J. C. Hanan, C. Sotiriou-Leventis, N. Leventis and H. Lu, J. Non-Cryst. Solids 2011,357,2063-2074.
    [4]P. B. Sarawade, J.-K. Kim, A. Hilonga, D. V. Quang, S. J. Jeon and H. T. Kim, J. Non-Cryst. Solids 2011,357,2156-2162.
    [5]F. Shi, J.-X. Liu, K. Song and Z.-Y. Wang, J. Non-Cryst. Solids 2010,356, 2241-2246.
    [6]G. Wei, Y. Liu, X. Zhang, F. Yu and X. Du, Int. J. Heat Mass Transfer 2011,54, 2355-2366.
    [7]X. Liang, K. S. Barrett, Y.-B. Jiang and A. W. Weimer, ACS Appl. Mater Inter. 2010,2,2248-2253.
    [8]A. C. Pierre and G. M. Pajonk, Chem. Rev.2002,102,4243-4265.
    [9]N. Suzuki, S. Kiba and Y. Yamauchi, Phys. Chem. Chem. Phys.2011,13, 4957-4962.
    [10]H. Murata, H. Ishitani and M. Iwamoto, Phys. Chem. Chem. Phys.2010,12, 14452-14455.
    [II]H. E. Bergna, In The Colloid Chemistry of Silica, Chapter 1; Advances in Chemistry; American Chemical Society:Washington, DC,1994.
    [12]Y.-C. Lin, M.-R. Liang, Y.-C. Lin, and C.-T. Chen, Chem. Eur:J.2011,17,13059-13067.
    [13]O. Michel, S. Konig, K. W. Tornroos, C. Maichle-Mossmer, R. Anwander, Chem. Enr. J.2011,17,11857-11867.
    [14]G. A. Tribello, B. Slater, M. A. Zwijnenburg and R. G Bell, Phys. Chem. Chem. Phys. 2010, 12, 8597-8606.
    [ 15]X. Du, Junhui He, Chem. Eur J. 2011, 17, 8165-8174.
    [16]R. Al-Oweini and H. El-Rassy, Appl. Surf. Sci. 2010, 257, 276-281.
    [17]F. He, H. Zhao, X. Qu, C. Zhang and W. Qiu, J Mater Process. Tech. 2009, 209, 1621-1626.
    [18]T. W. Zerda, G Hoang, J. Non-Crystal. Solids 1989, 109, 9-17.
    [ 19]R. Aelion, A. Loebel and F. Eirich, J. Am. Cheni. Soc. 1950, 72, 5705-5712.
    [20]M. B. Salon and M. N. Belgacem, Colloids Surf. A 2010, 366, 147-154.
    [21]K. M. Delak, T. C. Farrar, N. Sahai, J Non-Crystal. Solids 2005, 351, 2244-2250.
    [22]N. Goudarzi, M. H. Fatemi and A. Samadi-Maybodi, Spectrosc. I ett. 2009,42, 186-193.
    [23]S. Cadars, D. H. Brouwer and B. F. Chmelka, Phys. Chem. Chem. Phys. 2009, 11, 1825-1837.
    [24]W. Lutz, Dirk Taschner, R. Kurzhals, D. Heidemann and C Hubert, Z. Anorg. Allg. Chem. 2009, 635, 2191-2196.
    [25]S. de Monredon-Senani, C. Bonhomme, F. Ribot and F. Babonneau, J. Sol-Gel Sci. Technol 2009, 50, 152-157.
    [26]A. Depla, E. Verheyen, A. Veyfeyken, M. van Houteghem, K. Houthoofd, V. V. Speybroeck, M. Waroduier, C. E. A. Kirschhock and J. A. Martens, J. Phys. Cheni. C 2011, 115, 11077-11088.
    [27]C.-H. Wu, J.-S. Jeng, J.-L. Chia, S. Ding, J. Colloid Inteiface Sci. 2011, 353, 124-130.
    [28]M. B. Salon and M. N. Belgacem, Phosphorus Sulfur 2011, 186, 240-254.
    [29]D. K. Murray, J Colloid Interface Sci. 2010, 352, 163-170.
    [30]U. L. Stangar, A. Sassi, A. Venzo, A. Zattin, B. Japelj, B. Orel and S. Gross, J. Sol-Gel Sci. Jechnol. 2009, -l9, 329-335.
    [31]A. Aerts, M. Haouas, T. P. Caremans, L. R. A. Follens, T. S. van Erp, F. Taulelle, J. Vermant, J. A. Martens and C. E. A. Kirschhock, Chem. Eur. J. 2010, 16, 2764-2774.
    [32]X. Xue,Am. Mineral.2009,94,395-398.
    [33]M. J. Mora-Fonz, C. R. A. Catlow and D. W. Lewis, Angew. Chem. Int. Ed.2005, 44,3082-3086.
    [34]T. T. Trinh, A. P. J. Jansen and R. A. van Santen, J. Phys. Chem. B 2006,110, 23099-23106.
    [35]T. T. Trinh, A. P. J. Jansen, R. A. van Santen and E. J. Meijer, J. Phys. Chem. C 2009,113,2647-2652.
    [36]T. T. Trinh, A. P. J. Jansen, R. A. van Santen, J. VandeVondele and E. J. Meijer, ChemPhysChem 2009,10,1775-1782.
    [37]T. T. Trinh, A. P. J. Jansen, R. A. van Santen and E. J. Meijer, Phys. Chem. Chem. Phys.2009,11,5092-5099.
    [38]X.-Q. Zhang, T. T. Trinh, R. A. van Santen and A. P. J. Jansen, J. Phys. Chem. C 2011,115,9561-9567.
    [39]X.-Q. Zhang, T. T. Trinh, R. A. van Santen and A. P. J. Jansen, J. Am. Chem. Soc. 2011,133,6613-6625.
    [40]M. Henry, J. P. Jolivet, J. Livage, Struct. Bond 1992,77,153-206.
    [41]M. Jorge, S. M. Auerbach and P. A. Monson,J. Am. Chem. Soc.2005,127, 14388-14400.
    [42]S. A. Pelster, W. Schrader, F. Schuth, J. Am. Chem. Soc.2006,128,4310-4317. [43] A. Depla, D. Lesthaeghe, T. S. van Erp, A. Aerts, K. Houthoofd, F. Fan, C. Li, V V. Speybroeck, M. Waroquier, C. E. A. Kirschhock and J. A. Martens, J. Phys. Chem. C2011,115,3562-3571.
    [44]Z.-A. Qiao, L. Zhang, M. Guo, Y. Liu and Q. Huo, Chem. Mater.2009,21, 3823-3829.
    [45]C. Schumacher, J. Gonzalez, P. A. Wright and N. A. Seaton, J. Phys. Chem. B 2006,110,319-333.
    [46]D. Argyris, D. R. Cole and A. Striolo, ACS Nemo 2010,4,2035-2042.
    [47]A. Malani, S. M. Auerbach and P. A. Monson, J. Phys. Chem. Lett.2010,1, 3219-3224.
    [48]R. Cabriolu, M. G. Del Popolo and P. Ballone, Phys. Chem. Chem. Phys.2009,11, 10820-10823.
    [49]V. I. Artyukhov and L. A. Chernozatonskii, J. Phys. Chem. C 2010,114, 9678-9684.
    [50]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, revision D.01, Gaussian, Inc.:Wallingford CT,2004.
    [51]A. J. Adamczyk and L. J. Broadbelt, J. Phys. Chem. A 2011,115,8969-8982.
    [52]V. A. Du, G. N. Stipicic, U. Schubert, Em:J. Inorg. Chem.2011,2011, 3365-3373.
    [53]V. Chashchikhin, E. Rykova and A. Bagaturyants, Phys. Chem. Chem. Phys.2011, 13,1440-1447.
    [54]X. Cheng, J. Liu, D. Chen, J. Phys. Chem. A 2011,115,4719-4728.
    [55]H. Hou and B. Wang, J. Phys. Chem. A 2005,109,451-460.
    [56]M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Comp. Chem.2003,24,669-681.
    [57]J. Ho, M. L. Coote, Theor. Chem. Ace.2010,725,3-21.
    [58]Y. Zhao, D. G. Truhlar, Theor. Chem. Account 2008,120,215-241.
    [59]E. G. Hohenstein, S. T. Chill, C. D. Sherrill, J. Chem. Theory Comput.2008,4, 1996-2000.
    [60]T. L. Guasco, M. A. Johnson, A. B. McCoy, J. Phys. Chem. A 2011,115, 5847-5858.
    [61]M. Kaledin, A. L. Kaledin, J. M. Bowman, J. Ding, K. D. Jordan, J. Phys. Chem. A 2009,113,7671-7677.
    [62]L. R. McCunn, J. R. Roscioli, M. A. Johnson, A. B. McCoy, J. Phys. Chem. B 2008,112,321-327.
    [63]J. E. Gomez, J. E. Sandoval, Anal. Chem.2010,82,7444-7451.
    [1]F. Shi, J.-X. Liu, K. Song and Z.-Y. Wang, J. Non-Cryst. Solids,2010,356, 2241-2246.
    [2]X. Cheng, Y. Liu, D. Chen,J. Phys. Chem. A 2011,115,4719-4728.
    [3]A. C. Pierre and G. M. Pajonk, Chem. Rev.2002,102,4243-4266.
    [4]R. Konig, G. Scholz, M. Veiczi, C. Jager, S. I. Troyanov, E. Kemnitz, Dalton Trans.2011,40,8701-8710.
    [5]J. Kim, H. Im, J.-M. Kim, J. Kim, J. Mater. Sci.2012,47,1418-1426.
    [6]Z. Shi, R. Fu, S. Agathopoulos, X. Gu, W. Zhao, Mater. Design 2012,34, 820-824.
    [7]L. Jiang, Y.-Z. Cui, Y.-J. Shi, Y.-D. Ding, F.-L. Yuan, Trans. NonferrousMet. Soc. China 2011,21,2181-2185.
    [8]G. R. Williams, S. J. Moorhouse, T. J. Prior, A. M. Fogg, N. H. Rees, D. O'Hare, Dalton Trans.2011,40,6012-6022.
    [9]Y. B. Gu, Q. Di, M. H. Lin, K. Tan, Compnt. Theor. Chem.2012,981,86-89.
    [10]Y. Li, Y. Zhang, F. Chen, C. Yang, Y. Zhang, Crysl. Growth Des.2011,11, 1208-1214.
    [11]Cheng, X.; Zhao, Y; Li, L., Li, Z. Chin. J. Struct. Chem.2010,29,833-838.
    [12]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, revision D.01, Gaussian, Inc.:Wallingford CT,2004.
    [13]H. Hou, B. Wang, J. Phys. Chem. A 2005,109,451-460.
    [14]C. Gonzalez, H. B. Schlegel, J. Phys. Chem.1990,94,5523-5527.
    [15]C.Gonzalez, H. B.Schlegel,J. Chem. Phys.1989,90,2154-2159.
    [16]M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Comp. Chem.2003,24,669-681.
    [17]J. Ho, M. L. Coote, Theor. Chem. Ace.2010,125,3-21.
    [18]S. C. Wang, P. A. Beal, D. J. Tantillo, J. Comput. Chem.2010,31,721.
    [19]
    [1]X. Cheng, J. Wang, K. Tang, Y. Liu, C. Liu, Chem. Phys. Lett.496 (2010) 36.
    [2]B.R. Brown, Q. Rev. Chem. Soc.5(1951) 131.
    [3]N.K. Thalji, WE. Crowe, G.L. Waldrop, J. Org. Chem.74 (2009) 144.
    [4]B.R. Van Ausdall, J.L. Glass, K.M. Wiggins, A.M. Aarif, J. Louie, J. Org. Chem. 74(2009)7935.
    [5]J. Fu, RE. Savage, X. Lu, Ind. Eng. Chem. Res.48 (2009) 10467.
    [6]C.A. Lewis Jr., R. Wolfenden, Biochem.48 (2009) 8738.
    [7]Z. Zheng, H. Alper, Org. Lett.11 (2009) 3278.
    [8]A. Kolarovic, Z. Faberova, J. Org. Chem.74 (2009) 7199.
    [9]Y.J. Song, P.C. Zhao, P. Zhang, Z.B. Han, Z. Anorg. Allg. Chem.635 (2009) 1454.
    [10]A. Liu, H. Zhang, Biochem.45 (2006) 10407.
    [11]C.Y. Wang, I. Piel, F. Glorius, J. Am. Chem. Soc.131 (2009) 4194.
    [12]L. Yin, M. Kanai, M. Shibasaki, J. Am. Chem. Soc.131 (2009) 9610.
    [13]H. Xi, Z. Gao, J. Wang, Ind. Eng. Chem. Res.48 (2009) 10425.
    [14]E.W. Moomaw, A. Angerhofer, P. Moussatche, A. Ozarowski, I. Garcia -Rubio, N.G. Richards, J. Biochem.48 (2009) 6116.
    [15]M. Bruning, M. Berheide, D. Meyer, R. Golbik, H. Bartunik, A. Liese, K. Tittmann, Biochem.48 (2009) 3258.
    [16]B.M. Wood, K.K. Chan, T.L. Amyes, J.P. Richard, J.A. Gerlt, Biochem.48 (2009) 5510.
    [17]K.K. Chan, B.M. Wood, A.A. Fedorov, E.V. Fedorov, H.J. Imker, T.L. Amyes, J.P. Richard, S.C. Almo, J.A. Gerlt, Biochem.48 (2009) 5518.
    [18]Z. Weng, X.Y. Ni, D. Yang, J. Wang, W.K. Chen, J. Photochem. Photobiol. A: Chem.201 (2009) 151.
    [19]M.D. Spantulescu, M.A. Boudreau, J.C. Vederas, Org. Lett.11 (2009) 645.
    [20]Y. Yoshimi, M. Masuda, T. Mizunashi, K. Nishikawa, K. Maeda, N. Koshida, T. Itou, T. Morita, M. Hatanaka, Org. Lett.11 (2009) 4652.
    [21]X.C. Huang, F. Wang, Y. Liang, J.H. Li, Org. Lett.11 (2009) 1139.
    [22]H.S. Kim, H.S. Lee, S.H. Kim, J. N. Kim, Tetrahedron Lett.50 (2009) 3154.
    [23]W.S. Zhang, C.X. Kuang, Q. Yang, Chin. Chem. Lett.20 (2009) 48.
    [24]Z.B. Zhao, M. Wang, W.B. Dong, P. Li, Z. Yu, L.C. Sun, J. Organomet. Chem. 694 (2009) 2309.
    [25]M. Nayak, S. Batra, Eur. J. Org. Chem. (2009) 3505.
    [26]R. Li, D. Feng, S. Feng, Chem. Phys. Lett.472 (2009) 248.
    [27]K. Chuchev, J.J. BelBruno, J. Mol. Struct. (THEOCHEM) 807 (2007) 1.
    [28]J. Li, X B. Brill, J. Phys. Chem. A 106 (2002) 9491.
    [29]D. Chen, J. Wang, H. Zhang, S. Mi, G. Zhang, Q. Wang, Q. Zeng, J. Mol. Struct. (THEOCHEM) 897 (2009) 139.
    [30]NL. Tran, M.E. Colvin, S. Gronert, W. Wu, Bioorg. Chem.31 (2003) 271.
    [31]L.M. Phillips, J.K. Lee, J. Am. Chem. Soc.123 (2001) 12067.
    [32]D.L. Shem, S. Gronert, W. Wu, Bioorg. Chem.32 (2004) 76.
    [33]D. Nori-Shargh, A. Shiroudi, A.R. Oliaey, F. Deyhimi, J. Mol. Struct. (THEOCHEM) 824 (2007) 1.
    [34]C.L. Stanton, I-F.W. Kuo, C.J. Mundy, T. Laino, K.N. Houk, J. Phys. Chem. B 111 (2007)12573.
    [35]B. Abel, J. Assmann, P. Botschwina, M. Buback, M. Kling, R. Oswald, S. Schmatz, J. Schroeder, T. Witte, J. Phys. Chem. A 107 (2003) 5157.
    [36]Y.Z. Zhou, S. Li, Q.S. Li, S.W. Zhang, J. Mol. Struct. (THEOCHEM) 854 (2008) 40.
    [37]Y. Chiang, E.B. Whipple, J. Am. Chem. Soc.85 (1963) 2763.
    [38]G.E. Dunn, G.K.J. Lee, Can. J. Chem.49 (1971) 1032.
    [39]S. Antonczak, G. Monard, M.F. Ruiz-Lopez, and J.-L. Rivail, J. Am. Chem. Soc. 120(1998)8825.
    [40]S.O.C. Mundle, R. Kluger, J. Am. Chem. Soc.131 (2009) 11674.
    [41]S.O.C.Mundle, G. Lacrampe-Couloume, B.S. Lollar, R. Kluger, J. Am. Chem. Soc.132(2010)2430.
    [42]X. H. Zhang, Z. Y. Geng, Y. C. Wang, Sci. China Chem.54 (2011) 762.
    [43]D. Yang, D. Zhao, L. Mao, L. Wang, R. Wang. J. Org. Chem.76 (2011) 6426.
    [44]B. Han, V. Gopalan, T. C. Ezeji, Appl Microbiol Biotechnol.91 (2011) 565.
    [45]H.-F. Wang, H. Xiao, X.-W. Wang, G. Zhao, Tetrahedron 67 (2011) 5389.
    [46]M.J. Frisch, G.W. Trucks, H.B. Schlegel, GE. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, GA. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, GA. Voth, P. Salvador, J.J. Dannenberg, V.G Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision C.02; Gaussian, Inc., Wallingford, CT,2004.
    [47]A.D Becke, J. Chem. Phys.98 (1993) 5648.
    [48]P.J. Hay, W.R. Wadt, J. Chem. Phys.82 (1985) 270.
    [49]V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995.
    [50]M. Cossi, G. Scalmani, N. Rega, V. Barone. J. Comp. Chem.24 (2003) 669.
    [51]J. Ho, M. L. Coote, Theor Chem Acc 125 (2010) 3.
    [52]M.I. Fernandez, M. Canle, M.V. Garcia, J.A. Santaballa, Chem. Phys. Lett.490 (2010) 159.
    [53]C. Gonzalez, H.B. Schlegel, J. Chem. Phys.94 (1990) 5523.
    [54]C. Gonzalez, H.B. Schlegel, J. Chem. Phys.90 (1989) 2154.
    [55]A.T. Dubis, S.J. Grabowski, D.B. Romanowska, T. Misiaszek, J. Leszczynski, J. Phys. Chem. A 106 (2002) 10613.
    [56]R.W. Gora, S.J. Grabowski, J. Leszczynski, J. Phys. Chem. A 109 (2005) 6397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700