多组分微纳米复合核壳结构磁性功能微球的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以雷达隐身材料为应用目的,制备了针对3.8~18GHz的有效吸收剂。空腔共振损耗、介电或电阻损耗、磁损耗是将电磁波吸收转化为其他形式能耗散的主要机制,现有电磁波吸收材料需要克服密度高、厚度大、吸收少和频带窄的缺点。本文拟通过制备多组分复合吸波剂,获得协同增强作用。制备了纳米级的磁性/导电核壳复合材料,并设计了以空心玻璃微珠为基础的多层核壳结构微米级吸波剂,研究了纳/微米材料的制备工艺与性能,主要包括以下内容:
     采用γ-氨丙基三乙氧基硅烷对空心玻璃微珠表面进行了疏水和氨基化改性,利用供电子氨基与吡咯环中亲电亚氨基的相互作用,在表面富集单体,确保了聚吡咯包覆层的致密性。讨论了溶液体系、引发剂、掺杂剂以及投料比等工艺参数的影响,综合考虑电导率、表面形貌、分散性和热稳定性等因素,选取了吡咯/水/乙醇/5-磺基水杨酸/氯化铁作为聚吡咯化学氧化聚合反应体系,5-磺基水杨酸(SSA)和三价铁离子特殊的络合配位特性能在一定程度上降低反应物与生成物浓度梯度,在反应初期有利于控制反应速率,提高均匀性和致密性。
     在吡咯/水/乙醇/5-磺基水杨酸/氯化高铁体系中得到的聚吡咯为球形颗粒,大小在200-300nm。少量乙醇有利于吡咯单体的分散,并能消耗部分自由基控制反应速率,改善聚吡咯链结构的均匀性,一定乙醇浓度下聚吡咯与溶液体系的浸润效果较好,有利于掺杂离子的进入提高导电性。SSA和Cl协同掺杂时体系的电导率最高,在前期和后期都存在掺杂竞争和掺杂离子的不稳定性,反应时间过长体系中的乙醇阻聚效应和溶液中氧攻击吡咯链会恶化电导率。产品在通常环境下保持很好的导电性和热稳定性,在水环境中掺杂离子有部分脱离而电导率保持性率为34%,在弱酸条件下具有较好的稳定性,在碱性条件下脱掺杂过程明显。
     以硫酸亚铁和氯化铁为前驱体,氨水为沉淀剂,油酸钠为表面活性剂,采用化学共沉淀法制备得到了反尖晶石结构的面心立方体型Fe3O4,纳米粒子的平均粒径在16.82nm。讨论了最佳反应条件,搅拌速率、反应温度、加料顺序在形成纳米级粒子过程中起到关键作用;稀土掺杂能诱导晶胞畸变,使晶格常数增大,提高磁性能,实验得到了优选掺杂量。Fe304饱和磁强53.38emu/g,Fe304@聚吡咯饱和磁强12.88emu/g,电导率10.73S/cm。聚吡咯包覆的Fe304复合材料不单防止了纳米磁性粒子的团聚,更提高了产品磁性与导电性的环境稳定性。
     制备了空心玻璃微珠@铁氧体@聚吡咯三层核壳结构微球。在薄壁的光滑空心玻璃微珠表面沉积了200-600nm粗糙的铁氧体层,包覆300~500nm厚的聚吡咯层后得到紧实致密的表面,表面聚吡咯微粒粒径在50~100nm。醋酸铵与三价铁离子形成[Fe3(μ3_O)(OAc)6(H2O)3]Cl型前驱体,易在空心微珠表面形成反应位点,有利于沉积,醋酸铵既是缓冲剂,又是前驱体的稳定剂,得到的产品包覆均匀性较好、负载量较高。多层复合微球的性能与磁性层的均匀性有很大关系,产品具有超顺磁特性,稀土掺杂使产物的衍射峰和晶间距发生变化,产物饱和磁强为20.61emu/g,电导率16.5S/cm。
     比较了纳米和微米级吸波剂在3.8~18GHz内的电磁波衰减效果。磁性组分增加使吸收峰红移,导电聚吡咯增加使吸收峰蓝移,一定组分配比的空心微珠@磁性铁氧体@聚吡咯材料能够发生协同作用。稀土Er在0.5%掺杂量下就能增加频带宽度降低反射率,<-10dB区域频带宽度达到了8.17GHz,最大衰减值达到了-27.15dB。稀土掺杂增大了自然共振损耗、极化弛豫损耗和畴壁共振的损耗吸收,聚吡咯凭借介质的电子极化和界面极化衰减和吸收电磁波,合理的组分配比对拓宽频带和增大衰减率有利。7.5wt%添加量厚度为2.5mm的环氧树脂基空心玻璃微珠@Fe304(Er0.5%)@聚吡咯<-5dB的频带宽度达到了8.50GHz,<-10dB的频带宽度达到了7.44GHz,最大衰减值为-28.27dB。
The specific aim is to prepare effective absorbing agent for the application in radar absorption used in 3.8-18GHz band. Cavity resonance loss, dielectric or resistance loss, and magnetic loss are the main pathway to convert electromagnetic wave into other energy forms for dissipation. Existent absorbing materials still have disadvantages such as high density, large thickness, low absorption and narrow bandwidth. Therefore in this work, nano-sized core-shell composites with magnetic and conducting component, as well as multi-layer micro-sized spheres basis on hollow glass spheres, were designed and successfully prepared. The synthetic process and properties of both nano and micro spheres were studied and electromagnetic wave absorbing effects were compared. The main contents are listed as follows:
     y-aminopropyltriethoxysilane was used for the hydrophobic modification and amino-functionalization on the hollow glass sphere(HGS) surface, the strong interaction between electrondonating amino-group and electrophilic nitrogen atom in pyrrole chain led to gathering of monomer and well encapsulation of polypyrrole(PPy) layer. Parameters such as solution, initiator, dopant and raw ratio were discussed, comprehensive concerning conductivity, morphology, dispersibility and stablility, H2O/C2H5OH/pyrrole/5-sulfosalicylic acid(SSA)/FeCl3 was selected as the in situ chemical oxidative polymerization system. The specific SSA-FeCl3 chelation-initiate-doping took effect in the beginning of the reaction to decrease the concentration gradient, so that the reaction speed could be controlled and the uniformity and compactness were increased.
     Polymerization in H2O/C2H5OH/pyrrole/SSA/FeCl3 system was studied where the obtained polypyrrole spheres with particle size between 200-300nm. Small amount of ethanol conduced good conductivity for good dispersibility of monomer, control of speed by consumption free radical, meanwhile good wettability between polypyrrole and doping solution. The reaction system was insensitive to temperature while raw ratio could be optimized. Good properties were achieved when SSA and Cl ions conducted cooperative doping while other periods competitive doping and unstable doping led to bad performance, long reaction time would bring deterioration of polymer chain by the inhibition of C2H5OH and attack from oxygen in solution. Products kept good conductivity and thermostability under usual conditions, had a conservation rate of 34% immersing in water, had good stability in acid medium while quickly undoped in alkaline medium.
     Chemical coprecipitation process was conducted using ferric chloride and ferrous sulfate as precursor, ammonia as precipitator, sodium oleate as surfactant. The obtained face centered cubic type inverse spinel Fe3O4 nano particles had average diameter of 16.82nm. The optimum conditions were discussed, stirring speed, temperature and adding sequence played critical roles during the process. Rare earth could lead to lattice distortion, increase lattice constant and achieve good magnetic properties and optimum doping amount was found. Fe3O4 had a saturation magnetization of 53.38emu/g and Fe3O4@PPy of 12.88emu/g with a conductivity of 10.73S/cm. The encapsulation of polypyrrole not only prevented the aggregation but also increased the stability.
     Multilayer core-shell spheres were synthesized with thin smooth hollow glass inner layer, 200-600nm rough magnetic middle layer and 300-500nm compact conducting outer layer with 50-100 polypyrrole grains on surface. Ammonium acetate and ferric iron generated [Fe3(μ3_O)(OAc) (H2O)]C1 and provide reaction site for the deposition, ammonium acetate was the buffer agent for the system and also stabilizer for precursor to obtain uniform and high mass loading products. The uniformity of magnetic layer had large influence on the properties, superparamagnetic products were obtained and the doping of rare earth changed the diffraction peak and lattice distance. The HGS@Fe3O4@PPy had a saturation magnetization of 20.61emu/g and conductivity of 16.5S/cm.
     The reflection loss of electromagnetic wave between 3.8-18GHz frequency were detected, varied nano-sized and micro-sized absorbing agent were compared. The increase of magnetic component would bring red shift while conducting component lead to blue shift, certain ratio of hollow glass sphere, Fe3O4 and polypyrrole could bring synergetic effects. Erbium with a doping addition of 0.5wt had increase absorption till-27.15dB with a bandwidth of 8.17GHz under-10dB. Rare earth doping increased natural resonance loss, polarization relaxation loss, domain wall resonance loss while polypyrrole added electronic polarization and interfacial polarization loss, the rational combination could enhance absorption and broaden bandwidth. HGS@Fe3O4(Er0.5%)@PPy in epoxy resin with an addition of 7.5wt% and thickness of 2.5mm, had bandwidth of 8.50GHz under-5dB and 7.44GHz under-10dB, the largest reflection loss reached-28.78dB.
引文
[1]邵蔚,赵乃勤,师春生等.吸波材料用吸收剂的研究及应用现状[J].兵器材料科学与工程.2003,26(4):65-68
    [2]刘顺华,刘军民,董星龙等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社.2007
    [3]郭瑞萍.国外陆军隐身技术发展动向[J].国外兵器动态.2000,4:1-4
    [4]陶西才.吸波在民用产品上的应用[J].屏蔽技术与屏蔽材料.2003,1:42-44
    [5]孟建华,杨桂琴,严乐美.吸波材料研究进展[J].磁性材料及器件.2004,8:11-14
    [6]徐立勤,曹伟.电磁场与电磁波理论[M].北京:科学出版社.2010
    [7]张健,张文彦,奚正平.隐身吸波材料的研究进展[J].稀有金属材料与工程.2008,37(4):504-508
    [8]陈纪文,黎军.纳米导电和电磁屏蔽涂料特性表征和评价方法[J].广州化工.2011,38(3):12-13
    [9]王建忠,奚正平,汤慧萍等.金属纤维电磁屏蔽材料的研究进展[J].稀有金属材料与工程.2011,4(9):1688-1692
    [10]Teerapot Wessapan, Siramate Srisawatdhisukul, Phadungsak Rattanadecho. The effects of dielectric shield on specific absorption rate and heat transfer in the human body exposed to leakage microwave energy [J]. International Communications in Heat and Mass Transfer.2011,38(2):255-262
    [11]肖本龙,王雷钢,杨黎都.微波暗室吸波材料及其性能测试方法[J].舰船电子工程.2010,30(7):161-165
    [12]科夫涅里斯特等著,蔡德录,,刘承钧译.微波吸收材料[M].北京:科学出版社.1985
    [13]孙光飞,强文江.磁功能材料[M].北京:化学工业出版社.2007
    [14]鹿海军,刘晓丽,刘义,邢丽英.结构吸波泡沫及其夹层结构隐身材料的研究现状[J].材料工程.2011,增刊1:9-15
    [15]沈燕侠,詹茂盛,王凯.一种聚酰亚胺泡沫原位填充蜂窝复合材料[P].中国专利:200710120046.
    [16]李娟,邓京兰,王继辉.聚氯酯泡沫夹层复合材料的制备及其吸波性能研究[J].高科技纤维与应用.2010,35(2):19
    [17]李宝毅,段玉平,刘顺华.基于空心球壳结构的吸波平板的吸波性能研究[J].功能材料.2011,9(42):1731-1734
    [18]Ruxin Che,Chunxia Wang, Yingjuan Ni, Bing Yu.Preparation and microwave absorbing properties of the core-nanoshell composite absorbers with the magnetic fly-ash hollow cenosphere as core[J]. Journal of Environmental Sciences.2011,23(Supplement):S74-S77
    [19]王琦,官建国,刘世权.离子取代与六角铁氧体RAM的结构及微波吸收性能[J].硅酸盐通报.2005,2:66-71
    [20]李筱漾,曹全喜等.M型Ba(CoTi)1.2Fe9.5Mn0.15O19的制备及吸波性能研究[J].压电&声光.2008,30(3):346-349
    [21]王骡.W型钡铁氧体吸波材料的制备及其性能研究[D].国防科学技术大学:材料科学与工程.2005
    [22]倪亚楠.纳米电磁屏蔽及隐身的纳米吸波材料与吸波结构在武器装备中应用[D].南京理工大学:光学工程.2006
    [23]胡礼出.吸波材料的制备与电磁性能的研究[D].广东工业大学:微电子学与固体电 子学.2007
    [24]王海泉.钛化物复合纤维的制备及其在吸波材料中的应用[D].华侨大学:材料学.2004
    [25]李智敏,杜红亮等.碳化硅高温吸收剂的研究现状[J].稀有金属材料与工程.2007,36(增刊):94-99
    [26]崔东辉,朱绪宝.雷达吸波材料发展趋势[J].飞航导弹.2000,11:54-57
    [27]邓雪萍,周瑜芬,熊国宣.导电聚合物与磁性粒子复合吸波材料的研究进展[J].化工新型材料.2007,35(6):5-7
    [28]范从斌,熊国宣.导电席夫碱类吸波材料的研究进展[J].2005,33(2):60-62
    [29]赵东林,高云雷,沈曾民.螺旋形碳纤维结构吸波材料的制备及其吸波性能研究[J].功能材料信息.2011,8(4):17-21
    [30]王招娣,窦开昌等.微螺旋碳纤维手性复合吸波材料的研究[J].炭素技术.2008,1(27):16-20
    [31]施冬梅,邓辉等.微波吸收剂的特性与应用[J].石家庄工.2000,2:18-20
    [32]邓科.高分子化二茂铁吸波材料的分子设计、合成与性能研究[D].四川师范大学:材料学.2007
    [33]唐红梅,袁茂林,邓科,孙永贵,陈洪,郑春宁,林展如.二茂铁配位高分子吸波材料的合成与性能表征[J].化学研究与应用.2010,22(1):8-13
    [34]吕瑞涛,康飞宇等.填充a-Fe碳纳米管的电磁性能研究[J].无机材料学报.2008,1(23): 23-28
    [35]沈志刚等.粉煤灰空心微珠及其应用[M].北京:国防工业出版社.2008
    [36]V. Cecen.Thermophysical Properties of Composites Formed from Ethylene-Vinyl Acetate Copolymer and Silver-Coated Hollow Glass Microspheres[J]. Journal of Applied Polymer Science.2011,122(1):685-697
    [37]熊征,朱锡,张立军.基于钴活化的空心玻璃微珠表面化学镀镍工艺研究[J].材料导报.2011,20:109-112
    [38]Z.G. An, J.J. Zhang.Facile synthesis and characterization of glass/cobalt core/shell composite spheres with tunable shell morphologies[J]. Appl. Surf. Sci.2010,256:1976-1982
    [39]毛倚瑾,于彩霞,葛凯勇,周美玲.粉煤灰空心微珠的改性及其吸波特性[J].清华大学学报(自然科学版).2005,45(12):1672-1675
    [40]Han M G, Ou Y.Deng L J. Microwave absorption properties of double-layer absorbers made of NiCoZn ferrites and hollow ass mierospheres eleetroless plated with FeCoNiB[J]. JournalofMagnetism and MagneticMaterials.2009,321:1125-1129
    [41]Zhenguo An, Shunlong Pan, Jingjie Zhang.Facile Preparation and Electromagnetic Properties of Core-Shell Composite Spheres Composed of Aloe-like Nickel Flowers Assembled on Hollow Glass Spheres[J]. J. Phys. Chem. C.2009,113:2715-2721
    [42]王海燕,张翠欣,于升学,谌岩,张永生.空心微珠表面化学镀Ni-P合金及其吸波性能研究[J].表面技术.2010,39(6):63-65
    [43]陶长元,李紫龙,杜军,刘作华,孙大贵.Fe-Ni-P合金改性空心微珠及吸波性能研究[J].压电与声光.2009,31(4):571-574
    [44]张晏清,张雄.空心微珠铁氧体复合粉体的改性与吸波性能[J].无机材料学报.2009,24(4):732-736
    [45]张元广.过渡金属纳米功能材料的研究[M].安徽:合肥工业大学出版社.2007
    [46]胡永茂.多功能红外波段纳米吸波材料研究[D].云南大学:材料物理与化学.2002
    [47]蒋荣立,刘永超.镝改性铁氧体磁流体的制备与表征[J].四川大学学报.2004,36(1): 32-36
    [49]徐宏.单分散、高饱和磁化强度超顺磁性微球的可控制备与生物医学应用[D].上海交通大学:材料学.2008
    [49]郑子樵,李红英.稀土功能材料[M].北京:化学工业出版社.2003
    [50]蒋荣立,孙康.稀土改性铁氧磁流体的研制意义[J].江苏煤炭.2003,2:43-44
    [51]Oscar Ayala-Valenzuel, Paul C. Fannin, Rebeca Betancourt-Galindoa, Oliverio Rodriguez-Fernandez, Jose Matutes-Aquino. Characterization of different magnetite cobalt nanoparticles in hydrocarbon-based magnetic fluids by means of static and dynamic magnetization measurements[J]. Journal of Magnetism and Magnetic Materials.2007,311: 111-113
    [52]马啸华,牛冬青.稀土改性铁氧体磁流体制备技术的研究[J].商丘师范学院学报.2006,22(5):120-122
    [53]云月厚,刘永林,张伟.化学共沉淀法制备的纳米Nio.5Zno.5CexFe2-xO4铁氧体微波吸收特性研究[J].材料工程.2008,3:58-62
    [54]J. Song, L.X. Wang, N.C. Xu, Q.T. Zhang.Microwave electromagnetic and absorbing properties of Dy3+ doped MnZn ferrites[J]. JOURNAL OF RARE EARTHS.2010,28(3): 451-455
    [55]Yuan Pu, Xia Tao, Xiaofei Zeng,Yuan Le,Jian-Feng Chen. Synthesis of Co-Cu-Zn doped Fe3O4 nanoparticles with tunable morphology and magnetic properties [J] Journal of Magnetism and Magnetic Materials.2010,322:1985-1990
    [56]Fengying Guo, Guijuan Ji, Jijing Xu, Haifeng ZouShucai Gan, Xuechun Xu. Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Bao.9RE0.1Co2Fe16027(RE=La, Nd,Sm)particles[J]. Journal of Magnetism and Magnetic Materials.2012,324:1209-1213
    [57]Y. Shi, X.F. Meng, The current development and the future developmental direction of the conductive coating[J]. J. Chinese Lacquer.2008,27:35-41
    [58]H.P.de Oliveira, C.A.S. Andrade.Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles[J]. J. Colloid Interface Sci.2008,219:441-449
    [59]Z.Y. Huang, P.C. Wang.Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates [J]. Langmuir.1997,13:6480-6484
    [60]M.J. Hana, K.S. Zhao, Y.P. Zhang, Z. Chen, Y. Chu, Dielectric properties of polystyrene-polypyrrole core-shell conducting spheres suspended in aqueous solution[J]. Colloids Surf., A:Physicochem. Eng. Aspects.2007,302:174-180
    [61]B. Paczosa-Bator, J.Migdalski.Conducting polymer films as model biological membranes:electrochemical and ion-exchange properties of poly(pyrrole) films doped with asparagine and glutamine[J]. Electrochimica Acta.2006,51:2173-2181
    [62]M.J. Ariza, T.F. Otero.Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film[J]. Colloids Surf., A:Physicochem. Eng. Aspects. 2005,270:226-231
    [63]P. Chansai, A. Sirivat.Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel[J].Int. J. Pharm.2009,381:25-33
    [64]C. Mangeney, M. Fertani, S. Bousalem, Z.C. Ma, S. Ammar, F. Herbst, P. Beaunier, A. Elaissari, M.M. Chehimi.Magnetic Fe2O3-Polystyrene/PPy Core/Shell Particles: Bioreactivity and Self-Assembly [J]. Langmuir.2007,23:10940-10949
    [65]J. Zhang, S. Wang, Polypyrrole-coated SnO2 hollow spheres and their application for ammonia sensor[J].J. Phys.Chem.C.2009,113:1662-1165
    [66]Y.B. Li, R. Yi.Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles[J].Solid State Sci.2009,11:1319-1324
    [67]P. Xu, X.J. Han.Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites[J]. J.Phys.Chem.B.2008,112:10443-10448
    [68]J. Jiang, L.H. Ai, L.C. Li.Multifunctional Polypyrrole/Strontium Hexaferrite Composite Microspheres:Preparation, Characterization, and Properties [J]. J. Phys. Chem. B.2009,113: 1376-1380
    [69]B. Schulz, I. Orgzall, I. Diez, B. Dietzel, K. Tauer.Template mediated formation of shaped polypyrrole particles[J]. Colloids Surf.,A:Physicochem. Eng. Aspects.2010,354: 368-376
    [70]X.T. Zhang, J. Zhang.Controllable synthesis of conducting polypyrrole nanostructures[J]. J.Phys.Chem.B.2006,110:1158-1165
    [71]W.B. Zhong, S.M. Liu.High-yield synthesis of superhydrophilic polypyrrole nanowire networks[J]. Macromolecules.2006,39:3224-3230
    [72]J.Y. Kim, J.T. Kim.Polypyrrole nanostructures self-assembled in magnetic ionic liquid as a template[J]. Macromolecules.2008,41:2886-2889
    [73]A.B.Slimane, C. Connan, M.J. Vaulay, M.M. Chehimi.Preparation and surface analysis of pigment@polypyrrole composites[J]. Colloids Surf., A:Physicochem. Eng. Aspects. 2009,332:157-163
    [74]高敬伟,姚寅芳,黄梦龙,李光,江建明.十二烷基苯磺酸钠掺杂的聚吡咯吸波性能研究[J].材料导报:研究篇.2010,24(12):9-12
    [75]Cunrui Zhang, QiaolingLi, Jianqiang Li. Synthesis and characterization of polypyrrole/TiO2 composite by in situ polymerization method[J]. Synthetic Metals.2010, 160:1699-1703
    [76]Q.L. Li, C.R. Zhang, J.Q. Li.Photocatalytic and microwave absorbing properties of polypyrrole/Fe-doped TiO2 composite by in situ polymerization method [J]. Journal of Alloys and Compounds.2011,509:1953-1957
    [77]刘春生,刘樟树.纳米技术对未来电子战系统的影响[J].飞航导弹.2002,2:1-6
    [78]L.C. Li, C. Xiang, X.X. Liang, B. Hao. Zno.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole:Preparation and electromagnetic properties.[J] Synthetic Metals.2010,160:28-34
    [79]伊翠云.聚苯胺/纳米钡铁氧体复合吸波材料性能的研究[D].武汉理工大学:生物材料学.2007
    [80]Q.L. Li, C.R. Zhang, J.Q. Li.Synthesis and Microwave Absorption Properties of BaTiO3-polypyrrole Composite[J].CHINESE JOURNAL OF CHEMICAL PHYSICS.2010, 23(5):603-607
    [81]Yoshihiro Egami, Takashi Yamamoto, Kunio Suzuki, Tadashi Yasuhara, Eiji Higuchi, Hiroshi Inoue. Stacked polypyrrole-coated non-woven fabric sheets for absorbing electromagnetic waves with extremely high frequencies[J].J Mater Sci.2012,47:382-390
    [82]Yongbo Li, Gen Chena, Qihou Li, Guanzhou Qiu, Xiao he Liua. Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite[J]. Journal of Alloys and Compounds.2011,509:4104-4107
    [83]Hong-Mei Xiao, Wei-Dong Zhang, Shao-Yun Fu.One-step synthesis, electromagnetic and microwave absorbing properties ofa-FeOOH/polypyrrole nanocomposites[J].Composites Science and Technology.2010,70:909-915
    [84]H.Mao, Y.X. Li, X.C. Liu, W.J. Zhang, C.Wang, S.S. Al-Deyab, M.J. El-Newehy.The application of novel spindle-like polypyrrole hollow nanocapsules containing Pt nanoparticles in electrocatalysis oxidation of nicotinamide adenine dinucleotide (NADH)[J]. Colloid Interf. Sci.2011,56(3):757-762
    [85]H.G. Wang, L.Sun, Y.P. Li, X.L. Fei, M.D. Sun, C.Q. Zhang, Y.X. Li, Q.B. Yang.Layer-by-layer assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent probe for sensitive sensing of Cu2+ ions[J]. Langmuir.2011,27:11609-11615
    [86]J.Z. Wang, K.P. Loh, Y.L. Zhong, M. Lin, J. Ding, Y.L. Foo.Bifunctional FePt Core-Shell and Hollow Spheres:Sonochemical Preparation and Self-Assembly[J]. Chem. Mater.2007,19:2566-2572
    [87]Y.H. Zhu, J.H. Shen, K.F. Zhou, C. Chen, X.L. Yang, C.Z. Li.Multifunctional Magnetic Composite Microspheres with in Situ Growth Au Nanoparticles:A Highly Efficient Catalyst System[J]. J. Phys. Chem. C.2011,115:1614-1619
    [88]M. Zajaca, K. Friend, T. Slezaka, M. Slezaka, N. Spiridisb, D. Wilgocka-Slezakb, J. Korecki.Electronic and magnetic properties of ultra-thin epitaxial magnetite films on MgO(001).[J]. Thin Solid Films.2011,519:5588-5595
    [89]Y. Liu, T. Han, C. Chen, N. Bao, C.M. Yu, H.Y. Gu. A novel platform of hemoglobin on core-shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry [J]. Electrochim. Acta.2011,56:3238-3247
    [90]Z.G. An, J.J. Zhang, S.L. Pan.Low-density core-shell composite hollow microspheres with tunable magnetic properties[J].J. Phys. Chem. Solids.2009,70:1083-1088
    [91]T.T. Luong, T.P. Ha, L.D. Tran, M.H. Do, T.T. Mai, N.H. Pham, H.B.T. Phan, G.H.T.Pham, N.M.T.Q. Hoang, T. Nguyen, P. X. Nguyen.Design of carboxylated Fe3O4/po]y(styrene-co-acrylic acid) ferrofluids with highly efficient magnetic heating effect.[J]Colloids and Surfaces A:Physicochem. Eng. Aspects.2011,384:23-30
    [92]J. Wei, J.H. Liu, S.M. Li.Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres[J].J. Magn. Magn. Mater.2007,312:414-417
    [93]K. Kulbaba, A. Cheng, A. Bartole, S. Greenberg, R. Resendes, N. Coombs, A. Safa-Sefat, J.E. Greedan, H.D.H. Stover, G.A. Ozin, I. Manners.Polyferrocenylsilane Microspheres:Synthesis, Mechanism of Formation, Size and Charge Tunability, Electrostatic Self-Assembly, and Pyrolysis to Spherical Magnetic Ceramic Particles [J]. J. Am. Chem. Sco. 2002,124:12522-12534
    [94]Q. Sun, Z. Ren, R.M. Wang, W.M. Chen, C.P. Chen.Magnetite hollow spheres:solution synthesis, phase formation and magnetic property [J]. J. Nanopart. Res.2011,13:213-220
    [95]Z.H. Ai, L.Z. Zhang, S.C. Lee, W.K. Ho.Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with EnhancedVisible-Light-Driven Photocatalytic Activity[J].J. Phys. Chem. C.2009,113:20896-20902
    [96]M. Nakamura, K. Katagiri, K. Koumoto.Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process[J].J. Colloid Interf. Sci.2010,341:64-68
    [97]X. Du, X.M.Liu, H.M.Chen, J.H. He.Facile Fabrication of Raspberry-like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings[J].J. Phys. Chem. C.2009,113:9063-9070
    [98]I. Yamaguchi, M. Watanabe, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, M. Izaki.Preparation of Core/Shell and Hollow Nanostructures of Cerium Oxide by Electrodeposition on a Polystyrene SphereTemplate[J]. ACS Appl. Mater. Interfaces.2009, 1:1070-1075
    [99]Z.B. Li, Y.D. Deng, B. Shen, W.B. Hu.Preparation and microwave absorption properties of Ni-Fe3O4 hollow spheres[J].Macromol. Mater. Eng.2009,164:112-115
    [100]Z.M. Zhang, Q. Li,L.M. Yu,Z.J. Cui,L.J. Zhang, G.A. Bowmaker.Highly Conductive Polypyrrole/y-Fe2O3 Nanospheres with Good Magnetic Properties Obtained through an Improved Chemical One-Step Method[J]. Macromolecules.2011,44:4610-4615
    [101]J.C. Trista, A.A.S. Oliveira, J.D. Ardisson, A. Dias, R.M. Lago.Facile preparation of carbon coated magnetic Fe3O4 particles by a combined reduction/CVD process[J].Mate. Res. Bull.2011,46:748-754
    [102]L.R. Kong, X.F. Lu, X.J. Bian, W.J.Zhang, C. Wang.Constructing Carbon-Coated Fe3O4 Microspheres as Antiacid and Magnetic Support for Palladium Nanoparticles for Catalytic Applications[J].ACS Appl. Mater. Interfaces.2011,3:35-42
    [103]Xiao Liang, Zhaoyin Wen, Yu Liu, Hao Zhang, Jun Jin, Meifen Wu, Xiangwei Wu.A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery[J].Journal of Power Sources.2012,206:409-413
    [104]B. Lu, X.L.Dong, H.Huang, X.F.Zhang, X.G. Zhu, J.P. Lei, J.P. Sun.Microwave absorption properties of the core/shell-typeiron and nickel nanoparticles[J].Journal of Magnetism and Magnetic Materials.2008,320:1106-1111
    [105]乐园,陈建峰,汪文川.空心微球型纳米结构材料的制备及应用进展[J].化工进展.2004,23(6):595-599
    [106]Fenglong Wang, Jiurong Liu, Jing Kong, Zijun Zhang, Xinzhen Wang, Masahiro Itoh, Ken-ichi Machid.Template free synthesis and electromagnetic wave absorption properties ofmonodispersed hollow magnetite nano-spheres[J].Journal of Materials Chemistry.2011, 21:4314-4320
    [107]Yao-Feng Zhu, Li Zhang, Toshiaki Natsuki, Ya-Qin Fu, Qing-Qing Ni.Synthesis of hollow poly(aniline-co-pyrrole)-Fe3O4 composite nanospheres and their microwave absorption behavior[J].Synthetic Metals.2012,162:337-343
    [108]C. Yang, P. Liu.Polypyrrole/vermiculite nanocomposites via self-assembling and in situ chemical oxidative polymerization[J].Synth. Met.2010,160:592-598
    [109]C. Yang, P. Liu.Core-shell attapulgite@polypyrrole composite with well-defined corn cob-like morphology via self-assembling and in situ oxidative polymerization[J].Synth. Met. 2009,159:2056-2062
    [110]张成森,曾黎明,胡兵.空心玻璃微珠表面改性对双马来酰亚胺树脂性能的影响[J].塑料工业.2006,34(12):23-26
    [111]李军伟HDPE/空心玻璃微珠复合材料性能研究[J].塑料工业.2011,39(7):72-76
    [112]Z.G. An, J.J. Zhang, S.L. Pan.Fabrication of glass/Ni-Fe-P ternary alloy core/shell composite hollow microspheres through a modified electroless plating process[J].Appl. Surf. Sci.2008,255:2219-2224
    [113]M. Yu, J.H. Liu, C. Wang, S.M. Li.Preparation and characteristics of NixFe3-xO4encapsula ted hollow glass spheres by ferrite plating[J].J. Funct. Mater. Devices. 2009,2:197-200
    [114]Zhibin Tian, Xiaohui Wang, Yichi Zhang, Jian Fang, Tae-Ho Song, Kang Heon Hur, Seungju Lee, Longtu Li.Formation of Core-Shell Structure in Ultrafine-Grained BaTiO3-Based Ceramics Through Nanodopant Method [J]. Journal of the American Ceramic Society.2010,93(1):171-175
    [115]Dawei Qi, Huaiyuan Zhang, Jia Tang, Chunhui Deng, Xiangmin Zhang.Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core-Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins[J].J. Phys. Chem. C.2010,114 (20):9221-9226
    [116]Young-Mi Soon, Kwan-H Shina, Young-Hag Koh, Jong-Hoon Lee, Won-Young Choi, Hyoun-Ee Kim.Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure [J]. Journal of the European Ceramic Society.2011, 31(1-2):13-18
    [117]C. Lai, H.Z. Zhang, G.R. Li, X.P. Gao.Mesoporous polyaniline/TiO2 microspheres with core-shell structure as anode materials for lithium ion battery [J].Journal of Power Sources. 2011,196(10):4735-4740
    [118]Hongwei Wei, Le Wang, Zhipeng Li, Shouqing Ni, Quanqin Zhao, Synthesis and Photocatalytic Activity of One-Dimensional CdS@TiO2 Core-Shell He tero structures [J]. Nano-Micro Letters.2011,3(1):6-11
    [119]Yiqiong Zhang, Bochu Wang, Yazhou Wang, Weili Qiao, Pengyu Shao.A novel hypurgia for cancer chemotherapy:Programmable release of antineoplastics and cytothesis agents from core-shell micro-/nano-particles[J].Medical Hypotheses.2011,76(2):201-203
    [120]毋伟,陈建峰,屈一新.硅烷偶联剂的种类与结构对二氧化硅表面聚合物接枝改性的影响[J].硅酸盐学报.2004,32(5):570-575
    [121]C. Perruchot, M. M. Chehimi.Use of aminosilane coupling agent in the synthesis of conducting, hybrid polypyrrole-silica gel particles[J].Surf. Interface Anal.1998,26:689-698
    [122]C. Perruchot, M. M. Chehimi, M. Delamar, E. Cabet-Deliry, B. Miksa, S. Slomkowski, M. A. Khan, S. P. Armes.Chemical deposition and characterization of thin polypyrrole films on glass plates:role of organosilane treatment[J].Colloid. Polym. Sci.2000,278:1139-1154
    [123]I.J. Choi, J.G. Park.Refiring performance of calcium aluminoborosilicate-based dielectrics[J]. J.Am.Ceram.Soc.2008,91:2727-2729
    [124]W.B. Yang, B.J. Zhang.Study of magnetic Ni-P alloy on hollow glass microspheres by electroless plating technjque[J].J. Funct. Mater.2007,38:1856-1858
    [125]G. Smith, U.D. Wermuth.Polymeric structures in the metal complexes of 5-sulfosalicylic acid:The rubidium(I), caesium(Ⅰ) and lead(II) analogues[J]. Polyhedron. 2007,26:3645-3652
    [126]I.P. Pozdnyakov, V.F. Plyusnin.Photochemistry of Fe(III) and sulfosalicylic acid aqueous solutions[J].J. Photochem. Photobiol., A:Chem.2006,182:75-81
    [127]K.G.Neoh, H.W. Teo, E.T.Kang.Enhancement of growth and adhesion of electroactive polymer coatings on polyolefin substrates[J].Langmuir.1998,14:2820-2826
    [128]Kang ET, Tan TC, Neoh KG. Halogen-induced charge transfer polymerization of pyrrole in aqueous media [J]. Polymer.1986,27:1958-1962
    [129]郑毅芳,邓远名,雷光财,许一婷,戴李宗.PPyMWNTs复合材料制备条件与结构性能的关系.高分子材料科学与工程.2009,25(2):93-96
    [130]任丽,张雪峰,王立新,张福强.化学氧化法聚吡咯导电性能与导电机理[J].半导体学报.2007,28(9):1396-1401
    [131]Y. Li, G. He. Effect of preparation conditions on the two doping structures of polypyrrole [J]. Synthetic Metals.1998,94(1):127-129
    [132]T. Silk, Q. Hong, R. G. Compton, et al. AFM studies of polypyrrole film surface morphology I. The influence of film thickness and dopant nature [J]. Synthetic Metals.1998, 93:59-64
    [133]赵晓东,冯启明,王维清.磁性纳米四氧化三铁的制备工艺及其表面改性.应用化工..2010,39(2):171-174
    [134]Horst-Ulrich Worm.On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility [J]. Geophys. J. Int.1998,133:201-206
    [135]王文梅,孙传尧.纳米稀土铁氧体磁性颗粒的制备研究.稀有金属.2007,31(1):27-31
    [136]宋杰,许乃岑,王丽熙,张其土.钐掺杂对锰锌铁氧体微波电磁性能的影响[J].中国稀土学报.2009,27(3):414-418
    [137]焦明春,李国栋.纳米镍铜铁氧体粒子的制备与微波吸收特性研究[J].功能材料.2005,2(36):295-297
    [138]庄稼,陈学平,迟燕华,杨定明.掺杂Co2+和Sm3+对纳米ZnFe2O4铁氧体的电磁损耗性质的影响[J].化学学报.2006,64(2):151-157
    [139]J.J. Yuan, X. Zhang, H. J. Qian.A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres[J].Magn. Magn. Mater.2010,322:2172-2176
    [140]J. Wang, H.F. Xu, J.W. Song, H.J.Zhang, B.L. Gao, Y.D. Huang. Lightweight glass/Fe3O4-polyaniline composite hollow spheres with conductive and magnetic properties[J]. J. Mater. Sci.2011,46:2955-2962
    [141]马建方,倪嘉缵.稀土羧酸配合物结构[J].化学进展.1996,8(4):259-276
    [142]胡传忻.隐身涂层技术[M].北京:化学工业出版社.2004
    [143]熊冬柏,杨春明.聚(苯胺-吡咯)共聚物/Fe304网状纳米纤维复合物的制备及其吸波性能[J].应用化学.2009,26(9):1054-1059

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700