微小互连高度下焊点界面反应及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子封装微互连正向高密度化方向快速发展,微焊点的尺寸及互连高度在不断降低。本文研究了微小互连高度下(小于100μm)焊点的界面反应及可靠性。微焊点互连高度的降低加强了焊点两侧界面反应的交互作用,使焊点界面微观组织变得更加复杂,对焊点的性能有很大的影响,给电子产品的可靠性带来巨大的挑战。
     本文采用Sn、Sn37Pb和Sn9Zn三种不同类型的互连材料连接Cu和Ni块体,获得互连高度分别为100μm、50μm、20μm和10μm三明治结构的焊点,通过对这些焊点的研究揭示微焊点随着互连高度的降低而产生的微观组织及力学性能变化。主要研究成果如下:
     研究了回流过程中Cu/Sn/Cu焊点互连高度对焊料层微观组织、界面金属间化合物(IMC)厚度和比例以及焊点力学性能的影响。随着互连高度降低,焊点两侧的IMC厚度逐渐降低,但是IMC在焊点中的体积比例升高,形成焊点所消耗的Cu层厚度降低,但焊料层中Cu的平均浓度却升高。在0.1mm/min的拉伸速率条件下,焊点互连高度越低,其焊料层的应变速率越高,焊点抗拉强度升高。而且,当焊点互连高度降低至10μm后,焊料层在高度方向上将从多晶粒转变为单晶粒,焊点的拉伸断裂模式为Cu6Sn5/Cu界面分层断裂和Cu6Sn5晶粒的解理断裂,这与其他三种高度焊点的断裂发生在焊料层中并呈韧性断裂不同。
     研究了Cu/Sn/Cu焊点在150℃等温时效过程中的组织结构与性能的变化规律。在互连界面扩散结构(Cu/Cu3Sn/Cu6Sn5/Sn)中Cu与Sn的扩散方向相反,扩散通量不同,并随时效过程中Cu3Sn和Cu6Sn5的生长而变化,由此建立了在Cu3Sn/Cu6Sn5界面处Cu6Sn5与Cu3Sn两相生长理论模型。基于此生长理论模型,在反应初期,Cu3Sn快速生长,并消耗Cu6Sn5层,此时,Cu6Sn5厚度降低,Cu3Sn厚度升高,IMC层总厚度升高。并且初始Cu6Sn5层的厚度越薄,则1MC层增厚速度越快。随着时效时间的延长,Cu3Sn的生长速度降低,Cu6Sn5层的消耗也逐步减少,Cu3Sn/Cu6Sn5界面处IMC的生长依靠扩散至两相界面的Cu和Sn原子,最终各焊点的IMC层总厚度会趋于相同。时效期间在高度方向上具有多晶粒的焊料层组织粗化降低了焊点的抗拉强度,断裂发生在焊料层中;互连高度为10μm的时效焊点拉伸断裂发生在Cu3Sn/Cu6Sn5界面,这与时效处理之前的断裂模式不同。
     研究了回流与时效过程中Cu/Sn/Ni焊点界面反应交互作用对微焊点的组织、结构与性能的影响规律。回流过程中,由于发生了焊点两侧界面反应的交互作用,在Ni侧形成不致密连接的Ni-Cu-Sn薄层与(Cu,Ni)6Sn5沉积层的双层结构,所有不同互连高度焊点的拉伸断裂都发生在Ni侧IMC层中。时效过程中靠近Ni表面的薄层Ni-Cu-Sn会转变为(Ni,Cu)3Sn4,它与(Cu,Ni)6Sn5的结合强度较弱,因此,时效焊点的拉伸断裂大多发生在(Ni,Cu)3Sn4/(Cu,Ni)6Sn5界面。
     对比研究了经回流工艺得到的互连高度均为100μm,同质基材互连焊点和异质基材互连焊点在微观组织和力学性能上的变化。在Cu/Sn/Cu、Ni/Sn/Ni和Cu/Sn/Ni三种焊点,发现Ni/Sn/Ni焊点抗拉强度最大,Cu/Sn/Ni焊点抗拉强度次之,Cu/Sn/Cu焊点抗拉强度最低;Cu/Sn/Cu和Ni/Sn/Ni焊点的拉伸断裂发生在焊料层内部,而Cu/Sn/Ni焊点的拉伸断裂发生在Ni侧IMC层中,这是因为Cu/Sn/Cu和Ni/Sn/Ni焊点两侧的IMC层生长致密,而Cu/Sn/Ni焊点Ni侧IMC为连接不致密的双层结构。
     研究了回流和时效过程中互连高度对Cu/Sn-37Pb/Cu焊点对焊料层微观组织、界面金属间化合物(IMC)厚度和比例以及焊点力学性能的影响。在回流过程中,互连高度越低,两侧的IMC厚度越薄,而焊料层中的Pb浓度越高;在接下来的时效过程中,互连高度越低,IMC层增厚速度越快,焊料层中Pb浓度升高越迅速。焊点的抗拉强度随着焊料层应变速率的增大而升高,随着Pb浓度的增大而降低。采用0.1mm/min的拉伸速率对焊点进行拉伸试验,当互连高度从100μm降低至20μm时,焊点抗拉强度升高,焊料层应变速率为主要影响因素;对于互连高度为10μm焊点,由于150℃时效500h前后焊料层中Pb的浓度可从50wt.%升高至90wt.%左右,焊点抗拉强度为最低。所有高度焊点的拉伸断裂都发生在焊料层中,并呈韧性断裂模式。
     研究了回流与时效过程中互连高度对Cu/Sn-9Zn/Cu焊点中焊料层成分、IMC生长及结构的影响。回流过程中,随着焊点互连高度的降低,焊料层中Cu浓度升高,而Zn浓度降低,焊料层中形成的游离态Cu5Zn8颗粒密度升高,这使互连高度越低的焊点抗拉强度越低,在0.1mm/min的拉伸速率下,焊点的拉伸断裂发生在焊料层内。时效过程中,随着互连高度的降低,焊点中焊料层内部形成的Cu6(Sn,Zn)5越早。
The rapid development of the high-density solder interconnection in the electronic packaging industry brings about the continiuous decrease in the size and stand-off height (SOH) of solder joints. Therefore, the present paper focuses on the interfacial reactions and reliability of solder joints influenced by the SOH lower than100μm. The interfacial reactions in the solder joints with same or different base materials at the two sides become more complicated with the decreasing SOH, which significantly influences the microstructure and mechanical property. And it is a big challenge for the reliability of electronic products.
     In the present paper, three different kinds of solder alloys, Sn, Sn37Pb and Sn9Zn, were used to join Cu bulk and Ni bulk for obtaining the sandwich-structure solder joints with SOH of 100μm,50μm,20μm and 10μm. These researches revealed the influence of SOH on the microstructure and the mechanical property of solder joints. The research results are listed as follows:
     The study on the as-reflowed Cu/Sn/Cu revealed the influence of SOH on the solder bulk microstructure, IMC thickness, IMC proportion and the mechanical property of solder joints. With the reducing SOH, the IMC thickness decreases, while the volume ratio of IMC increases. And also, the consumed Cu thickness decreases, while, the Cu concentration increases in the solder bulk with the reducing SOH. Tensile tests with a constant crosshead speed of 0.1mm/min were carried out to assess the mechanical property. It was found that the strain ratio of solder bulk increases with the reducing SOH, which improves the ultimate tensile stress (UTS) of solder bulk. When the SOH is reduced to be 10μm, the solder bulk consists of one Sn grain in height. The tensile fracture occurs in the IMC layer with the delamination of Cu6Sn5/Cu interface and the cleavage of Cu6Sn5 grain. And this is different from the fracture modes of solder joints with the other three SOHs, which all fractures in the solder bulk in a plastic mode.
     The study on the Cu/Sn/Cu solder joints aged at 150℃revealed the changes of microstructure and mechanical property. In the Cu/Cu3Sn/Cu6Sn5/Sn diffusion couple at the one side of solder joint, Cu and Sn diffuse in opposite direction, while, the their diffusion fluxes change with the growth of Cu3Sn and Cu6Sn5 during the thermal aging process. Based on the ratio of Cu to Sn diffusion fluxes at the Cu3Sn/Cu6Sn5 interface, the growth model of Cu6Sn5 layer and Cu3Sn layer has been established. According to the growth model, the Cu3Sn grows fast at the cost of Cu6Sn5 layer at the early stage, while, the thickness of the total IMC layers increases with the aging process. Moreover, the thinner original Cu6Sn5 layer, the faster the IMC growth. With the aging process, the growth rate of Cu3Sn slows down, as well as the consumption rate of the Cu6Sn5 layer, at this time, the IMC growth depends on the reaction between diffusion fluxes of Cu and Sn at the Cu3Sn/Cu6Sn5 interface. Finally, the IMC thickness would grow similarly. Because of the coarsened Sn grains in the solder joints with multiple grains in height during the aging process, the UTS decreases, and the fractures occur in the solder bulk; the fracture of the aged solder joint with 10μm SOH occurs with the delamination of Cu3Sn/Cu6Sn5 interface, which is different from the fracture mode before aging.
     The study of the as-reflowed and aged Cu/Sn/Ni solder joints reveals the change rules of the micrstructure and mechanical property of the solder joints with different base materials at the two sides. Due to the coupling effect during the reflow process, the incompact duplex IMC layers of the thin Ni-Cu-Sn layer and the deposited (Cu,Ni)6Sn5 layer at Ni side are formed, therefore, fractures occur in the IMC layer at Ni side for all Cu/Sn/Ni solder joints in the tensile test with a constant crosshead speed of 0.1mm/min. In the aging process, the thin Ni-Cu-Sn layer would transform into (Ni,Cu)3Sn4, which also have a weak bonding with the deposited (Cu,Ni)6Sn5 layer, as a result, the fracture of the aged solder joints mostly occurs at the (Ni,Cu)3Sn4/(Cu,Ni)6Sn5 interface.
     The study compared the microstructure and mechanical property of the as-reflowed sandwich solder joints with the same or different materials at the two sides. All of the solder joints were prepared with a SOH value of 100μm. Among the Cu/Sn/Cu, Ni/Sn/Ni and Cu/Sn/Ni solder joints, it is found that the Ni/Sn/Ni has the highest UTS, then the Cu/Sn/Ni, finally the Cu/Sn/Cu; The fractures occur in the bulk of the solder joints with the same materials at the two sides, while in the IMC layer at Ni side of the Cu/Sn/Ni solder joints, and this difference results from the compact IMC layer in the Cu/Sn/Cu and Ni/Sn/Ni solder joints and the incompact duplex IMC layers in the Cu/Sn/Ni solder joints.
     The study on the as-reflowed and aged Cu/Sn-37Pb/Cu revealed the influence of SOH on the solder bulk microstructure, IMC thickness, IMC proportion and the mechanical property of solder joints. With the reducing SOH of the as-reflowed solder joints, the IMC thickness decreases, while the Pb concentration increases in the solder bulk. During the subsequent thermal aging process, the IMC thickness and the Pb concentration in the bulk increase faster in the solder joints with lower SOH. The UTS increases with the higher strain rate, while it decreases with the higher Pb concentration in the solder bulk. The tensile tests with a constant crosshead speed of 0.1mm/min were used to assess the mechanical property of solder joints, and it is found that the UTS increases with the SOH reduced from 100μm to 20μm, when the strain rate is the major influencing factor. The solder joint with 10μm SOH has the lowest UTS value, because the Pb concentration in the bulk could range from 50wt.% to 90wt.% before and after the thermal aging at 150℃for 500h. All of the fractures occur in the solder bulk in a plastic mode.
     The study of as-reflowed and aged Cu/Sn-9Zn/Cu reveals the influential mechanism of SOH on the solder bulk composition, IMC growth and mechanical property. For the as-reflowed solder joints, the Cu concentration increases, while the Zn concentration decreases in the solder bulk with the reducing SOH, therefore, the density of dissocative Cu5Zn8 particles increases in the solder bulk. The overmany dissocative Cu5Zn8 particles destroy the integrity of solder bulk, decreasing the UTS. All of the fractures occur in the solder bulk in the tensile tests with a constant crosshead speed of 0.1mm/min. During the aging process, the Cu6(Sn,Zn)5 forms earlier in the solder bulk with the reducing SOH.
引文
[1]Sun Y.F., Pang John H.L., Digital Image Correlation for solder joint fatigue reliability in microelectronics packages [J], Microelectronics Reliability,2008,48: 310-318.
    [2]Huang Z.H., Conway P.P., Jung E., Reliability issues in Pb-free solder joint miniaturization [J], Journal of Electronic Materials,2006,35(9):1761-1772.
    [3]Huang M. L., Loeher T., Ostmann A., Low-cost electronic packaging for tomorrow's application [C], Proceedings of the Microtechnology, Cambridge: IMAPS,2005.
    [4]Liao E. B., Tay Andrew A.O., Simon, Fatigue and bridging study of high-aspect-ratio multicopper-column flip-chip interconnects through solder joint shape modeling [C]. Proceedings of Transactions on Components and Packaging Technologies,2006,29(3):560-569
    [5]Wolf M.J., Engelmann G., Dietrich L., et.al, Flip chip bumping technology-status and update[J], Nuclear Instruments and methods in Physics Research A,2006,565: 290-295.
    [6]田民波,电子封装工程[M],北京:清华大学出版社,2003.
    [7]吴懿平,丁汉等,电子制造技术导论[M],北京:机械工业出版社,2004.
    [8]何田,先进封装技术的发展趋势[J],电子工业专用设备,2005(5):5-8.
    [9]Tong, Q., Ma, B., Zhan, E., et al, Recent advances on a wafer-level flip chip packaging process [C], Proceedings of the 50th Electronic Components and Technology Conference, Las Vegas:IEEE,2000:101-106.
    [10]Hashino, E., Micro-ball wafer bumping for flip chip interconnection [C], Proceedings of 51st Electronic Components and Technology Conference,2001: 957-964.
    [11I]Piet De Moor,3D integration technologies for imaging applications [J], Nuclear Instruments & Methods in Physics Research A,2008,591:224-228.
    [12]Knickerbocker J.U., Andry P.S., Buchwalter L.P., et.al. Development of Next-generation system-on-package (SOP) technology based on silicon carriers with fine-pitch chip interconnection [J], IBM Journal of Research & Development, 2005,49(9):725-753.
    [13]Sakuma K., Andry P.S., Dang B., et.al.3D chip stacking technology with low-volume lead-free interconnection [C], Proceedings of 57th Electronic Components and Technology Conference, Reno:IEEE,2007:627-632.
    [14]Ho C. E., Lin Y. W., Yang S. C.. Volume effect on the soldering reaction between SnAgCu solders and Ni [C]. Proceedings of International Symposium on Advanced Packaging Materials:Processes, Properties and Interface, Irvine:IEEE,2005: 39-44.
    [15]Ankur Aggarwal. Lead free bonding systems. US Patent, US20050274227.
    [16]Huebner H., Penka S., Barchmann B., et.al, Microcontacts with Sub-30μm titch for 3D chip-on-chip integration [J], Microelectronic Engineering,2006,83: 2155-2162.
    [17]Gemme C., Fiorello A.M., Gagliardi G., et.al., Study of indium bumps for the ATLAS pixel detector [J], Nuclear Instruments and Methods in Physics Research A,2001,465:200-203.
    [18]张国栋,龚启兵,苏宏毅等,混成式焦平面阵列芯片倒装互连技术研究[J],红外技术,2006,28(3):125-128.
    [19]Lan J H. (Ed), Flip Chip Technologies [M], New York:McGraw-Hill,1996.
    [20]Tian Y.T., Hutt D.A., Liu C.Q., High density indium bumping through pulse plating used for pixel X-ray detectors [C], Proceedings of 10th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Beijing:IEEE,2009:456-460.
    [21]Broennimann Ch., Glaus F., Gobrecht J. et.al., Development of an indium bump bond process for silicon pixel detectors at PSI [J], Nuclear Instruments and Methods in Physics Research A,2006,565:303-308.
    [22]Tu K.N., Solder Joint Technology [M], New York:Springer,2007.
    [23]吴丰顺,张金松,吴懿平等,集成电路互连引线电迁移的研究进展[J],半导体技术,2004,29(9):15-21.
    [24]吴懿平,张金松,吴丰顺等,SnAgCu凸点互连的电迁移[J],半导体学报,2006,27(6):1136-1140.
    [25]Everett C.C.Yeh, Choi W.J., Tu K.N., et.al., Current-crowding-induced electromigration failure in flip chip solder joints [J], Applied Physics Letter,2002, 80(4):580-582.
    [26]Sharif A., Chan Y.C., Islam R.A., Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging [J], Materials Science and Engineering B,2004,106:120-125.
    [27]Choi W.K., Lee H.M., Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate [J], Journal of Electronic Materials,1999,28:1251-1255.
    [28]Kang S.K. and Ramachandran V., Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface [J], Scripta Metallurgica, 1980,14:421-424
    [29]Schaefer M., Laub W., Fournelle R.A., et.al., Proc.Design Reliability Solders Solder Interconnects [M], eds. R.K. Mahidhara, D.R. Frear, S.M.L. Sastry, et.al., Warrendale:TMS,1997.
    [30]Choi W.K., Kang S.K., Shih D.Y., A study of the effects of solder volume on the interfacial reactions in solder joints using the differential scanning calorimetry technique [J], Journal of Electronic Materials,2002,31(11):1283-1291.
    [31]Wong C.K., Pang J.H.L. Tew J.W., et.al, The influence of solder volume and pad area on Sn-3.8Ag-0.7Cu and Ni UBM reaction in reflow soldering and isothermal aging [J], Microelectronics Reliability,2008,48:611-621.
    [32]Ho C.E., Tsai R.Y., Lin Y.L., et.al., Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni [J], Journal of Electronic Materials,2002,31: 584-590.
    [33]Huang Z.H., Conway P.P, and Thomson R.C., Microstructural consideration for ultrafine lead free solder joints [J], Microelectronics Reliability,2007, 47:1997-2006.
    [34]Wang S. J. and Liu C. Y., Study of interaction between Cu-Sn and Ni-Sn interfacial reactions by Ni-Sn3.5Ag-Cu sandwich structure [J], Journal of Electronic Materials, 2003,32(11):1303-1309.
    [35]Laurila T., Vuorinen V., Kivilahti J.K., Interfacial reactions between lead-free solders and common base materials [J], Materials Science and Engineering R,2005, 49:1-60.
    [36]Wang S.J., Liu C.Y., Asymmetrical solder microstructure in Ni/Sn/Cu solder joint [J], Scripta Materialia,2006,55:347-350.
    [37]Zhang F., Li M., Chum C.C. et.al, Effects of Substrate metallization on solder/under-bump metallization interfacial reactions in flip-chip packages during multiple reflow cycles [J], Journal of Electronic Materials,2003,32(3):123-130.
    [38]Wang S.J., Liu C.Y., Coupling effect in Pt/Sn/Cu sandwich solder joint structures [J], Acta Materialia,2007,55:3327-3335.
    [39]Zeng K., Tu K.N., Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J], Materials Science and Engineering R,2002, 38:55-105.
    [40]Yoon J.W., Kim S.W., Jung S.B., IMC morphology, interfacial reaction and joint reliability of Pb-ree Sn-Ag-Cu solder on electrolytic Ni BGA substrate [J], Journal of Alloys and Compounds,2005,392:247-252.
    [41]Hong K.K., Ryu J.B., Park C.Y., et al. Effect of Cross-Interaction between Ni and Cu on Growth Kinetics of Intermetallic Compounds in Ni/Sn/Cu Diffusion Couples during Aging [J]. Journal of Electronic Materials,2007,36(7):61-72.
    [42]Chen H.T., Wang C.Q., Yan C., et.al., Cross-interaction of Interfacial Reactions in Ni(Au/Ni/Cu)-SnAg-Cu Solder Joints during Reflow Soldering and Thermal Aging [J], Journal of Electronic Materials,2007,36(1):26-32.
    [43]Zhang X.F., Guo J. D., Shang J. K.. Electromigration Behavior of the Ni/SnZn/Cu Solder Interconnect [C]. Proceedings of 9th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP),2008, 1(2):863-866.
    [44]Ho C.E., Lin Y.W., Yang S.C., et.al., Effects of limited Cu supply on soldering reactions between SnAgCu and Ni [J], Journal Electronic Materials,2006,35(5): 1017-1024.
    [45]Plieninger R., Dittes M., Pressel K., Modern IC packaging trends and their reliability implications [J], Microelectronics Reliability,2006,46:1868-1873.
    [46]Orowan E., Nye J.F., Cairns W.J., MOS Armament. Res. Dept. Rep.16,35(1945)
    [47]Saxton H.J., West A.J., Barrett C.R., Deformation and Failure of Brazed Joints—Macroscopic Considerations [J],. Metallurgical Transactions,1971,2(4): 999-1007.
    [48]Courtney T., Mechanical behavior of Materials [M], McGrawHill,1990.
    [49]Zimprich P., Betzwar-Kotas A., Khatibi G. et.al, Size effects in small scaled
    lead-free solder joints[J], Journal of Materials Science:Materials in Electronics, 2008,19(4):383-388.
    [50]尹立孟,张新平, 无铅微互连焊点力学行为尺寸效应的试验及数值模拟[J],机械工程学报,2010,46(2):55-60.
    [51]Zimprich P., Saeed U., Weiss B., et.al., Constraining effects of lead-free solder joints during stress relaxation [J], Journal of Electronic Materials,2009,38(3): 392-399.
    [52]Prakash K.H., Sritharan T., Tensile fracture of tin-lead solder joints in copper [J], Materials Science and Engineering A,2004,379(2):277-285.
    [53]Chen Z., He M., Kuma A. et.al, Effect of interfacial reaction on the tensile strength of Sn3.5Ag/Ni-P and Sn37Pb/Ni-P solder joints [J], Journal of Electronic Materials, 2007,36(1):17-25.
    [54]Frear D.R., Vianco P.T., Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys [J], Metallurgical and Materials Transactions A,1994,25(7):1509-1523.
    [55]Chan Y.C., Alex C.K. So, Lai J.K.L., Growth kinetic studies of Cu-Sn intermetallic compound and its effect on shear strength of LCCC SMT solder joints [J], Materials Science and Engineering B,1988,55(1):5,-13.
    [56]R.E.Pratt, E.I.Stromswold, D.J.Quesnel, Mode I fracture toughness testing of eutectic Sn-Pb solder joints [J], Journal of Electronic Materials,1994,23(4): 375-381.
    [57]Tang W.M, He A.Q., Liu Q. et.al., Solid state interfacial reactions in electrodeposited Cu/Sn couples [J], Transactions of Nonferrous Metals Society of China,2010,20:90-96.
    [58]Yan Y.F., Liu J.P., Shi Y.W., Xia Z.D., Study on Cu particles-enhanced SnPb composite solder [J], Journal of Electronic Materials,2004,33(3):218-223.
    [59]Rhee H., Guo F., Lee J.G., et.al., Effects of intermetallic morphology at the metallic particle/solder interface on mechanical properties of Sn-Ag-based solder joints [J], Journal of Electronic Materials,2003,32(11):1257-1264.
    [60]Kim H.K., Tu K.N., Rate of consumption of Cu in soldering accompanied by ripening [J], Applied Physics Letter,1995,67(14):2002-2004.
    [61]Labie R, Ruythooren W, Hμmbeeck J.V., Solid state diffusion in Cu-Sn and Ni-Sn diffusion couples with flip-chip scale dimensions [J]. Intermetallics,2007,15: 396-403.
    [62]Rizvi, M.J., Lu, H. and Bailey, C., Modeling the diffusion of solid copper into liquid solder alloys [J], Thin Solid Films,2009,517(5):1686-1689.
    [63]Lide D.R., Frederikse H.P.R, CRC Handbook of Chemistry and Physics [M], Boca Raton:CRC Press,1996.
    [64]Frear, D.R., Burchett, S.N., Morgan, H.S. et.al., eds., The Mechanics of Solder Alloy Interconnects [M], New York:Van Nostrand Reinhold,1994.
    [65]张光,张克实,冯露,晶粒数量对多晶集合体初始各向异性的影响[J],计算力学学报,2004,21(6):706-710.
    [66]刘江涛,王光中,尚建库,[110]和[112]取向β-Sn单晶粒的形变行为[J],金属学报,2008,44(12):1409-1414.
    [67]Jing J.P., Gao F., J.Johnson, et.al., Simulation of dynamic fracture along solder-pad interfaces using a cohesive zone model[J], Engineering Failure Analysis, 2009,16(5):1579-1586.
    [68]Zou H.F., Zhang Z.F., Ductile-to-brittle transition induced by increasing strain rate in Sn-3Cu/Cu joints [J], Journal of Materials Research,2008,23(6):1614-1617.
    [69]周建华,陈明和,傅桂龙等,等应变速率拉伸测m值的方法[J],金属成形工艺,1996,14(3):39-40.
    [70]何景文,王燕文,金属的超塑性[M],北京:科学出版社,1986.
    [71]何鹏,冯吉才‘,钱乙余等,扩散连接接头金属间化合物新相的形成机理[J],焊接学报,2001,22(1):53-55.
    [72]Brook Huang-Lin Chao, Zhang Xuefeng, Seung-Hyun Chae, et.al., Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in Pb-free solder joints [J], Microelectronics Reliability,2009,49:253-263.
    [73]Gorlich J., Schmitz G., Tu K N, On the mechanism of the binary Cu/Sn solder reaction [J]. Appllied Physics Letters,2005,86:053106-1-053106-3.
    [74]Shang P.J., Liu Z.Q., Pang X.Y., et.al., Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates [J], Acta Materialia,2009,57: 4697-4706.
    [75]Oh M., Doctoral dissertation, Bethlehem:Lehigh University,1994.
    [76]Onishi M, Fujibuchi H, Reaction-diffusion in Cu-Sn system [J], Transactions of the Japan Institute of Metals,1975,16:539-547.
    [77]Paul A., Kodentsov A.A., Van Loo FJJ. Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples [J], Materials Research and Advanced Techniques,2004,95(10):913-920.
    [78]Vuorinen V, Laurila T, Heikinheimo E, et.al., Solid state reactions between Cu(Ni) alloys and Sn [J], Journal of Electronic Materials,2007,36:1355-1362.
    [79]Vianco P.T., Hlave P.F., Kilgo A.C., Intermetallic compound layer formation between copper and hot-dipped 100In,50In-50Sn, 100Sn, and 63Sn-37Pb coating [J]. Journal of Electronic Materials,1994,23(7):583-594.
    [80]商延赓,Sn基无铅钎料组织、性能和界面反应行为的研究[D],吉林:吉林大学,2007.
    [81]Gusak A.M. Tu K.N. Kinetic theory of flux-driven ripening [J], Physical Review B 2002; 66:115403.
    [82]Tu K.N., Zeng K., Tin-lead (SnPb) solder reaction in flip chip technology [J], Materials Science and Engineering:R,2001,34(1):1-58.
    [83]Yu H., Vuorinen V, Kivilahti J.K., Solder/substrate interfacial reactions in the Sn-Cu-Ni interconnection system [J], Journal of Electronic Materials,2007, 36(2):136-146.
    [84]Lin C.H., Chen S.W., Wang C.H., Phase equilibria and solidification properties of Sn-Cu-Ni alloys [J], Journal of Electronic Materials,2002,31(9):907-915.
    [85]Oberndorff P., Lead free solder systems:phase. relations and microstructures [D], Eindhoven:Technical University of Eindhoven,2001.
    [86]Xia Y.H., Xie X.M., Lu. C.Y., et.al., Coupling effects at Cu(Ni)-SnAgCu-Cu(Ni) sandwich solder joint during isothermal aging [J], Journal of Alloys and Compounds,2006,417:143-149.
    [87]Schmetterer C., Flandorfer H., Luef Ch., et.al., Cu-Ni-Sn:A key system for lead-free soldering [J], Journal of Electronic Materials,2009,38(1):10-24.
    [88]崔忠圻,金属学与热处理[M],北京:机械工业出版社,2002.
    [89]Ohriner E.K., Intermetalic formation in soldered copper-based alloys at 150 to 250℃ [J], Welding Journal,1987,66(7):191-201.
    [90]Solder Data Sheet, Welco Castings,2 Hillyard Street, Hamilton, Ontario, Canada
    [91]Chen C.M., Chen C.H., Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates [J], Journal of Electronic Materials,2007, 36(10):1363-1371.
    [92]Ichitsubo Tetsu, Matsubara Eiichiro, Fujiwara Kozo, et.al., Control of compound forming reaction at the interface between SnZn solder and Cu substrate [J], Journal of Alloys and Compounds,2005,392(1-3):200-205.
    [93]F. Abd El-Salam, A.M. Abd El-Khalek, R.H. Nada, Study of the structural and mechanical properties of Sn-8.6 wt.% Zn alloys using creep measurements [J], Materials Science and Engineering A,2007,460-461:14-19.
    [94]L. Szira'ki, H. Csontos, M.L. Varsa'nyi, et.al., Corrosion mechanism of tin-zinc alloys in neutral medium [J], Corrosion Science,1993,35(1-4):371-376.
    [95]Lee B.J., Thermodynamic assessments of the Sn-Zn and In-Zn binary systems [J], Calphad,1996,20(4):471-480.
    [96]黄卓,张力平,陈群星等,电子封装用无铅焊料的最新进展[J],半导体技术,2006,31(11):815-818.
    [97]菅沼克昭,宁晓山译,无铅焊接技术[M],北京:科学出版社,2004.
    [98]金泉军,周浪等,Sn-Zn无铅电子钎料助焊剂研究[J],电子元件与材料,2005,24(5):27-29.
    [99]Date M., Shoji T., Fujiyoshi M., et.al., Impact reliability of solder joints [C], Proceedings of the 54th Electronic Components and Technology Conference, Las Vegas:IEEE,2004:668-674.
    [100]Hung F.Y., Lui T.S., Chen L.H., et.al., Vibration fracture behavior of Sn-9Zn-x Cu lead-free solders[J], Journal of Materials Science,2007,42:3865.
    [101]Chou C.Y., Chen S.W., Phase equilibria of the Sn-Zn-Cu ternary system [J], Acta Materialia,2006,54:2393-2400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700