同步硝化反硝化脱氮效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着水体富营养化问题越来越严重,以及对污水处理中氮、磷等排放标准越来越严格的问题,急需开发出一种既脱氮效果好,又简便节能的生物脱氮工艺。序批式生物膜反应器(SBBR)是目前正在研究、应用的一种污水生物处理新工艺,它是在SBR的基础上发展起来的,既保留了SBR的诸多优点,又有不同于SBR的特点。由于SBBR工艺的脱氮效果好;自动化程度高,运行管理简单;基建费用低,运行费用省,推广到城市污水处理中,必将产生良好的环境效益和社会效益,其应用前景十分广阔。
     本文研究了序批式生物膜反应器(SBBR)在有氧情况下同步硝化反硝化的生物脱氮机理,并对影响SND的各种因素进行了较详细的研究。试验选用反应器为有机玻璃制成,其主要尺寸为:直径15cm、高40cm、总容积7L、有效容积6.2L。生物膜载体选用立体弹性填料,并采用高氨氮污水为处理对象;试验系统地考察了DO浓度,COD浓度(C/N),生物膜厚度等因素对生物膜法同步硝化反硝化(SND)脱氮效果的影响。
     通过试验分析,得到以下主要结论:溶解氧浓度控制在2mg/L左右时,其同步硝化反硝化现象明显,脱氮效果最佳,氨氮去除率可达90%,COD_(Cr)的去除率达94.6%,出水总氮浓度为26.6mg/L~29mg/L,总氮的平均去除率在50%以上,最高去除率达到66.8%,并可推断出在反应系统内存在好氧反硝化菌。C/N控制在4~8之间时,C/N越高,SND效果越好,继续增加碳氮比时,总氮去除率增加不多,并且还会导致硝化作用不完全。当存在足够的易降解有机碳源时,能发生完全的好氧反硝化作用。载体生物膜具有吸附储碳能力,在较大的溶解氧浓度范围内,增加载体生物膜厚度有利于同步硝化反硝化的进行。
     SBBR具有同步硝化反硝化的能力,建议将NH_3-N降解到零或最小值的时刻,作为同步硝化反硝化的结束点;当原水氨氮浓度高时可增加后续脱氮处理或减少进水量来满足出水要求,或者优化运行方法和参数来稳定SBBR的总氮(TN)去除率。
     微环境理论和微生物学理论可以解释试验中所发生的好氧生物膜法同步硝化反硝化(SND)现象。生物膜法同步硝化反硝化作用机理可以认为,在DO浓度较低情况下,由于生物膜内部存在着溶解氧浓度梯度,从外至内生物膜可以分为好氧层、缺氧层和厌氧层。生物膜内部的缺/厌氧层存在着大量的反硝化菌,使得反硝化脱氮在这里得以进行。总之,生物膜内部溶解氧浓度梯度的存在是系统进行同步硝化反硝化的关键因素。
     SBBR工艺在小型点源污染控制和污水脱氮除磷深度处理中是一种行之有效的脱氮除磷工艺。
As the water eutrophication becoming more and more serious, as well as the standards of nitrogen and phosphorus had been improved, It is necessary to develop a high-efficient, low energy required and simply operated technology to nutrient removal. SBBR (sequencing biofilm batch reactor) is a new wastewater biontreatment process researching at present. It is developing based at SBR and inherits SBR many merits, as well as developed the new characteristics.The prospect of the SBBR technical application has full vastitude for its good effects of nitrogen and phosphorus removal, the high automation, the simple running supervision, the low charge of the capital construction and saving the running charge. Popularized at the field of municipal sewage teatment, the technical will produce the good environment benefit and the social benefit. The character of simultaneous nitrification and denitrification of sequencing batch biofilm reactor(SBBR) under the condition of oxygen existing was studied. The paper discuss the mechanism of nitrogen removal by simultaneous nitrification and denitrification (SND) and study the various factors affecting SND in detail. In the paper, the biological reator is made of synthetic glass, Its main dimensions are: Diameter is 15cm, Height is 40cm, Volume is 7L, Working Volume is 6.2L, And the biological filler is tridimensional elastic packing. The raw wastewater is high concentration NH_4-N wastewater. The regular that the main factors such as DO, CODconcentration (or C/N ratio) affected SND had been researched. The result show that under the condition of dissolved oxygen value (DO) about 2mg/L the phenomena of simultaneous nitrification and denitrification is obvious and the denitrification effect is optimal. The removal of NH_4-N reached 90% and that of CODcr reached 94.6% in the meantime. According to the experimental result showing more than 50% TN removal, the study suggests aerobic denitrification, i.e., simultaneous nitrification and denitrification (SND), took place during the operation. When C/N is increased, the total nitrogen removal rate increases. when C/N is 4~8, total nitrogen removal could reach the highest rate of 66.8%. When C/N increases further, nitrogen removal rate has no obvious growing, and will result in nitrifying functionin incompletely.A complete aerobic denitrification function can take place when there are enough degradable organic carbon sources.The SBBR is advantageous to create anoxic condition, and biofilm can absorb and store carbon for good nitrification and denitrification. The efficiency of simultaneous nitrification and denitrification increased with increasing of thickness of the biofilm.
     SBBR possessed the capacity of simultaneous nitrification and denitrification in wider range of dissolved oxygen concentration; and when NH_3-N reduced to zero or minimum value, the time was suggested to be the end of simultaneous nitrification and denitrification. It is suggested that a subsequence for denitrification is added or influent amount is decreased for requirement of effluent quality. At optimum operating parameters, the TN removal efficiency could be achieved.
     Based on the previous research work, it is appropriate that using the Microscopic Environmental view and the Microorganism Theory to explain the mechanism of the SND in biofilm process: at the condition of low DO concentration, because of the DO concentration gradient which exists in biofilm, the biofilm could classify three party from outside to inside: layer of oxygen, layer of oxygen deficient, anaerobic layer. Beause the layer of oxygen deficient and the anaerobic layer are consist of some facultative bacteria or anaerobic bacteria such as denitrifying bacteria, it make the denitrification to be probable. In a word, the DO concentration gradient exists in biofilm is the critical factor of SND.
     It was concluded that SBBR was an effective technology for simultaneously removing nitrogen during control of small scale point polluting sources and further treatment of water.
引文
[1]李发站,吕锡武,窦月芹.生物法脱氮新技术及研究进展.安全与环境工程.2005,12(2):53-55.
    [2]高艳玲,许春生.生物脱氮反应器同步硝化反硝化研究.低温建筑技术.2006,6:130-133.
    [3]张立东,冯丽娟.同步硝化反硝化技术研究进展.工业安全与环护.2006,32(6):22-24.
    [4]冯叶成,王建龙,钱易.同时硝化反硝化的试验研究[J].上海环境科学.2002,21(9):527-529.
    [5]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    [6]C Collivignarelli,G Bertanza.Simutaneous nitrification denitrification process in activated sludge plants:performance and applicability[J].Wat.Sci.Tech,1999,40(4-5):187-194.
    [7]黄俊,邵林广.SBBR工艺的现状与发展.重庆环境与科学,2003,25(6):46-48.
    [8]赵丽珍,廖应祺.SBR技术的研究及进展.江苏理工大学学报,2001,22(3):58-61.
    [9]李伟光,赵庆良等.序批式生物膜反应器处理屠宰废水.中国给水排水,2000,16(10):59-60.
    [10]方茜,陈凤冈等.两种序批式生物系统处理屠宰废水的对比实验.中国给水排水,2000,16(7):57-58.
    [11]梁晨辉,易威,李斌.SBBR处理高盐度有机废水的应用研究.污染防治技术,1998,11(4):226-228.
    [12]WobusA,UlrichS,etal.Degradation of chlorophenols by biofilms on semipermeable membranes in two types of fixed bed reactors.Water Science and Technology,1995,32(8):205-212.
    [13]KaballoHans-Peter,ZhaoYuangang,Wilderer Peter A.Elimination of p-chlorophenol in biofilm reactors-a comparative study of continuous flow and sequenced batch operation.Water Science and Technology,1995,31(1):51-60.
    [14]White DanielM,Schnabel William.Treatment of cyanide waste in a sequencing batch biofilm reactor.Water Research,1998,32(1):254-257.
    [15]DanielM.White,TimothyA.Pilon and CraigWoo lard.Biological treatment of cyanide containing wastewater.Water Research,2000,34(7):2105-2109.
    [16]曹昉,王增长.SBBR工艺发展与应用综述.科技及情报开发与经济,2006,16(1):147-148.
    [17]雷灵琰,张雁秋,赵跃民.生物脱氮技术研究的新进展.江苏环境科技,2003,16(3):43-46.
    [18]王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16(2):25-28.
    [19]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水,2000,16(2):20-24.
    [20]李发站,吕锡武,窦月芹.生物法脱氮进技术及研究进展.安全与环境工程,2005,12(2):53-56.
    [21]李晔,胡海.生物脱氮工艺技术的研究进展.工业安全与环保,2003,29(1):17-19.
    [22]周少奇.氨厌氧氧化的微生物反应机理.华南理工大学学报,2000,29(11)
    [23]尹军,等.生物脱氮技术研究进展.吉林建筑工程学院学报,2006,23(3):12-15.
    [24]杨俊杰,张秋.生物脱氮技术.发酵科技通讯,2007,36(2):32-34.
    [25]姚厚霞.生物脱氮技术的研究.贵州化工,2007,32(3):25-27.
    [26]张自杰,林荣忱,金儒霖编著.排水工程下册.第四版.北京:中国建筑工业出版社,1999.311-312.
    [27]张自杰,林荣忱,金儒霖编著.排水工程下册.第四版.北京:中国建筑工业出版社,1999.311-312.
    [28]张立东,冯丽娟.同步硝化反硝化技术研究进展.工业安全与环保,2006,32(3):22-23.
    [29]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-19.
    [30]谢珊,等.同步硝化反硝化实现途径的探讨.环境科学与技术,2004,27(2):107-108.
    [31]朱晓君,等.低氧活性污泥法脱氮除磷工艺生产性研究.中国给水排水,1997,13:12-13.
    [32]陈方荣.同步反硝化研究进展.污水治理与回用,2002,29(5):219-220.
    [33]Klangduen Pochana,Jurg Keller.Study of factors affecting simultaneous nitrification and denitrification(SND)[J].Wat Sci Tech,1999,39(6):61-68.
    [34]杜馨,等.同步硝化反硝化影响因素的试验研究.广州大学学报,2007,6(1):71-73.
    [35]吕锡武,李丛娜,稻森悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响.城市环境与城市生态,2001,14(1):33-35.
    [36]尤勇军,等.同步硝化反硝化生物脱氮技术研究.环境污染治理与设备,2006,7(4):128-130.
    [37]杜馨,等.同步硝化反硝化影响因素的试验研究.广州大学学报,2007,6(1):71-73.
    [38]Heike B Bradl,Vertical Barriers.With increased sorption capacities[C]//International Containment Technology Conference,St Petersburg,Florida,1997,2(9-12):645-651.
    [39]李晓璐,等.SBR系统中PH与MLSS对同步硝化反硝化的影响.四川环境,2006,25(6):1-8.
    [40]张鹏,低氧条件下同时硝化反硝化工艺研究,同济大学硕士学位论文,2002.
    [41]李飞,等.同步硝化反硝化影响因素的研究.江苏环境科技,2006,19(4):16-18.
    [42]黄玉峰,等.SBR中好氧颗粒污泥的培养与除污效能.中国给水排水,2005,21(2):53-55.
    [43]Scuras S,Daigger G.T,grady C.P.L.Modeling the activated sludge floe microenvironment[J].Wat.Sci.Tech,1998,37(4-5):243-251.
    [44]Beun J J,Hendriksa.Aerobic granulation in a sequence batch reactor[J].Wat Res,1999,33(10):2283-2290.
    [45]Beun J.J.,van Loosdrecht M.C.M.and Heijnen J.J.Aerobic granulation[J].Wat.Sci.Tech.,2000,41(4):41-48.
    [46]Beun J.J.,Hendriks A.,van Loosdrecht M.C.M.,et al.Aerobic granulation in a sequencing batch reactor[J].Wat.Res.,1999,33(10):2283-2290.
    [47]张砺彦.溶氧对好氧颗粒污泥同步硝化反硝化脱氮的影响.安全与环境学报,2006,6(6):1-3.
    [48]张志,等.pH值对好氧颗粒污泥同步硝化反硝化过程的影响.中国环境科学,2005,25(6):650-654.
    [49]章非娟.生物脱氮技术[M].北京:中国环境科学出版社,1992.17-30.
    [50]Third K A,Burnett N,Cord-Ruwisch R.Simultaneous nitrification and denitrification using stored substrate(PHB)as the electron donor in a SBR[J].Biotechnol.Bioeng., 2003,83(6):702-706.
    [51]王景峰,等.颗粒污泥膜生物反应器同步硝化反硝化.中国环境科学,2006,26(4):436-440.
    [52]Tsuneda S,Nagano T,Hoshino T,et al.Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J].Wat.Res.,2003,37(20):4965-4973.
    [53]Liu Y,Yang Shu-Fang,Tay Joo-Hwa.Improved stability of aerobic granules through selecting slow-growing nitrifying bacteria[J].J.Biotechnol.,2004,108(2):161-169.
    [54]阮文权,卞庆荣,陈坚.COD与DO对好氧颗粒污泥同步硝化反硝化脱氮的影响[J].应用与环境生物学报,2004,10(3):366-369.
    [55]GARRIDO J M,CAMPOS J L,MENDEZ R,et al.Nitrous oxide production by nitrifying biofilm in a biofilm airlift suspension reactor[J].Wat.Sci.Tech,1997,36(1):157-163.
    [56]HELMER C,KUNST S.Simultaneous nitrification/denitrification in an aerobic biofilm system[J].Wat.Sci.Tech,1998,37(4/5):183-187.
    [57]徐伟锋,等.生物膜法同步硝化反硝化影响因素的分析.天津城市建设学院学报,2003,9(1):4-7.
    [58]高艳玲,等.生物脱氮反应器同步硝化反硝化研究.低温建筑技术,2006,6:130-133.
    [59]刘爱萍,等.膜生物反应器同步脱氮除磷研究进展.工业水处理,2006,26(7):1-3.
    [60]Berthold Gunder et al.Replacement of secondary clarification by membrane separation results with tubular,plate and hollow fiber modules[J],wat.sci.tech.,1999,40(4):311-320.
    [61]齐唯,李春杰,何义亮.浸没式膜生物反应器的同步硝化反硝化效应[J].中国给水排水,2003,19(7):8-11.
    [62]陈伟,等.膜生物反应器同步硝化反硝化作用的研究.市政技术,2006,24(4):224-226.
    [63]Muller E B,Stouthamer A H,van Verseveld H W,et al.Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by crossflow filtration[J].Wat Res,1995,29(4):1179-1189.
    [64]Berthold Gunder,Karlheinz Krauth,et al.Replacement of secondary clarification by membrane separation-results with tubular,plate and hollow fibre modules[J].Wat Sci Tech,1999,40(4-5):311-320.
    [65]刘江锋,等.一体式膜-生物反应器同步硝化反硝化中试试验.环境工程,2007,25(1):13-15.
    [66]Klangduen Pochana,Jurg Keller.Study on factors affecting simultaneous nitrification and denitrification(SND).Wat.Sci.Tech.,1999,39(6):61-68.
    [67]李贤胜,等.固定化微生物技术在废水脱氮中的应用.云南环境科学,2006,25(3):30-33.
    [68]许晓毅,等.OGO工艺同步硝化反硝化生物脱氮特性.水处理技术,2007,33(4):18-20.
    [69]吕锡武,等.同步硝化反硝化脱氮过程中N20的控制研究.东南大学学报,2001,31(1):95-97.
    [70]师有杰.生物膜技术在水处理中的应用.青海大学学报,2001,19(5):32-33.
    [71]肖鸿,杨平,等.生物膜反应器中生物膜脱落的机理及数学模型.化工环境,2005,25(1):23-27.
    [72]吴会中,赵琛琛.生物膜反应器在水处理中的应用.江苏环境科技,2005,18(4):36-37.
    [73]温沁雪,施汉昌,陈志强.生物膜微环境和传质现象研究进展.环境污染治理技术与设备,2006,7(6):1-5.
    [74]陈黎明,柴立和.生物膜动力学的研究现状与展望.力学进展,2005,35(3):411-415.
    [75]Katie A Third,Natalie Burnett,Ralf Cord Ruwisch.Simultaneous nitrification and denitrification using stored substrate(PHB)as the electron donor in an SBR.Biotechnol Bioeng,2003,83(6):706-720.
    [76]国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型.张亚雷等译.上海:同济大学出版社,2002.
    [77]闫骏,王淑莹,高守有,程英睿.低溶氧下低C/N值生活污水的同步硝化反硝化.中国给水排水,2007,23(3):44-48.
    [78]Lesley A.Robertson,Ed W.J.Van Niel.Rob A.M.Toorrem ans.And J.Gijs Kuenen.Simultaneous nitrification and denitrification in aerobic chemostat cultures of ThiosphaeraAppl.Environ.microbiol,1988,54(11):2812-2818.
    [79]赵宗升,刘鸿亮,李炳伟,等.高浓度氨氮废水的高效生物脱氮途径.中国给水排 水,2001,17(5):24-28.
    [80]黄海燕.基于同一反应器同步硝化反硝化的研究进展.江西蓝天学院学报,2006,1(3):71-76.
    [81]胡大锵.同步硝化反硝化的总需氧量计算方法探讨.中国给水排水,2003,19(2):88-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700