非线性建筑结构的抗震控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土木工程结构有钢筋混凝土结构、钢结构等多种形式,它们均有强烈的非线性特征。经典的结构抗震设计均采用线弹性模型,只能计算多遇地震即所谓小震阶段所受力。而大震阶段验算结构应为非线性结构。结构控制是结构抗震中有发展前途的一种方法。目前对线性结构的控制理论研究已较为成熟。但对非线性结构的控制研究较少。本文主要针对非线性结构的结构控制方法作了研究,主要内容包括:
     1、首先研究对非线性结构直接进行非线性控制。将非线性控制(基于滞回非线性动态分离的位移加速度反馈结构控制方法)方法引入到非线性结构振动控制中,对其在非线性结构振动控制中的应用作了初步的研究,并建立了非线性结构振动控制系统的非线性控制模型。仿真结果表明将非线性控制方法应用于非线性振动控制是可行的,达到同样控制效果所需控制力比一般线性最优控制方法都要小,尤其在强震下更为显著。
     2、采用逆系统方法,将非线性结构精确反馈线性化,得到伪线性结构,再采用传统的线性控制理论进行控制。研究结果表明,该方法效果比一般的线性理论控制方法要好,扩大了线性理论适用范围。
     3、采用神经网络逆系统方法,结合神经网络及逆系统方法的优点,对不易建模的强非线性结构进行控制。研究表明,该方法结合了逆系统方法和神经网络方法的优点,可用于复杂非线性结构的抗震控制。建模时可将原结构化为线性和非线性模块的叠加,以减少建模难度。
     4、将预测控制与神经网络相结合,利用神经网络强大的非线性建模能力建立原结构模型和逆系统模型。采用基于神经网络的预测控制方法,对强非线性结构进行非线性预测控制。对线性控制和采用神经网络预测的主动控制方法的效果作了比较研究。可以看出,进行神经网络预测控制后,位移得到有效控制,控制效果显著。
There are many kinds of civil engineering structures such as reinforced concrete structures and steel structures and so on, and they all have strong nonlinear characteristics. In classics seismic design of structures, with the linearity and resilience presume, we can only analyze frequent earthquakes. But in major earthquakes phase, the calculating model of structures ought to be nonlinear. Structure control is one kind of promising means to structure seismic design. At the moment, control theory for the linear structure has already been developed very maturely. Yet it is still a difficult problem for seismic control of nonlinear structure. The research aimed mainly at nonlinear structure control means .The main research work consists of four aspects:
     1. Directly nonlinear control is applied to nonlinear structures. With introduction of nonlinear vibration control method into nonlinear structures, it is got as the preliminary research result to the application in the nonlinear structure vibration, and it has been established for nonlinear model to nonlinear structure vibration control system. The simulation result indicates that applying the nonlinear control method to the nonlinear vibration control is feasible, with smaller control force than general linear optimum control method to achieve the similar control effect, especially more remarkable under strong earthquakes.
     2. Through accurately feedback linearization, and with inverse system approach ,it can change from nonlinear structures to pseudo linear system to which traditional linear control theory could be applied. Research results show the means is superior to linear theory control method and the application field is extended.
     3. With neural network inverse system method which combining the neural network approach with inverse system approach, it is controlled for strong nonlinear building vibration which is difficult to set up model. From this research, it makes known that the approach have both merits of inverse system approach and that of neural network approach, and it is usable for seismic control of complex nonlinear structures. Original structures may be transformed into superimpose of linear module and nonlinear module in order to decrease difficulty in building model.
     4. With predictive control approach based on neural network, nonlinear prediction control was implemented for strong nonlinear structure vibration. The comparison research has been made between the effect of linear control method and that of active predict control method by using neural network. It can be seen through the neural network predict control that structure displacement is under effective control, which shows that the effect of this kind of control method is remarkable.
引文
[1]胡聿贤.地震工程学(第二版).北京:地震出版社,2006年1月
    [2]每纲,沈亚鹏,王健.建筑结构振动控制的发展动态.力学进展,1998,28(4):442-452
    [3]吴波.建筑结构被动控制的理论及应用.哈尔滨工业大学出版社,1997
    [4]周福霖.工程结构减震控制.北京:地震出版社,1997
    [5]曹永岩等.现代控制理论的工程应用.杭州:浙江大学出版社,2000
    [6] Al-Dawod M, B. Samali, et al. Application of a fuzzy controller to seismically excited nonlinear buildings. 10th IEEE International Conference on Fuzzy Systems. Dec 2-5, 2001, Melbourne, Australia, Institute of Electrical and Electronics Engineers Inc
    [7]席裕庚.预测控制.北京:国防工业出版社,1993
    [8] Gang Mei. Model Predictive Control of Structures Under Earthquakes Using Acceleration Feedback. Journal of Engineering Mechanics,2002, 128(5): 574-585
    [9]张建华,刘建军,张庆国,何玉敖.基于平衡降阶法的结构振动模态预测控制.工程力学, 2006,23(5):20-23
    [10] Lu Exiling, Zhao Bin. Discrete-time variable structure control of seismically excited building structures. Earthquake Engineering and Structure Dynamic,2001,30 (6):853-863
    [11] Yang J N, Wu J C, Agrawa A K. Sliding Mode Control for Nonlinear and Hysteretic Structures. Journal of Engineering Mechanics,1995,121 (12) :1330-1339
    [12] Iwamoto K, Koike Y, Nonami K, et al. Output feedback sliding mode control for bending and torsional vibration control of 6-story flexible structure. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 2002,45(1):150-158
    [13] Werbos P J. Neural networks & the human mind: New mathematics fits humanistic insight. Engineering Structures, 2002, 1:78-83
    [14]何玉彬,李新忠.神经网络控制技术及其应用.北京:科学出版社,2000
    [15] Y Q Ni, J M Kop, C W Wong. Nonparametric Identification of Nonlinear Hysteretic Systems. Journal of Engineering Mechanics,1999,125 (2):206-215
    [16] H LUS, R BETTI, R W. LONGMAN. IDENTIFICATION OF LINEAR STRUCTURAL SYSTEMS USING EARTHQUAKE-INDUCED VIBRATION DATA. Earthquake Engineering and Structural Dynamics, 1999,28(11):1449-1467
    [17] Joghataie A, Ghaboussi J. Neural networks and fuzzy logic in structural control. Proceedings of First World Conference of Structure Control. Los Angeles, 1994:21-30
    [18] Conte J P, Uremia J. Neural networks and fuzzy logic in structural control. First World Conference of Structure Control: WP1[C]. Los Angeles, 1994, 54-68
    [19] Ghaboussi J, Joghataie A. Active control of structures using neural network [J]. Proceedings of Engineering Mechanics. 1995, 4: 555-567
    [20] Bani-Hani K, Ghaboussi J. Neural network based nonlinear neural network [J]. 2nd International Workshop of Structural Control [C]. Hong Kong.1996, 198-220
    [21] Bani-Hani K, Ghoboussi J. Nonlinear structural control using neural networks. Engineering mechanics,1998, 3: 319-327
    [22] Kim, J T, H J Jung, et al. Optimal structural control using neural networks. Journal of Engineering Mechanics, 2000, 126(2): 201-205
    [23] Massri S F,Chassiakos A O,Caughey T K. Identification of nonlinear dynamic systems using Neural networks. Appl Mech, 1993, 3: 123-133
    [24] Paez T L. Simulation of structural response using recurrent radial basis function network [A]. Proceedings of First World Conference of Structure Control: WPl[C]. Los Angeles, 1994, 78-87
    [25] Venini P, Wen Y K. Hybrid vibration control of MDOF hysteretic structures with neural networks [A]. Proceedings of First World Conference of Structure Control: TA3[C]. Los Angeles, 1994, 53-62
    [26] Amini F, Chen H M. Neural networks for identification and control of structures [A]. Proceedings of First World Conference of Structure Control: A 3[C]. Los Angeles, 1994, 84-95
    [27] Jaghataie K, Ghaboussi J. A comparative study of learning methods and mathematical algorithms in structural control [A]. Eleventh World Conference on Earthquake Engineering[C], 1996
    [28]何玉傲,吴建军.应用递归神经网络(SRNN)预测结构的响应[J].土木工程学报,1998 ,2:46-51
    [29]何亚东,何玉敖.应用模糊神经网络辨识结构动力特性及振动台试验验证.国际结构控制与健康诊断研讨会.深圳,2000,614
    [30]蔡自兴.神经网络器的典型结构.控制理论与应用,1998(1):1- 8
    [31]付伟庆,王焕定,祁峰.磁流变智能基础隔震系统研究.地震工程与工程振动,2005,25 (3):167-171
    [32]武田寿一.建筑物隔震防振与控振[M].纪晓惠,陈良,鄢宁译.北京:中国建筑工业出版社,1997
    [33]黄永林.基础隔震研究与应用的回顾与前瞻[J].地震学刊,1998,18(2):58—66
    [34]邓长根,何永超.日本建筑结构隔震减震研究新进展[J].世界地震工程,2002,18(3):168.173
    [35]肖登奎,戴朝晖.建筑结构基础隔震技术的发展[J].建筑技术开发,2002,29(5):1-2
    [36] T. Kobori, et al. Shaking Table Experimental of Multi-Story Seismic Response Controlled Structures with Active Variable Stiffness (AVS) System [J]. Proc l8th Japan Earthquake, Tokyo, 1990
    [37] T. Kobori, et al, Seismic Response Controlled Structure with Active Variable Stiffness System. Earthquake Engineering and Structure Dynamics, 1993, (22): 925-941
    [38]王丰尧.滑模变结构控制.北京:机械工业出版社,1995
    [39]孙作玉,刘季.线性结构的滑动模态半主动控制.地震工程与工程振动,1998,(1):88-93
    [40]蔡国平、黄金枝,孙峰等.建筑结构振动控制的改进滑模砰砰方法.工程力学,2001,18(1):89-94
    [41]盛严,王超,陈建斌.结构变结构控制的指数趋近律改进方法.西安交通大学学报,2003,37(1):108-110
    [42]欧进萍.结构振动控制——主动、半主动和智能控制.北京:科学出版社,2003
    [43]刘汾涛,魏德敏,吴波.变刚度半主动控制结构的地震影响系数分析.华南理工大学学报,(自然科学版), 2003,( 07):52-57
    [44]何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报,2000,21(3):53-59
    [45]何玉敖,冯德平.变刚度——隔震结构体系混合控制研究.国际结构控制与健康诊断研讨会,深圳,2000,506
    [46] Kawashima K, Unjoh S. Seismic response control of bridges by variable dampers [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Volume: 32, Issue: 6, September, 1995:292A
    [47] Syman M D, Constantinous M C, Taylor D P, et al. Semi-active Fluid Dampers Viscous for Seismic Response Control[C]. Proceedings of First World Conference on Structural Conrtol. Pasadena, CA, 1994.FA4-6-12
    [48]周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究[J].广州大学学报(自然科学版),2002,(01):69-75
    [49]谭平,周福霖,阎维明.主动变刚度、阻尼系统的滑动模态控制.广州大学学报(自然科学版),2002,1(2):63-67
    [50]孙作玉,何玉敖.结构振动的变阻尼半主动遗传控制算法.天津大学学报, 2000,33(1):29-32
    [51]何琦,何玉敖.毗邻结构变刚度变阻尼半主动控制.振动工程学报,2002,15(4):1-4
    [52] Jansen L M, Dyke S J. Semiactive control strategies for MR Dampers: Comparative study. Journal of Engineering Mechanics, 2000,126(8):795-803
    [53]邬拮华,楼文娟,陈勇,朱瑶宏.采用磁流变阻尼器的斜拉索半主动控制.同济大学学报:自然科学版, 2006,34(10):1309-1314
    [54]张春巍,欧进萍.结构振动的电磁驱动AMD系统控制策略与试验.噪声与振动控制,2006,26(5):9-13,40
    [55] Loch C H, lin P Y, Chun N H. Experimental verification of building control using active bracing system. Earthquake Engineering and Structural Dynamics,1999,28 (10):1099-1119
    [56] Yang J N, et al. Hybrid control of seismic-excited bridge Structure. Earthquake Engineering & Structural Dynamics,1995, 24(11):l437-1451
    [57] Venini P, Wen Y K. Hybrid vibration control of MD0F hysteretic structures with neural networks. Proc of First World Conf Struct Control. 1994, TA3,53-62
    [58] Nagashima I, Shinozaki Y. Variable gain feedback control technique of active mass damper and its application to hybrid structural control. Earthquake Engineering & Structural Dynamics, 1997,26: 815~838
    [59] Kelly J M, Leitlnann G, et al. Robust control of base-isolated structure under earthquake excitation. Journal of Optimization Theory and Applications,1987, 53(2): 159~180
    [60]潘颖,王超.基于Liapunov理论的结构非线性振动的混合控制.应用力学学报,2003,20(4):46-49
    [61]张旭红,周云,张善元.结构随机振动混合控制整体优化.工程力学,2003,20(1):37-41
    [62] Yang J N, Li Z, Danielians A, et al.Aseismic hybrid control of nonlinear and hysteretic structuresⅠ. J Engrg Mech ,1992,118(7):1423-1440
    [63] Yang J N, Li Z, Danielians A, et al.Aseismic hybrid control of nonlinear and hysteretic structures II. J Engrg Mech,1992,118(7):1441-1456
    [64] Yang J N, Li Z, Danielians A, et al.Control of Hysteretic System Using Velocity and Acceleration Feedbacks. Journal of Engineering Mechanics,1992,118(11):2227-2245
    [65] Yang J N, Li Z, vongchavalitkul S. Generalization of Optimal Control Theory, Linear and Nonlinear Control. Journal of Engineering Mechanics,1994,120 (2):266-283
    [66] Yang J N, Li Z, W u J C. Control of sliding-isolated buildings using dynamic linearization. Engrg Struc, 1994,16(6): 437-444
    [67] Suhardjo J. Nonlinear optimal control of a duffing system. lnt J Nonlinear Mech,1992,27(2l):157-172
    [68] Barbat A H, Rodellar J, Ryan E P, et al. Active control of nonlinear base-isolated buildings. Journal of Engineering Mechanics, 1995,121 (6):676-685
    [69] Utkin V I.Sliding Modes in Control Optimization. New York:Springer, 1992
    [70] Young K D. Variable Structure Control for Robotics and Aerospace Applications. New York: Elsevier, 1993
    [71]黄建文,赵斌.叠层橡胶支座基础隔震建筑的非线性时程分析.西安科技学院学报,2000,20(4)
    [72] Yang J N, Agrawal A K, Chen S. Optimal polynomial control for seismically excited nonlinear and hysteretic structures. Earthquake Engineering and Structural Dynamics,1996,25 (11): 1211-1230
    [73]马幼捷.直接反馈线性化(DFL)的理论体系研究.青岛大学学报:自科版,1997,10 (4)
    [74]曹建荣,虞烈等.磁悬浮电动机的状态反馈线性化控制.中国电机工程学报,2001,21(9):226,73
    [75] Klippel Wolfgang. Direct feedback linearization of nonlinear loudspeaker systems. Journal of the Audio Engineering Society, 1998,46 (6):499-507
    [76]李春文,冯元琨.多变量非线性控制的逆系统方法.北京:清华大学出版社,1991
    [77]李春文,苗原,冯元琨,杜继宏.非线性系统控制的逆系统方法(Ⅰ):单变量控制理论.控制与决策,1997,12 (5):529-535
    [78]李春文,苗原,冯元琨,杜继宏.非线性系统控制的逆系统方法(Ⅱ):多变量控制理论.控制与决策,1997,12 (6):625-630,642
    [79]李人厚等.智能控制理论和方法.西安:西安电子科技大学出版社,1999
    [80]吴建军,何玉敖.结构振动控制中神经网络应用的新进展.世界地震工程, 2000,16(1):10-19
    [81]张利芬.结构振动的智能控制算法及其仿真分析:[博士学位论文].哈尔滨:哈尔滨工业大学,2001
    [82] Chen H M, Tsai K H, Qi G Z, et al. Neural Network for Structure Control. Journal of Computing in Civil Engineering, 1995,9 (2):168-176
    [83] Wilamowski B M, Kaynak O, Iplikci S, et al. An Algorithm for Fast Convergence in Training Neural Networks. International Joint Conference on Neural Networks (IJCNN 01),Washington DC,2001: 1778-1782
    [84]赵弘,周瑞祥,林廷圻.基于Liebenberg -Marquardt算法的神经网络监督控制.西安交通大学学报,2002,36 (5):523-527
    [85]李少远,李柠.复杂系统的模糊预测控制及其应用.北京:科学出版社,2003
    [86]诸静.智能预测控制及其应用.杭州:浙江大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700