碳纤维布加固混凝土梁的高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维布(CFS)以其高强、轻质、耐久及施工便捷等优点,在混凝土结构加固领域得到了广泛应用。但碳纤维布及其与混凝土之间的环氧树脂类粘结材料在高温下会出现严重劣化,导致无防火保护的加固结构存在严重安全隐患。因此,积极开展碳纤维布加固混凝土结构的抗火性能研究,提出改善该类结构耐火性能的具体措施是十分必要的。本文从明火试验、数值模拟、参数分析和实用计算方法等方面,探讨了碳纤维布加固混凝土梁的火灾行为及耐火性能。本文主要工作如下:
     1.对4根碳纤维布抗弯加固混凝土梁和1根未加固对比梁进行了明火试验,前者碳纤维布表面涂抹有非膨胀型防火涂料。试验考察了梁跨中裂缝对受拉钢筋温度的影响,以及防火涂料厚度相对较薄时加固梁的破坏形态、高温变形和耐火极限。试验结果表明:(1)加固梁在达到耐火极限之前相当长一段时间内的挠度及裂缝宽度和深度较小,跨中裂缝对受拉钢筋温度影响有限;(2)混凝土的爆裂脱落可使加固梁的高温破坏位置发生显著改变;(3)在实际荷载比不大于0.5的情况下,即使防火涂料厚度较薄(10~20 mm),加固梁仍可达到2 h一级耐火要求。
     2.编制了设有防火保护层的碳纤维布加固混凝土梁的截面温度场计算程序,通过算例验证了程序的正确性。利用该程序,分析了防火材料类型及厚度、保护方式、截面尺寸对加固梁截面温度分布的影响。基于数值分析结果,提出了加固梁截面温度场的实用计算方法。研究结果表明:(1)除梁侧防火材料末端附近产生温度突变外,小U型防火保护方式下加固梁的截面温度分布总体上与底面防火保护方式下类似;(2)随着受火时间增加,梁底温度在底面防火材料的保护下虽然上升相对较缓,但也很快达到环氧类胶粘剂的失效温度;(3)与厚度相同的厚型钢结构防火涂料相比,水泥砂浆的防火保护效果明显偏弱。
     3.前期研究结果表明,常温下发生弯曲破坏的加固梁有可能在高温下出现破坏形态的转变,为此提出了高温下碳纤维布加固混凝土梁破坏形态转变临界状态(临界条件)的概念。利用编制的数值分析程序,针对常温下以弯曲破坏为主的加固梁,研究给出了相关参数(包括梁底防火保护层厚度、常温下构件抗剪承载力富裕程度、荷载比、加固量等)对加固梁破坏形态转变临界条件的影响规律,建立了该临界条件对应的参数表达式。在此基础上,提出了加固梁抗火设计的初步建议。研究结果表明,碳纤维布抗弯加固混凝土梁的底部防火涂料厚度应进行合理选择,以满足加固梁的耐火要求,同时避免出现高温剪切破坏。
     4.通过引入混凝土高温等效抗压强度,提出了碳纤维布加固混凝土梁高温抗弯承载力的一种简化计算方法。考察了防火涂料设置、碳纤维布加固量、受拉钢筋配筋率、混凝土保护层厚度等参数对加固梁高温抗弯承载力的影响规律,在此基础上建立了加固梁高温抗弯承载力随升温时间的定量衰减关系。研究结果表明:(1)利用该简化方法所得加固梁的耐火极限与试验结果吻合较好;(2)实际工程中梁侧防火涂料高度可以120 mm为限,在此范围内加固梁的高温抗弯承载力随着梁侧防火涂料高度的增加逐渐增大;(3)未设置防火涂料的加固梁要达到耐火极限2 h的要求较为困难;对于设置防火涂料的加固梁,即使涂料厚度只有10 mm,升温2 h后其抗弯承载力也比未设置时明显提高。
     5.开展了具有端部约束的碳纤维布加固混凝土梁的高温反应分析,初步揭示了轴向/转动约束刚度比、梁截面尺寸、跨度、荷载比、加固量、配筋率、保护层厚度和防火涂料厚度等参数对高温下约束加固梁的轴力及梁端弯矩的影响规律。通过大量数值分析,建立了高温下约束加固梁轴力和梁端弯矩的实用计算方法。研究结果表明:(1)随着升温时间增加,约束加固梁的轴力比总体呈现出先逐渐增大而后渐趋平缓甚至降低的趋势;(2)随着升温时间增加,约束加固梁的梁端弯矩总体呈现出先逐渐增大而后渐趋平缓的趋势;(3)防火保护(即使防火涂料厚度只有10 mm)对高温下约束加固梁梁端内力的影响非常明显。
Carbon fiber sheet (CFS) has received widespread attention around the world as a relatively new material and technology for strengthening and repair of reinforced concrete structures in the past two decades. Compared with traditional strengthening technologies, CFS exhibits several advantages, including good resistance to corrosion, ease of application, and excellent mechanical strength. Research results have indicated that, deterioration of mechanical and bond properties of CFS with increasing temperature could result in the behavior of unprotected CFS-strengthened concrete members decreasing, which posed a significant risk for fire safety of these structures. Thus, a more complete understanding of the fire behaviors of CFS-strengthened concrete structures is required. In this paper, the fire resistance of reinforced concrete beams strengthened with CFS exposed to fire is discussed, through fire test, numerical simulation, parameter analysis and practical calculation method. The main research works are included as follows:
     1. Test results of five concrete beams in fire are presented in this paper, four of which were strengthened with carbon fiber sheet and protected by passive fire insulation, and the other unstrengthened one was tested as a comparison. The primary objectives of these tests are to investigate the influence of flexural cracks at mid span on the temperatures of tensile reinforcements, and to evaluate the failure mode, deformation and fire resistance of the strengthened beams with relatively thin fire insulation. Test results show that: (1) the deflection and crack width and depth of the strengthened beams increase very slowly for a long duration of the fire, leading the effect of flexural cracks on the temperatures of tensile rebars very limited; (2) spalling and debonding of concrete may cause a change in the failure location of the strengthened beams in fire; and (3) in the case that the actual load ratio is not larger than 0.5, the fire endurance of a strengthened beam with relatively thin fire insulation (e.g., 10~20 mm) can meet the requirement of 2 h in the design code.
     2. A computer program is developed to calculate the temperature fields of insulated concrete beams strengthened with carbon fiber sheet. This program is validated using experimental results from literatures. The influences of some parameters (e.g., type of insulation material, thickness of insulation, insulation scheme, and sectional size of beam) on temperature distributions of the strengthened beams in fire are analyzed using this program. Based on the numerical results, a simplified formula is proposed to predict the temperature fields of the CFS strengthened and insulated beams in fire. Simulation results show that: (1) the thermal fields of the CFS strengthened beams with minor U-shape insulation are similar to those with insulation at beam soffit, expect for locations close to the top end of minor U-shape insulation at beam sides; (2) the temperatures at beam soffit increase slowly with an increasing of heating time due to the protection of fire insulation, but they reach the failure temperature of epoxy quickly; and (3) the insulating effect of cement motor is much weaker than that of fireproof dope for steel structures.
     3. It is shown that elevated temperature may cause a change in the failure mode of concrete beams strengthened with CFS, as flexural failure at room temperature can be transformed into shear failure in fire. Hereby, the concept of the critical situation (i.e., flexural failure and shear failure occur simultaneously at high temperature) of the strengthened beams is proposed. In this paper, an analysis procedure for flexural capacity and shear capacity of RC beams strengthened in flexure using CFS at high temperature is discussed and validated by test results from literatures. A parametric study is conducted for the critical situation of the strengthened beams with fire insulation. The influences of some parameters, such as span-to-height ratio, confinement ratio, rich degree of shear capacity, thickness of concrete cover, thickness of fire insulation, and strengthening ratio, on the tensile reinforcement ratio related to the critical situation are examined. Based on the aforementioned analysis procedure and extensive numerical results, an empirical expression between the tension reinforcement ratio and the aforementioned parameters is suggested for the critical situation, which can be used to predict the failure mode of the strengthened beams in fire. Some recommendations for fire safety design of the flexurally strengthened and insulated beams are discussed preliminarily. It is important to recognize that increasing of the thickness of fire insulation is not always good for the fire performance of the strengthened beams. A balance between increasing of the flexural capacity of a strengthened beam and enhancing of the critical tensile reinforcement ratio should be made by appropriately determining the thickness of fire insulation through a trial-and-error process.
     4. Using the concept of equivalent compressive strength of concrete at high temperature, a simplified method is proposed for calculation of the flexural capacity of concrete beams strengthened with externally bonded carbon fiber sheet and subjected to fire. Then, the influence of some parameters (e.g., insulation condition, strengthening ratio, steel ratio, and thickness of concrete cover) on the flexural capacity of the strengthened beams in fire is discussed. Based on extensive parametric analysis, a regressive formula is suggested for the relationship between the flexural capacity of the strengthened beams and the heating time. Simulation results show that: (1) the fire resistance of the strengthened beams obtained using the aforementioned simplified method is in good agreement with the test result; (2) the insulation height at beam sides should be less than 120 mm, and the flexural capacity of the strengthened beams increases with an increasing of the insulation height within a range of 0~120 mm; and (3) it will likely be very difficult to achieve a 2 h fire endurance rating for an uninsulated CFS-strengthened beam. However, the flexural capacity of strengthened beams insulated with only 10 mm layer of fire insulation is obviously higher than that without fire insulation after 2 h of exposure to the fire.
     5. The CFS-strengthened beams with elastic axial and rotational restraints at beam ends are selected for numerical parametric study, and the effect of some parameters (i.e., axial/rotational restraint ratio, section size, length, load ratio, strengthening ratio, reinforcement ratio, thickness of concrete cover and thickness of fire insulation, etc.) on the axial force and bending moment at the end in restrained beams are analyzed. Based on the extensive simulation results, practical calculation methods for axial force and bending moment at the end of beams subjected to fire are proposed. Simulation results show that: (1) for axially-and-rotationally end restrained beams in fire, the axial force ratio increases gradually first, then varies gently, and finally decreases gradually; (2) the bending moment at the end of beam increases to the peak first, then becomes gentle in fire; and (3) the variation of internal force of restrained beams strengthened with CFS with time is different from that without fire insulation, even with 10 mm of fire insulation.
引文
[1] Bisby L A, Green M F, Kodur V K R. Response to fire of concrete structures that incorporate FRP [J]. Progress in Structural Engineering and Materials, 2005, 7 (2): 136-149
    [2] Teng J G, Chen J F, Smith S T, Lam L. FRP strengthened RC structures [M]. John Wiley & Sons, Ltd, 2002
    [3] ISIS Design Manual No.4. Strengthening reinforced concrete structures with externally bonded fiber reinforced polymers [S]. Winnipeg: Intelligent Sensing for Innovative Structures Canada, 2001
    [4] ACI 440.2R-02. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [S]. Farmington Hills, MI: American Concrete Institute, 2002
    [5] Concrete Society Technical Report No.55. Design guidance for strengthening concrete structures using fiber composite materials [S]. The Concrete Society, 2004
    [6] Neale K. FRPs for structural rehabilitation: a survey of recent progress [J]. Progress in Structural Engineering and Materials, 2000, 2 (2): 129-262
    [7] CAN/CSA S806-02. Design and construction of building components with fiber reinforced polymers [S]. Ottawa: Canadian Standards Association, 2002
    [8]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M].天津:天津大学出版社, 2001
    [9] Ye L P, Lu X Z, Chen J F. Design proposals for the debonding strengths of FRP strengthened RC beams in the Chinese design code [A]. Proceedings, International Symposium on Bond Behavior of FRP in Structures [C]. Hong Kong, 2005.12: 55-62
    [10] Taljsten B. The importance of bonding– an historic overview and future possibilities [A]. Proceedings, International Symposium on Bond Behavior of FRP in Structures [C]. Hong Kong, 2005.12: 1-10
    [11] Teng J G, Smith S T, Yao J, Chen J F. Intermediate crack-induced debonding in RC beams and slabs [J]. Construction and Building Materials, 2003, 17: 447-462
    [12] Dai J G, Sato Y, Ueda T. Development of nonlinear bond stress slip model with a simple method [J]. Journal of Composite for Construction, ASCE, 2005, 9 (1): 52-62
    [13] Ueda T, Dai J G. Interface bond between FRP sheets and concrete substrates: properties, numerical modeling and roles in member behavior [J]. Progress in Structural Engineering and Materials, 2005, 7 (1): 27-43
    [14] Oehlers D J. Generic debonding mechanisms in FRP plated beams and slabs [A]. Proceedings, International Symposium on Bond Behavior of FRP in Structures [C]. Hong Kong, 2005.12: 35-44
    [15] Deniaud C, Cheng J J R. Shear behavior of reinforced concrete T-beams with externally bonded fiber-reinforced polymer sheets [J]. ACI Structural Journal, 2001, 98 (3): 386-394
    [16] Zhang G F, Kishi N, Mikami H, et al. A numerical prediction method for flexural behavior of RC beams reinforced with FRP sheet [A]. Proceedings, International Symposium on Bond Behavior of FRP in Structures [C]. Hong Kong, 2005.12: 223-228
    [17] Norris T, Saadatmanesh H. Shear and flexural strengthening of RC beams with carbon fiber sheets [J]. Journal of Structural Engineering, 1997, 123 (7): 903-911
    [18] Deifalla A, Ghobarah A. Simplified analysis for torsionaly strengthened RC beams using FRP [A]. Proceedings, International Symposium on Bond Behavior of FRP in Structures [C]. Hong Kong, 2005.12: 381-386
    [19] El-Mihilmy M T, Tedesco J W. Analysis of reinforced concrete beams strengthened with FRP laminates [J]. Journal of Structural Engineering, ASCE, 2000, 126 (6): 684-691
    [20] Colotti V, Spadea G, Shear strength of RC beams strengthened with bonded steel or FRP plates [J]. Journal of Structural Engineering, ASCE, 2001, 127 (4): 367-373
    [21] Colotti V, Spadea G, Swamy R N. A structural model to predict the failure behavior of plated RC beams [J]. Journal of Composites for Construction, ASCE, 2004, 8 (2): 1-19
    [22] Bencardino F, Spadea G, Swamy R N. The problem of shear in RC beams strengthened with CFRP laminates [J]. Construction and Building Materials, 2007, 21: 1997-2006
    [23] Teng J G, Lam L, Chan W, et al. Retrofitting of deficient RC cantilever slabs using GFRP strips [J]. Journal of Composites for Construction, ASCE, 2000, 4 (2): 75-84
    [24] Teng J G, Cao S Y and Lam L. Behavior of GFRP-strengthened RC cantilever slabs [J]. Construction and Building Materials, 2001, 15 (7): 339-349
    [25] Hisabe N, Sakai H, Otaguro H, et al. Flexural reinforcing effect of reinforced concrete slab strengthened with carbon fiber sheet under oscillation loading [A]. Non-Metallic (FRP) Reinforcement for Concrete Structures. Proceedings, Third International Symposium [C]. Sapporo, Japan, 1997: 335-342
    [26] Bisby L A, Dent A J S, Green M F. A comparison of models for FRP-confined concrete [J]. ACI Structural Journal, 2005, 102 (1): 62-72
    [27] Sheikh S A, Yao G. Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers [J]. ACI Structural Journal, 2002, 99 (1): 72-80
    [28] Challal O, Shahawy M. Performance of fiber-reinforced polymer-wrapped reinforced concrete column under combined axial-flexural loading [J]. ACI Structural Journal, 2000, 97 (4): 659-668
    [29]吴波,王维俊,王帆.碳纤维布加固钢筋混凝土柱的破坏曲率增大系数分析[J].工程力学, 2006, 23 (1): 130-138
    [30]赵彤,刘明国,谢剑等.碳纤维布用于改善斜向受力高强混凝土柱抗震性能的研究[J].土木工程学报, 2002, 35 (3): 13-19
    [31]李忠献,许成祥,景萌等.碳纤维布加固钢筋混凝土短柱的抗震性能试验研究[J].建筑结构学报, 2002, 23 (6): 41-48
    [32] El-Amoury T, Ghobarah A. Seismic rehabilitation of beam-column joint using GFRP sheets [J]. Engineering Structures, 2002, 24: 1397-1407
    [33] Ghobarah A, Said A. Shear strengthening of beam-column joints [J]. Engineer Structures, 2002, 24: 881-888
    [34] Ghobarah A, Said A. Seismic rehabilitation of beam-column joints using FRP laminates [J]. Journal of Earthquake Engineering, 2001, 5 (1): 113-129
    [35]陆洲导,谢莉萍,洪涛.碳纤维加固低配箍混凝土梁板柱节点的抗震试验[J].同济大学学报,2003, 31 (3): 253-257
    [36]吴波,王维俊.碳纤维布加固钢筋混凝土框架节点的抗震性能试验研究[J].土木工程学报, 2005, 38 (4): 60-65
    [37] CECS146-2003.碳纤维片材加固混凝土结构技术规程[S].北京:中国计划出版社, 2003
    [38] Apicella F, Imbrogno M. Fire performance of CFRP-composites used for repairing and strengthening concrete [A]. Materials and Construction: Exploring the Connection. Proceedings, 5th ASCE Materials Engineering Congress [C]. New York: American Society of Civil Engineers, 1999: 260~266
    [39] Bisby L A, Kodur V K R, Green M F. Fire endurance of fiber-reinforced polymer-confined concrete columns [J]. ACI Structural Journal, 2005, 102 (6): 883-891
    [40] Bisby L A, Green M F, Kodur V K R. Modeling the behavior of fiber reinforced polymer-confined concrete columns exposed to fire [J]. Journal of Composites for Construction, ASCE, 2005, 9 (1): 15-24
    [41] Bisby L A. Fire behavior of fiber-reinforced polymer (FRP) reinforced or confined concrete [D]. PHD Thesis, Department of Civil Engineering, Queen’s University, Kingston, Ontario, Canada, 2003
    [42] Williams B K. Fire performance of FRP-strengthened reinforced concrete flexural members [D]. PHD Thesis, Department of Civil Engineering, Queen’s University, Kingston, Ontario, Canada, 2004
    [43]吴波,万志军.碳纤维布抗弯加固钢筋混凝土梁的耐火性能试验[J].华南理工大学学报, 2009, 37 (8): 76-88
    [44]高皖扬,胡克旭,陆洲导. FRP结构火灾研究趋势与进展[A].第四届全国钢结构防火及防腐技术研讨会暨第二届全国结构抗火学术交流会论文集[C].上海, 2007: 408-422
    [45] ACI 440.1R-04. Guide for the design and construction of concrete reinforced with FRP bars [S]. Farmington Hills, MI: American Concrete Institute, 2004
    [46]唐龙贵.碳纤维的抗氧化处理[J].高等学校化学学报, 1995, 16 (8): 1301-1305
    [47] Rostasy F. Fiber composite elements and techniques as nonmetallic reinforcement of concrete [R]. Evaluation of Potential and Production Technologies of FRP, Technical Report Task 1, 1992
    [48] Blontrock H, Taerwe L, Matthys S. Properties of fiber reinforced plastics at elevated temperatures with regards to fire resistance of reinforced concrete members [A].Proceedings, 4th International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures [C]. Baltimore, American Concrete Institute (ACI), 1999: 43-54
    [49] Kumahara S, Masuda Y, Tanano Y. Tensile strength of continuous fiber bar under high temperature [A]. In: Nanni A, Dolan CW, editor. Proceedings, International Symposium on Fiber-Reinforced-Plastic Reinforcement for Concrete Structures [C]. American Concrete Institute (ACI), 1993: 731-742
    [50]吴波,万志军.碳纤维布及胶粘剂的高温强度研究[A].第三届全国钢结构防火及防腐技术研讨会暨第一届全国结构抗火学术交流会论文集[C].福州, 2005.11: 386-394
    [51] Katz A, Berman N. Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete [J]. Cement & Concrete Composites. 2000, 22: 433-443
    [52] Plecnik J. Temperature effects on epoxy adhesives [J]. Journal of Structural Engineering, ASCE, 1986, 106 (1): 99-113
    [53]曾春华.高温环境下粘钢加固钢筋混凝土梁正截面抗弯性能研究[D].南京:东南大学, 2001
    [54] Klamer E L, Hordijk D A, Janssen H J M. The influence of temperature on the debonding of externally bonded CFRP [S]. SP-230-88, fib-Task Group 9.3, 2002: 1551-1570
    [55] Tadeu A J B, Branco F J F G. Shear tests of steel plates epoxy-bonded to concrete under temperature [J]. Journal of Materials in Civil Engineering, 2001, 12 (1): 74-80
    [56] Deuring M. Brandversuche an nachtraglich verstarkten tragern aus beton [R]. Research Report EMPA No. 148'795. Dubendorf: Swiss Federal Laboratories for Materials Testing and Research, 1994
    [57] Blontrock H, Taerwe L, Vandevelde P. Fire testing of concrete slabs strengthened with fiber composite laminates [A]. Proceedings, 5th Annual symposium on Fiber-Reinforced-Plastic for Concrete Structures [C]. London: Thomas Telford, 2001: 547~556
    [58] Blontrock H, Taerwe L, Vandevelde P. Fire tests on concrete beams strengthened with fiber composite laminates [A]. Third PHD Symposium [C]. Vienna, 2000
    [59]高皖扬.碳纤维加固混凝土梁耐火试验研究与理论分析[D].上海:同济大学, 2007
    [60]吴波,王军丽.碳纤维布加固钢筋混凝土板的耐火性能试验研究[J].土木工程学报, 2007, 40 (6): 26-41
    [61]李国强,蒋首超,林桂祥.钢结构抗火计算与设计[M].北京:中国建筑工业出版社, 2000
    [62]徐福泉.碳纤维布加固钢筋混凝土梁静载性能研究[D].北京:中国建筑科学研究院, 2001
    [63]胡克旭,何桂生.碳纤维加固钢筋混凝土梁防火方法试验研究[J].同济大学学报, 2006, 34 (11): 1451-1456
    [64]蒋首超,徐小洋,赵蕾等.钢结构防火涂料等效热传导系数的确定[J].四川建筑科学研究, 2004, 30 (3): 114~116
    [65] Williams B K, Kodur V K R, Bisby L A, et al. The performance of FRP-strengthened concrete slabs in fire [A]. Proceedings, 4th International Conference on Advanced Composites Materials in Bridges and Structures [C]. Calgary, AB, 2004: CD-ROM
    [66] Williams B K. Bisby L A, Kodur V K R. Fire insulation schemes for FRP-strengthened concrete slabs [J]. Composites Part A: applied science and manufacturing, 2005: 1~10
    [67] Williams B K. Bisby L A, Kodur V K R, et al. Fire insulation schemes for FRP-strengthened concrete slabs [J]. Composites Part A: applied science and manufacturing, 2006, 37: 1151~1160
    [68] Williams B K, Bisby L A, Green M F, et al. An investigation of the fire behavior of FRP-strengthened reinforced concrete beams [A]. Proceedings, Structural Faults & Repair [C]. Edinburgh, 2003: CD-ROM
    [69] Chowdhury E U, Bisby L A, Green M F, et al. Residual behavior of fire-exposed reinforced concrete beams prestrengthened in flexure with fiber-reinforced polymer sheets [J]. Journal of composites for construction, ASCE, 2008, 12 (1): 61-68
    [70] Bisby L A, Green M F, Kodur V K R. Fire behaviour of FRP-wrapped reinforced concrete columns [A]. Proceedings, Structural Faults & Repair [C]. Edinburgh: Engineering Technics Press, 2001, CD-ROM
    [71] Bisby L A, Kodur V K R, Green M F. Performance in fire of FRP-confined reinforced concrete columns [A]. Proceedings, 4th International Conference on Advanced Composite Materials in Bridges and Structures [C]. Calgary: AB, 2004, CD-ROM
    [72] Bisby L A, Green M F, Kodur V K R. Fire behavior of reinforced concrete columns confined with fiber-reinforced polymers [A]. Proceedings, Advanced Polymer Composites for Structural Applications in Construction [C]. Cambridge, UK, 2004: 465~472
    [73] Bisby L A, Williams B K, Green M F, Kodur V K R. Studies on the fire behavior of FRP reinforced and/or strengthened concrete members [A]. Proceedings, 2nd International Conference on Durability of Fibre Reinforced Polymer (FRP) Composites for Construction [C]. Sherbrooke, QC, 2002: 405~417
    [74] Green M F, Bisby L A, Fam A Z, et al. FRP confined concrete columns: behaviour under extreme conditions [J]. Cement & Concrete Composites, 2006, 28: 928-937
    [75] Chowdhury E U, Bisby L A, Green M F, et al. Investigation of insulated FRP-wrapped reinforced concrete columns in fire [J]. Fire Safety Journal, 2007, 42: 452-460
    [76] Kodur V K R, Bisby L A and Green M F. Experimental evaluation of the fire behaviour of insulated fibre-reinforced-polymer-strengthened reinforced concrete columns [J]. Fire safety Journal, 2006, 41: 547-557
    [77] Barnes R, Fidell J. Performance in fire of small-scall CFRP strengthened concrete beams [J]. Journal of composites for construction, ASCE, 2006, 10 (6): 503-508
    [78]吴波,林忠明.具有端部约束的碳纤维布加固混凝土梁的耐火性能试验[J].建筑结构学报, 2009, 30 (6): 34-43
    [79]高皖扬,胡克旭,陆洲导.火灾下碳纤维布加固钢筋混凝土梁非线性分析[J].同济大学大学学报, 2009, 37 (5): 575-582
    [80]万志军.碳纤维布抗弯加固钢筋混凝土梁的耐火性能研究[D].广州:华南理工大学, 2006
    [81]王军丽.碳纤维布加固钢筋混凝土板的耐火极限分析[D].广州:华南理工大学, 2007
    [82]高皖扬,胡克旭,陆洲导.火灾下碳纤维加固混凝土梁温度场分析[J].武汉理工大学学报, 2008, 30 (11): 94-98
    [83]曾志长,李耀庄,唐毓等.火灾高温下CFRP加固钢筋混凝土梁温度场分析[J].防灾减灾工程学报, 2008, 28 (1): 110-116
    [84]王李果,陆洲导,绳钦柱.采用碳纤维加固火灾后预应力混凝土框架的试验研究[J].火灾科学, 2003, 12 (4): 218~223
    [85]张焱.火灾后钢筋混凝土梁碳纤维布加固试验研究[D].长沙:中南大学, 2003
    [86]徐志胜,张威振.火灾作用后CFRP加固钢筋混凝土梁的试验研究及数值分析[J].铁道科学与工程学报, 2004, 1 (2): 79-83
    [87]欧阳震宇.火灾后钢筋混凝土梁碳纤维布加固性能分析及数值计算[D].长沙:中南大学, 2003
    [88]徐志胜,冯凯,张威振等. CFRP加固钢筋混凝土梁火灾后的试验研究[J].哈尔滨工业大学学报, 2005, 37 (1): 98-100
    [89]徐志胜,郭新伟,张焱.碳纤维布加固火灾后足尺钢筋混凝土梁的试验研究[J].火灾科学, 2005, 14 (1): 35-39
    [90]李耀庄,唐义军.碳纤维布加固高温作用后的连续梁试验研究和功能可靠度分析[J].火灾科学, 2005, 14 (4): 234-238
    [91] Saafi M, Romine P. Effect of fire on concrete cylinders confined with GFRP [A]. Preceedings, 2nd International Conference on Durability of Fiber Reinforced Polymer (FRP) Composites for Construction [C]. Sherbroole, 2002: 512~521
    [92] Cleary D B, Cassino C D, Tortorice R. Effect of elevated temperature on a fiber composite used to strengthen concrete columns [J]. Journal of Reinforced Plastics and Composites, 2003, 22 (10): 881~895
    [93] Kodur V K R, Bisby L A, Green M F. Preliminary guidance for the design of FRP-strengthened concrete members exposed to fire [J]. Journal of Fire Protection Engineering, 2007,17 (1): 5-26
    [94] Nofal N M, Hamdy G A. Effect of fire protection materials on FRP strengthened concrete axial compression members [J]. Journal of Engineering and Applied Science, 2005, 52 (6): 1123-1141
    [95] Han L H, Zheng Y Q, Teng J G. Fire resistance of RC and FRP-confined RC columns [J]. Magazine of Concrete Research. 2006, 58 (8): 533-546
    [96] GBJ16-2001.建筑设计防火规范[S].北京:中国标准出版社, 2001
    [97] NRC 1995. National building code of Canada 1995 [S]. Ottawa: National Research Council of Canada, 1995
    [98] Kodur V K R. Fire resistance requirements for FRP structural members [A]. Preceedings, Annual Conference of the Canadian Society for Civil Engineering [C]. Regina, Saskatchewan, 1999: 83-95
    [99] CAN/ULC-S101-M89. Standard methods of fire endurance tests of building construction and materials [S]. Scarborough, Ontario: Underwriters’Laboratories of Canada, 1989
    [100] ASTM Standard E119. Standard test methods for fire tests of building construction and materials [S]. West Conshohocken: American Society for Testing of Materials, 2002
    [101]高皖扬,陆洲导,张克纯.基于温度判据的FRP加固混凝土梁耐火极限研究[J].华中科技大学学报, 2008, 25 (3): 78-81
    [102] GB/T9978.6-2008.建筑构件耐火试验方法[S].北京:中国标准出版社, 2008
    [103]傅宇方,黄玉龙,潘智生,唐春安.高温条件下混凝土爆裂机理研究进展[J].建筑材料学报, 2006, 9 (3): 323-329
    [104] Kristensen L, Hansen T C. Cracks in concrete core due to fire or thermal heating shock [J]. ACI Materials Journal, 1994, 91 (5): 453-459
    [105]孔详谦.有限单元法在传热学中的应用[M].第三版.北京:科学出版社, 1998
    [106] Griffis C A, Masumura R A, Chang C I. Thermal response of graphite epoxy composite subjected to rapid heating [A]. Environmental Effects on Composite Materials [C]. Lancaster, Pennsylvania: Technomic Publishing Company, 1984, 2: 245-260
    [107] Lie T T. Structural fire protection [M]. Reston, Virginia: American Society of Civil Engineers manual and reports on engineering practice No.78. New York, NY, U.S.A: ASCE, 1992
    [108] Eurocode No.2. Design of concrete structures [S]. Commission of the European Communities, 1990
    [109] CECS24: 90.钢结构防火涂料应用技术规范[S].北京:中国计划出版社, 1990
    [110]贺军利,钟善桐.钢管混凝土柱耐火保护层厚度的计算[J].哈尔滨建筑大学学报, 1999, 32 (5): 29-33
    [111] Lie T T, Stringer D C. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete [J]. Canadian Journal of Civil Engineering, 1994, 21 (3): 382-385
    [112]陆洲导,朱伯龙.一种预测钢筋混凝土梁耐火时间的方法[J].建筑结构学报, 1997, 18 (1): 41-48
    [113] Lie T T, Celikkol B. Method to calculate the fire resistance of circular reinforced concrete columns [J]. ACI Materials Journal, 1991, 88 (1): 84-91
    [114] GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社, 2001
    [115] Bisby L A, Kodur V K R. Evaluating the fire endurance of concrete slabs reinforced with FRP bars: Considerations for a holistic approach [J]. Composites Part B: applied science and manufacturing, 2007, 38 (5-6): 547-558
    [116] Abbasi A, Hogg P J. Prediction of the failure time of glass fiber reinforced plastic reinforced concrete beams under fire conditions [J]. Journal of Composites for Construction, 2005, 9 (5): 450-457
    [117]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社, 2003
    [118] Terro M J. Numerical modeling of the behavior of concrete structures in fire [J]. ACI Structural Engineering, 1998, 95 (2): 183-193
    [119] EN 1992-1-2. Eurocode 2: design of concrete structures, Part 1-2: general rules-structural fire design [S]. Brussels: Commission of the European Communities, 2004
    [120] Gamage J C P H, Mahaidi R A, Wong M B. Bond characteristics of CFRP plated concrete members under elevated temperatures [J]. Mechanics of Composite Materials, 2001, 37 (4): 327-338
    [121]吴波,洪洲.钢筋混凝土简支梁的耐火极限[J].华南理工大学学报, 2006, 34 (7): 82-87
    [122] Mohamed S. Effect of fire on FRP reinforced concrete members [J]. Composite Structures, 2002, 58: 11-20
    [123]査晓雄,钟善桐.钢筋混凝土受压构件防火性能的非线性分析[J].哈尔滨工业大学学报, 2002, 34 (3): 289-293
    [124]徐玉野.钢筋混凝土柱在高温下的数值模拟[J].建筑科学, 2005, 21 (6): 41-44
    [125]卢锦钟.约束钢筋混凝土框架的抗火性能研究[D].广州:华南理工大学, 2009
    [126] Wu B, Lu J Z. A numerical study of the behaviour of restrained RC beams at elevated temperatures [J]. Fire Safety Journal, 2009, 44 (4): 522-531
    [127]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[D].北京:清华大学, 1992
    [128]吴波,何喜洋.高温下钢筋混凝土框架的内力重分布研究[J].土木工程学报, 2006, 39 (9): 54-61
    [129] Dwaikat M B, Kodur V K R. A numerical approach for modeling the fire induced restraint effects in reinforced concrete beams [J]. Fire Safety Journal, 2008, 43 (4): 291-307
    [130]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700