偏心结构利用调液阻尼器减震控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无论从理论分析还是从震害现象看,结构在地震作用下的反应,除了发生平移振动外,还可能会发生扭转振动。引起扭转振动的原因,一是地面运动存在转动分量,或地震时地面各点的运动存在着相位差;二是结构本身存在偏心,即结构的质量中心与刚度中心不相重合。震害表明,扭转作用会加重结构的破坏,尤其是对于偏心结构,在某些情况下将成为导致结构破坏的主要因素。因此,偏心结构在地震作用下的扭转耦联振动的控制问题有很重要的实际应用意义。本论文以此为背景,利用调液阻尼器来控制偏心结构在地震作用下的扭转耦联振动,主要进行了以下几方面的研究工作:
     (1) 环形调液阻尼器对结构平移—扭转耦联振动控制的参数研究。首先建立起环形调液阻尼器(CTLCD)的运动方程,基于等价线性化的原则,将环形调液阻尼器的非线性阻尼线性化。对纯扭转振动情况下,对环形调液阻尼器的最优参数问题进行研究,得到了解析表达式。分别针对结构的纯扭转振动和扭转耦联振动,推导出等效阻尼比的表达式,分析了控制系统的参数对控制效果的影响。结果表明,环形调液阻尼器是一种有效的扭转振动控制装置。
     (2) 提出了利用调液柱型阻尼器(TLCD)和环形调液阻尼器(CTLCD)来控制偏心结构在双向地震动作用下扭转耦联振动的方法。利用随机振动理论,推导出调液阻尼器—结构体系在地震作用下随机响应的表达式。基于遗传算法,给出了控制系统的相关参数的优化设计方法。计算结果表明,当优化的目标函数考虑到结构每个自由度的反应时,结构的平移反应和扭转反应都能得到有效控制。
     (3) 以一个8层偏心钢结构为算例,在结构顶层沿两个主轴方向正交放置两个TLCD,并在结构质心处安放一个CTLCD。基于本文给出的优化目标函数和遗传优化算法,对调液阻尼器的参数进行优化设计。最后,在时域内分析调液阻尼器对结构扭转耦联振动的减振作用。分析结果表明,合理设计调液阻尼器的有关参数,能使其有效控制结构的平-扭耦联振动。
     (4) 进行了振动台试验,以验证调液阻尼器的减振控制作用。设计了一个二层的单向偏心钢结构模型,在结构的顶层放置一个TLCD和一个CLTCD,在振动台上,分别对结构无控时的反应和设置调液阻尼器后的反应进行试验研究,结果表明,调液阻尼器能有效抑制结构的在地震作用下的扭转耦联振动。
     (5) 对环形调液阻尼器减振控制中的拍现象进行研究。分析了环形调液阻尼器对结构纯扭转振动控制中的拍现象,分别考虑无阻尼结构体系、主体结构有阻尼而
From theoretical analysis and seismic disasters, it can be concluded that the seismic response is not only in translational direction, but also in torsional direction. There are two reasons that are responsible for the torsional response of structures. First, there exists torsional component for the motion of ground or phase delay for the different sites of ground under earthquake. Second, structures exist eccentricity for the inconsistency between the center of mass and stiffness. The torsional component can aggravate the destroy of structures especially for the eccentric structures. So, the control problem of eccentric structures under earthquake is very important The thesis focus on the seismic response control of eccentric structures using tuned liquid dampers and the main contents are summarized as follow:(1) The parameters of Circular Tuned Liquid Column Dampers (CTLCD) are analyzed. The motion of equation for CTLCD is established and the nonlinear damping of CTLCD is equivalently linearized. The optimal parameters of CTLCD under purely torsional condition are studied and the equation of the optimal frequency ratio and damping ratio are derived. The expression of equivalent damping ratio for purely torsional vibration and torsionally coupled vibration is acquired. The effects of parameters of controlled system on the equivalent damping are analyzed. The results show that CTLCD is an effective control device on torsional response.(2) The control method for eccentric buildings using TLCD and CTLCD under seismic is presented. The expression of stochastic response of torsionally coupled system is derived. The optimization method for the parameters of liquid dampers is given based on Genetic Algorithm. The results show that the liquid dampers with optimal parameters can effectively reduce the translational and torsional response of eccentric buildings if the objective function of optimization is selected to consider each degree of freedom.(3) A 8-story eccentric steel building, with two TLCDs on the orthogonal direction and one CTLCD on the mass center of the top story, is analyzed. The optimal parameters of liquid dampers are optimized by Genetic Algorithm. The structural response with and without liquid dampers under bi-directional earthquakes are calculated. The results show that the torsionally coupled response of structures can be effectively suppressed by liquid dampers with optimal parameters.
    (4) The shake table test was carried to verify the control effect of liquid dampers to eccentric buildings. A steel model of building with eccentricity only in one direction was designed. One TLCD and CTLCD were placed on the top story of experimental model. The building mode with and without liquid dampers were experimented on the shake table. The experimental results show that the liquid dampers can effectively suppress the torsionally coupled response of eccentric buildings.(5) The beat phenomenon for the vibration control using CTLCD is studied. The undamped control system, linearly damped structure with undamped CTLCD and damped control system, are analyzed respectively to understand the beat phenomenon from a mathematical point of view. The results show that the beat phenomenon on the free vibration of structure can be disappeared for CTLCD with higher damping. The transient response of the structure can not be degraded promptly when beat phenomenon appears, so there would be large errors if only consider the stead response of structure.(6) A novel control law for semi-active tuned liquid dampers, market-based control (MBC) is presented. The equation of motion for structure-TLCD control system is established the MBC semi-active control strategy is illustrated. The results indicate that MBC semi-active TLCD control method facilitates reducing structural vibration with a lower energy expenditure and the control effect is better than passive TLCD.(7) To improve the performance of passive adjustable frequency TLCD, Semi-active Variable Stiffness Tuned Liquid Column Damper (SAVS-TLCD) is presented, with the stiffness of additional spring online adjustable. The state of stiffness can be ON or OFF according to the requirements of control system during the vibration. The results indicate that SAVS-TLCD has larger frequency width of reduction and can still be effectiveness if there is a little error between the frequency of TLCD and the structure.
引文
[1] 李宏男主编.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [2] Yao J T P. Concept of structural control. ASCE Journal of the Structural Division, 1972, 98(ST7): 1567-1574.
    [3] 周福霖.工程结构减振控制.北京:地震工程出版社,1997.
    [4] 李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112.
    [5] 李宏男.结构振动控制实践的新进展.世界地震工程,1995,11(2):34-39.
    [6] 唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993年.
    [7] 朱宏平,唐家祥.叠层橡胶隔震支座的振动传递特性.工程力学,1995,12(4):109-114.
    [8] 唐家祥,李黎,李英杰等.叠层橡胶基础隔震房屋结构设计与研究.建筑结构学报,1996,17(2):37-47.
    [9] 徐忠根,周福霖.我国首栋橡胶垫隔震住宅楼动力分析.世界地震工程,1996,12(1):38-42.
    [10] 刘文光,周福霖,庄学真等.铅芯夹层橡胶隔震垫基本力学性能研究.地震工程与工程振动,1999,19(1):93-99.
    [11] 李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究.建筑结构学报,2003,24(2):14-19.
    [12] 中华人民共和国国家标准(GB50011-2001).建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [13] 施卫星,李正升.建筑结构基础隔震系统的发展及应用.结构工程师,1997,13(1):14-18.
    [14] 杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题.力学进展,2003,33(3):302-312.
    [15] 张克猛,范晓军,黄幼玲.一种新型隔震器的研制.西安交通大学学报,2002,36(1):7073.
    [16] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of N. Z. society for Earthquake Engineering. 1972, 5(3): 63-88.
    [17] 邢书涛,郭迅.一种新型软钢阻尼器力学性能和减震效果的研究.地震工程与工程振动,2003,23(6):179-186。
    [18] 李冀龙,欧进萍.X形和三角形钢板阻尼器的阻尼力模型(Ⅰ)——基于双线性本构关系.世界地震工程,2004,20(1):10-16.
    [19] 李玉顺,沈世钊.安装软钢阻尼器的钢框架结构抗震性能研究.哈尔滨工业大学学报,2004,36(12):1623-1626.
    [20] Pall, A S, and Marsh, C. Response of friction damped braced frames. ASCE Journal of the Structural Division, 1982, 108(6): 1313-1323.
    [21] 吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65.
    [22] 吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003,24(2):7-13.
    [23] 吴斌,张纪刚,欧进萍.Pall型摩擦阻尼支撑内力计算方法.世界地震工程,2004,20(2):6-11.
    [24] 吴波,李惠.液压粘弹性控制系统对建筑结构抗震控制的研究.地震工程与工程振动,1996,16(2):67-75.
    [25] 周云,刘季.粘弹性阻尼器结构的抗震设计方法.世界地震工程,1996,12(1):23-31.
    [26] 吴波,郭安薪.设有粘弹性阻尼器的结构体系的受力分析.世界地震工程,1998,14(3):6-14.
    [27] 徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型.工程力学,2001,18(6):88-93.
    [28] 魏文晖,瞿伟廉.设置FVD框架结构的非线性地震反应控制研究.东南大学学报(自然科学版),2004,34(13):386-389.
    [29] 陈月明.建筑结构的粘弹阻尼振动控制:(博士学位论文).哈尔滨:哈尔滨建筑大学博士论文,1998.
    [30] 宋智斌.消能技术在抗震加固中的研究与应用.第六届全国地震工程学术会议,南京,2002.
    [31] Soong, T T, Dargush, G F. Passive energy dissipation systems in structural engineering, New York: John Wley & Sons, 1997.
    [32] Sladek J R, Klingner R E. Effect of tuned-mass dampers on seismic response. Journal of Structural Engineering, 1983, 109(8): 2004-2009.
    [33] Xu Y L, Kwok K C S. Semianalytical method for parametric study of tuned mass dampers. Journal of Structural Engineering, ASCE, 1994, 20(3): 747-764.
    [34] Chen G D, Wu J N. Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-story building structure. Earthquake Engineering and Structural Dynamics, 2003, 32(5): 793-810.
    [35] Miranda, J C. On tuned mass dampers for reducing the seismic response of structures. Earthquake Engineering and Structural Dynamics, 2005, 34(7): 847-865.
    [36] Sadek F, Mohraz B, Taylor A W et al. Method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering and Structural Dynamics, 1997, 26(6): 617-635.
    [37] Loh C H, Chem W Y. Seismic effectiveness of active tuned mass dampers for the control of flexible structures. Probabilistie Engineering Mechanics, 1994, 9(4): 225-234.
    [38] Ghosh A, Basu, B. Effect of soil interaction on the performance of tuned mass dampers for seismic applications. Journal of Sound and Vibration, 2004, 274 (3-5): 1079-1090.
    [39] Wu J N, Chen G D, Lou, M L. Seismic effectiveness of Tuned Mass Dampers considering soil-structure interaction. Earthquake Engineering and Structural Dynamics, 28(11): 1219-1233.
    [40] 胡继军,黄金枝,李春样等.网壳—TMD风振控制分析.建筑结构学报,2001,22(3):31-35.
    [41] 叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计.振动工程学报,2000,13(3):376-384.
    [42] 孙树民.自立式独柱平台的TMD减震控制研究 中国海洋平台,2000,15(6):6-9.
    [43] Lin Y Y, Cheng C M, Lee C H. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges. Engineering Structures, 2000, 22(9): 1195-1204.
    [44] Rana R, Soong T T. Parametric study and simplified design of tuned mass dampers. Engineering Structures, 1998, 20(3): 193-204.
    [45] 李国强,陈素文,李杰等.上海金茂大厦结构动力特性测试.建筑结构学报,2000,33(2):35-39.
    [46] Chen G D, Wu J N. Optimal placement of multiple tune mass dampers for seismic structures. Journal of Structural Engineering, 2001, 127(9): 1054-1062.
    [47] 蔡国平,孙峰,黄金枝.MTMD控制结构地震反应的特性研究.工程力学,2000,17(3):55-59.
    [48] 李春祥.地震作用下高层钢结构的最优MTMD控制策略及设计.计算力学学报.2002,19(1):83-88.
    [49] Vandiver J K, Mitome S. Effect of liquid storage tanks on the dynamic response of offshore platforms. Journal of Petroleum Technology, 1979, 31(10): 1231-1240.
    [50] Lee S C, Reddy D V. Frequency tuning of offshore platform by liquid sloshing. Applied Ocean Research, 1982, 4(4): 226-231.
    [51] Kareem A, Sun W J. Stochastic response of structure with fluid-containing appendages. Journal of Sound and Vibration, 1987, 119(3): 189-408.
    [52] Fujino Y. Tuned liquid damper (TLD) for suppressing horizontal motion of structure. ASCE Journal of Engineering Mechanics, 1992; 118(10): 2017-2030.
    [53] Fujino Y, Sun L M. Vibration control by multiple tuned liquid dampers (MTLDs). Engineering Mechanics, 1993, 119(12): 3482-3502.
    [54] Fujii K, Tamura Y. Wind-induced vibration of tower and practical applications of tuned sloshing damper. Journal of Wind Engineering and Industrial Aerodynamics, 1990(33): 263-272.
    [55] Dirithy R, Jinkyu Y, Harry Y. et al. Investigation of tuned liquid dampers under large amplitude excitation. Journal of Engineering Mechanics, 1998, 124(4): 405-413;
    [56] Koh H M, Kim J K, Park J H. Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results. Earthquake Engineering and Structural Dynamics, 1998, 127(2): 109-124.
    [57] Reed D, Yeh H, Yu J et al. Tuned liquid dampers under large amplitude excitation. Journal of Wind Engineering and Industrial Aerodynamics. 1998, (74-76): 923-930.
    [58] 李宏男,阎石,贾连光.利用调液阻尼器减振的结构控制研究进展.地震工程与工程振动,1995,15(3):99-110.
    [59] 李宏男,张玲,杨玉石.利用多个调液阻尼器减小高层建筑地震反应的研究.地震工程与工程振动,1997,17(1):23-31.
    [60] 瞿伟廉,宋波,陈研桂等.TLD对珠海金山大厦主楼风振控制设计.建筑结构学报,1995,16(3):21-36.
    [61] 王翎羽,陈星,安国亭等.矩形TLD减振作用的定量分析方法,建筑结构学报,1995,16(3):29-36.
    [62] 张顺宝.TLD装置风振控制实用设计计算及比较.工程力学,1998,15(增刊):185-189.
    [63] 李书进,李桂青.圆柱形浅水TLD对高柔结构风振反应控制的研究.工程力学,1998,15(增刊):42-46.
    [64] 钱稼如,Warnitchai, P.用TLD减小电视塔动力反应的振动台实验研究.建筑结构学报,1995,16(5):32-39.
    [65] 程文壤,瞿伟廉,陆勤等.南京电视塔的风振控制.土木工程学报,1993,26(4):14-20.
    [66] Okubo H, Komatsu N, Tsumura, T. Tendon control system for active shape control of flexible space structures. Journal of Intelligent Material Systems and Structures. 1996, 7(4): 470-475.
    [67] Chang J C H, Soong T T. Structural control using active tuned mass dampers. ASCE Journal of Engineering Mechanics Division, 1980, 106(6): 1091-1098.
    [68] Aizawa S, Fukao Y, Minewaki S et al. An experimental study on the active mass damper. Proceedings of 9th World Conference on Earthquake Engineering, 5: 871-876.
    [69] 欧进萍.结构振动控制——主动、半主动和智能控制.北京:科学出版社,2003年.
    [70] 宋根由.结构主动控制(AMD)系统实验与分析:(博士学位论文).哈尔滨:哈尔滨工业大学,1996.
    [71] 田石柱,刘季.结构模型的AMD主动控制实验.地震工程与工程振动,1999,19(4):90-94.
    [72] 欧进萍,王刚,田石柱.海洋平台结构的AMD主动控制试验研究.高技术通讯,2002,12(10): 85-90.
    [73] Cao H, Reinhom A M, Soong T T. Design of an active mass damper for a tall TV tower in Nanjing, China. Engineering Structures, 1998, 20(3), 134-143.
    [74] Kobori T, Takahashi M, Nasu T et al. Seismic response controlled structure with active variable stiffness system. Earthquake Engineering and Structural Dynamics, 1993, 22(11): 925-941.
    [75] 周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究.广州大学学报(自然科学版),2002,1(1):69-74.
    [76] 吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法.振动工程学报,2003,16(3):306-310.
    [77] 吴波,刘汾涛,魏德敏.变刚度半主动控制结构的拟振型分解法.华南理工大学学报(自然科学版),2002,30(9):85-90.
    [78] 何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报,2000,21(3):53-59.
    [79] 李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,2000,20(4):96-100.
    [80] 李敏霞,刘季.变刚度半主动结构振动控制的试验研究.地震工程与工程振动,1998,18(4):90-95.
    [81] 李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析.振动与冲击,1999,18(2):81-83.
    [82] Karnopp D, Crosby M J, Harwood R A. Vibration Control using semi-active force generators. Journal of Engineering for Industry, 96(2): 619-626.
    [83] Kawashima K, Unjoh S, Iida H et al. Effectiveness of the variable damper for reducing seismic response of highway bridges. Proceedings of Second US-Japan Workshop on Earthquake Protective Systems for Bridges, Tsukuba Science City, Japan, 1992.
    [84] Symans M D, Constantinou M C, Taylor D P et al. Semi-active fluid viscous dampers for seismic response control. Proceedings of First World Conference on Structural Control, Pasadena, 1994.
    [85] Patten W N. New life for the Walnut Creek Bridge via semi-active vibration control. Newsletter of the International Association for Structural Control, 2(1): 4-5.
    [86] Kobori T. Mission and perspective towards future structural control research. Proceedings of 2nd World Conference on Structures Control, Kyoto, Japan, 1998.
    [87] 孙作玉.变阻尼半主动结构控制:(博士学位论文).哈尔滨:哈尔滨工业大学,1998.
    [88] 李惠,袁雪松,吴波.粘滞液体变阻尼半主动控制器对结构抗震控制的试验研究.振动工程学报,2002,15(1):25-30.
    [89] 欧进萍,杨飓.压电—T型变摩擦阻尼器及其性能试验与分析.地震工程与工程振动,2003,23(4):171-177.
    [90] Li H N, Li J, Song G B. Sub-optimal bang-bang control of buildings with piezoelectric friction dampers. Proceedings of SPIE, San Diego, 2005.
    [91] Chen G D, Chen C Q. Semiactive control of the 20-story benchmark building with piezoelectric friction dampers. Journal of Engineering Mechanics, 2004, 130(4): 393-400.
    [92] Lu L Y. Predictive control of seismic structures with semi-active friction dampers. Earthquake Engineering and Structural Dynamics, 2004, 33(5): 647-668.
    [93] Xu Y L, Qu W L; Chen Z H. Control of wind-excited truss tower using semiactive friction damper. Journal of Structural Engineering, 2001, 127(8): 861-868.
    [94] 瞿伟廉,徐幼麟.被动及半主动摩擦阻尼器对合肥翡翠电视塔地震反应的控制.地震工程与工程振动,2000,20(2):101-106.
    [95] 瞿伟廉,陈朝晖,徐幼磷.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制.地震工程与工程振动,2000,20(1):94-99.
    [96] Ehrgott R C, Masri S F. Modeling the oscillatory dynamics behavior of electrorheological materials in shear. Smart Materials and Structures, 1(4): 275-285.
    [97] Gavin H P, Ortiz D S, Hanson R D. Testing and modeling of a prototype ER damper for seismic structural response control. Proceedings of International Workshop on Structural Control, Honolulu, HI, USA, 1993.
    [98] Spencer B F, Dyke S J, Sain M K et al. Dynamical model of a magnetorheological damper. Proceedings of Structures Congress XIV, ASCE, Chicago, USA, 1996.
    [99] 李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制.振动工程学报,2004,17(3):344-349.
    [100] 关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定.振动与冲击,2001,20(1):5-8.
    [101] 隋莉莉,欧进萍.半主动磁流变减振驱动器的工作原理及应用.哈尔滨建筑大学学报,2002,35(3):9-13.
    [102] Hrovat D, Barak P, Rabins M. Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics, ASCE, 1983, 109(3): 691-705.
    [103] Abe M, Igusa T. Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 1996, 198(5): 547569.
    [104] Abe M. Semi-active tuned mass dampers for seismic protection of civil structures. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 743-749.
    [105] Ricciardelli F, Occhiuzzi A, Clemente P. Semi-active tuned mass damper control strategy for wind-excited structures. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(1): 57-74.
    [106] Pinkaew T, Fujino Y. Effectiveness of semi-active tuned mass dampers under harmonic excitation. Engineering Structures, 2001, 23(7): 850-856.
    [107] Setareh M. Application of serni-aetive tuned mass dampers to base-excited systems. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 449-462.
    [108] Cheng F Y, Tian P. Generalized optimal active and hybrid control for seismic structure, Proceedings of the First World Conference on Structural Control, Los Angeles, 1994
    [109] Cheng. W, and Qu. W., and Li, A. Hybrid Vibration Control of Nanjing TV Tower Under Wind Excitation. Proceedings of the First World Conference on Structural Control, Los Angeles, 1994
    [110] 祁皑.液压阻尼系统(HDS)和混合控制系统(AMD-HDS)对底层柔性建筑的抗震控制研究:(博士学位论文).哈尔滨:哈尔滨工业大学,1998.
    [111] 尤昌德.现代控制理论基础.北京:电子工业出版社,1996.
    [112] Yang J N, Akbarpour A, Ghaemmaghami P. New optimal control algorithms for structural control. Journal of Engineering Mechanics, 1987, 113(9): 1369-1386.
    [113] 顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997.
    [114] 韩曾晋.自适应控制.北京:清华大学出版社,1995.
    [115] 郭尚来.随机控制.北京:清华大学出版社,1999.
    [116] 王德进.H_2和H_∞优化控制理论.哈尔滨:哈尔滨工业大学出版社,2000.
    [117] 王丰尧.滑模变结构控制.北京:机械工业出版社,1995.
    [118] 王永骥.神经元网络控制.北京:机械工业出版社,1999.
    [119] 李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999.
    [120] Yalla S K. Liquid dampers for mitigation of structural response: theoretical development and experimental validation: [dissertation]. Notre Dame: University of Notre Dame, 2001.
    [121] Sakai F, Takaeda S, Tamaki T. Tuned liquid column damper—new type device for suppression of building vibrations. Proceedings of the International Conference on Highrise Buildings, Nanjing, China, 1989.
    [122] Gao H, Kwok K C S, Samali B. Optimization of tuned liquid column dampers. Engineering Structures, 1997, 19(6): 476-486.
    [123] Chen Y H, Chao C C. Optimal damping ratio of TLCDs. Structural Engineering and Mechanics, 2000, 9(3): 227-240.
    [124] Yalla S K, Kareem A. Optimum absorber parameters for tuned liquid column dampers. Journal of Structural Engineering, 2000, 126(8): 906-915.
    [125] 瞿伟廉,李肇胤,李桂青.U型水箱对高层建筑和高耸结构风振控制的试验和研究.建筑结构学报,1993,14(5):37-41.
    [126] Hitchcock P A, Kwok K C S, Watkins R D et al. Characteristics of liquid column vibration absorbers (LCVA)-Ⅰ. Engineering Structures, 1997, 19(2): 126-134.
    [127] Hitchcock P A, Kwok K C S, Watkins R D et al. Characteristics of liquid column vibration absorbers (LCVA)-Ⅱ. Engineering Structures, 1997, 19 (2): 135-144.
    [128] Samali B, Templeton D, Kwok K S C. The effectiveness of multiple tuned liquid column dampers in controlling vibration of tall buildings subject to earthquake excitation. Proceedings of 2nd International Conference on Motion and vibration Control, Yokohama, 1994.
    [129] Gao H, Kwok K S C, Samali B. Characteristics of multiple tuned liquid columns dampers in suppressing structural vibration. Engineering Structures, 1999, 21(4): 316-331.
    [130] Balendra T, Wang C M, Rakesh G. Effectiveness of TLCD on various structural systems. Engineering Structures, 1998, 21(4): 291-305.
    [131] Balendra T, Wang C M, Rakesh G. Vibration control of various types of buildings using TLCD. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-3): 197-208.
    [132] Chang C C. Mass dampers and their optimal designs for buildings vibration control. Engineering Structures. 1999, 21(5): 454-463.
    [133] 蓝文武.混合水箱装置高层建筑结构地震反应控制效果的研究.世界地震工程,2001,17(2):59-64.
    [134] Xue S D, Ko, J M, Xu, Y L. Optimal performance of the TLCD in structural pitching vibration control. Journal of Vibration and Control, 2002, 8(5): 619-642.
    [135] Xue S D, Ko J M, Xu Y L. Experimental study on performance of tuned liquid column damper in suppressing pitching vibration of structures. Journal of Intelligent Material Systems and Structures, 2000, 10(5): 386-396.
    [136] Xue S D, Ko J M, Xu Y L. Wind-induced vibration control of bridges using liquid column damper. Earthquake Engineering and Engineering Vibration, 2002, 1(2): 271-280.
    [137] Xue S D, Ko J M, Xu Y L. Tuned liquid column damper for suppressing pitching motion of structures. Engineering Structures, 2000, 22(11): 1538-1551.
    [138] Xue S D, Ko, J M, Xu, Y L. Optimum parameters of tuned liquid column damper for suppressing pitching vibration of an undamped structure. Journal of Sound and Vibration, 2000, 235(4): 639-653.
    [139] Taflanidis A A, Angelides D C, Manos G C. Optimal design and performance of liquid column mass dampers for rotational vibration control of structures under white noise excitation. Engineering Structures, 2005, 27(4): 524-534.
    [140] Xu Y L, Shum K M. Multiple-tuned liquid column dampers for torsional vibration control of stmetures: Theoretical investigation. Earthquake Engineering and Structural Dynamics, 2003, 32(2): 309-328.
    [141] Shum K M, Xu Y L. Multiple-tuned liquid column dampers for torsional vibration control of structures: Experimental investigation. Earthquake Engineering and Structural Dynamics, 2002, 31(4): 977-991.
    [142] 阎石,李宏男,林皋.可调频调液阻尼器振动控制参数研究.地震工程与工程振动,1998,18(4):96-102.
    [143] Abe M, Kimura S, and Fujino Y. Control laws for semi-active tuned liquid column damper with variable orifice openings. Proceedings of 2nd International Workshop on Structural Control, Hong Kong, 1996.
    [144] 李宏男,阎石,林皋.建筑结构利用TLCD减振的神经网络智能控制.地震工程与工程振动,2000,20(3):137-142.
    [145] 李宏男,霍林生,闫石.神经网络半主动TLCD对偏心结构的减震控制.地震工程与工程振动,2001,21(4):135-141.
    [146] 李宏男,金峤.基于Takagi-Sugeno模型的半主动TLCD对偏心结构的减震控制.计算力学学报,2003,20(5):523-529.
    [147] 杨润林,闫维明,周锡元等.半主动U型液力阻尼器的结构振动控制.应用力学学报,2003,20(4):108-111.
    [148] Yalla S K, Kareem A. Semiactive tuned liquid column dampers: experimental study. Journal of Structural Engineering, 2003, 129(7): 960-971.
    [149] Ni Y Q, Ying Z G., Wang, J Y et al. Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs. Probabilistic Engineering Mechanics, 2004, 19(3): 269-277.
    [150] Sellars F H, Martin P M. Selection and evaluation of ship roll stabilization systems. Marine Technology, 1992, 29(2): 84-101.
    [151] Vandiver J K, Mitome S. Effect of liquid storage tanks on the dynamic response of offshore platforms. Proceedings of the 1978 Offshore Technology Conference, Houston, 1978.
    [152] Shimizu K, and Teramura A. Development of vibration control system using U-shaped tank. Proceedings of the 1st International Workshop and Seminar on Behavior of Steel Structures in Seismic Areas, Timisoara, Romania, 1994.
    [153] 李宏男.结构多维抗震理论设计方法.北京:科学出版社,1998.
    [154] 梁枢果.环形可调液体阻尼器对扭转振动控制的实验研究.特种结构,1996(13):33-35.
    [155] Hochrainer M J, Adam C, Ziegler F. Application of Tuned Liquid Column Dampers for Passive Structural Control. Proceedings of 7th International Congress on Sound and Vibration, Garmisch-Partenkirchen, Germany, 2000.
    [156] 王肇民.高耸结构振动控制.上海:同济大学出版,1997.
    [157] Lin C C, Ueng J M, Huang T C. Seismic response reduction of irregular buildings using passive tuned mass dampers. Engineering Structures, 2000, 22(5): 513-524.
    [158] 罗仁,何玉傲.地震作用下高层建筑平移—扭转耦联振动的控制.建筑结构学报,1997,18(6):65-73.
    [159] 周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    [160] 刘第楷,徐家云,李桂青.用基因遗传算法设计主动控制结构控制机构的最优布置.武汉工业大学学报,1997,19(1):68-71.
    [161] Singh M P. Seismic response by SRSS for nonproportional damping. Journal of the Engineering Mechanics Division, 1980, 106(6): 1405-1419.
    [162] Singh M P, Maldonado G O. An improved Response spectrum method for calculating seismic design response. Part1: classically damped structures. Earthquake Engineering and Structural Dynamics, 1991, 20(7): 621-635.
    [163] Maldonado G O, Singh M P. An improved response spectrum method for calculating seismic design response. Part2: non-classically damped Structures. Earthquake Engineering and Structural Dynamics, 1991, 20(7): 637-649.
    [164] Singh M P, Singh S, Moreschi L M. Tuned mass fampers for response control of torsional buildings. Earthquake Engineering and Structural Dynamics, 2002, 31(4): 749-769.
    [165] Kim H. Wavelet-based adaptive control of structures under seismic and wind loads: [dissertation]. Notre Dame: The Ohio State University, 2002.
    [166] Yalla S K, Kareem A. Beat phenomenon in combined structure-liquid damper systems. Engineering Structures, 2001, 23(6): 622-630.
    [167] Lynch J P, Law K H. Market-based Control of Linear Structural Systems. Earthquake Engineering and Structural Dynamics, 2002, 31(10): 1855-1877.
    [168] 吴麒.自动控制原理.北京:清华大学出版社,1990.
    [169] 杨润林.结构模糊振动控制的研究:(博士学位论文).北京:中国建筑科学研究院,2002.
    [170] Haroun M A, Pires J A. Active orifice control in hybrid liquid column dampers. Proceedings of the First World Conference on Wind Engineering, Los Angeles, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700