基于压电摩擦阻尼器的结构振动控制理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通摩擦阻尼器是工程结构中常用的一种消能减振装置,具有良好的耗能能力。但是,作为一种被动控制装置,它不能够根据结构的用途、荷载情况和结构的响应实时地改变自身的特性,因而限制了其应用范围。压电陶瓷驱动器具有电致变形的能力,尽管位移行程较小,但是其变形被约束后,在电场作用下能够提供很大的驱动力,因此在智能摩擦阻尼器的研究中充当了相当重要的角色。本文结合压电陶瓷驱动器和摩擦阻尼器的特点设计了一种新型的压电摩擦阻尼器,提出了调节阻尼器控制力的半主动控制策略,并对安装压电摩擦阻尼器的结构控制系统进行了理论分析和试验研究,主要工作包括以下几个方面:
     (1)提出了一种新型的压电摩擦阻尼器,利用MTS试验机对阻尼器的性能进行了测试。在不同加载频率和幅值的正弦位移激励下,分别测试了仅施加预压力和同时施加预压力和电压下阻尼器的动力性能。结果表明,随着预压力的增加,压电陶瓷驱动器的出力增大,当预压力增加至一定数值时,增加预压力对驱动器出力的影响减小。当仅施加预压力时,阻尼器的性能稳定,滞回性能基本不随加载频率的变化而改变,同时对其施加预压力和随时间变化的电压时,阻尼器具有稳定的出力性能。
     (2)针对压电摩擦阻尼器的结构控制系统,提出了调节阻尼器控制力的模糊次优Bang-Bang控制策略和速度输入型T-S模糊控制策略。数值分析结果表明,提出的两种控制策略均能有效减小结构的反应。模糊次优Bang-Bang控制策略消除了应用Bang-Bang算法时容易引起结构加速度反应放大的问题,但是实施控制时需要测量结构的全部状态信息,提高了控制成本;而速度输入型T-S模糊控制策略只需测量阻尼器所在层的速度响应,减少了传感器的数量,降低了控制成本。
     (3)对以压电摩擦阻尼器作为消能减振装置的非线性结构振动控制问题进行了研究。建立了连续Bouc-Wen模型表示的非线性结构控制系统运动方程,在确定压电摩擦阻尼器初始控制力的基础上,应用提出的速度输入型T-S模糊控制策略对非线性结构的振动控制问题进行了分析。结果表明,以连续Bouc-Wen模型描述结构的非线性易于和运动方程相结合,避免了采用折线型关系的恢复力模型对塑性拐点的判断,被动控制时阻尼器的控制力不能根据结构的响应实时改变而可能放大结构的加速度响应,而模糊半主动控制方法使阻尼器能够根据结构的反应施加合适的控制力,有效减小结构响应。
     (4)研究了多维地震动下偏心结构以压电摩擦阻尼器作为消能装置的振动控制问题。为了同时减小偏心结构的平动反应和扭转反应,在结构水平双向设置压电摩擦阻尼器,对偏心结构在多维地震动下的振动控制问题进行了数值分析。结果表明,多维地震动作用下水平双向设置摩擦阻尼器可以同时减小偏心结构的平动反应和扭转反应,提出的速度输入型T-S模糊策略调节压电摩擦阻尼器控制力的方法能够获得更好的效果。
     (5)进行了安装压电摩擦阻尼器的钢框架模型结构的振动台试验,检验了提出的压电摩擦阻尼器和控制策略的效果。利用MATLAB/SIMULINK软件平台和dSPACE实时仿真工具建立了基于压电摩擦阻尼器的两层钢框架模型结构的仿真模型,并采用RCP技术对该模型结构进行了地震模拟振动台试验研究,比较分析了不同地震波输入下压电摩擦阻尼器的控制效果。振动台试验结果表明,提出的压电摩擦阻尼器和控制策略非常有效,无论是被动控制还是半主动控制均能减小结构的响应,而半主动控制系统能充分发挥压电摩擦阻尼器的性能,获得更好的控制效果。
Normal friction damper is a type of energy dissipation device in civil engineering, and has the good ability of energy dissipation. However, as a passive device, it could not change its performance according to structure purpose, load condition and structure response. Piezoelectric actuator has the ability of negative effect. Although its stroke is small, the actuator could generate large force by limiting its deformation. So, it plays an important role in developing smart friction damper. Combined piezoelectric actuator and friction damper, a novel piezoelectric friction is designed and fabricated. Control strategies are also proposed to adjust the control force of damper. In this dissertation, a systematic study on theory and experiment of structural control system with piezoelectric friction damper was performed, and the primary innovative contents include:
     (1) A new type of piezoelectric friction damper is proposed, and the mechanical performance of the damper is tested on MTS electro-fluid servo-universal machine. The hysteresis behaviors of the damper under various normal forces and voltages are tested when exposed to displacement excitations of different frequencies and amplitudes. Experimental results indicate that the force generation of the piezoelectric actuator increases as preload grows. The force generation is nearly independent of the preload when the preload is greater than certain value. The load-displacement loops of the damper are stable and independent of the excitation frequency when the damper is only exposed to clamping force. The force generation of the piezoelectric friction damper is stable when applied to the linearly increasing voltage signal.
     (2) The control strategies based on piezoelectric friction damper are further investigated, and the fuzzy sub-optimal bang-bang control and velocity input Takagi-Sugeno (T-S) fuzzy control are proposed. Numerical simulations indicate that the proposed two kinds of methods of semi-active control strategies can suppress the seismic responses. Fuzzy sub-optimal bang-bang control eliminates the amplified accelerations when applying bang-bang control method. However, the implementation of the method increases cost due to all structural state. The implementation of velocity input T-S fuzzy control needs only velocity response, so the control cost decrease and has a high application value.
     (3) The vibration control approach of the nonlinear structure using piezoelectric friction damper subjected to seismic excitations is investigated. The equation of motion for nonlinear building structure with continuous Bouc-Wen hysteretic model is presented. The initial control force of the damper is determined by time history analysis under minor earthquakes. The seismic reduction of the nonlinear structure installed with piezoelectric friction damper is implemented. Simulation results indicate that the continuous Bouc-Wen model can be conveniently coupled with the equations that describe the motion of the building structure. This model avoids locating transition points that exit in bi-linear models. The acceleration responses of the nonlinear structure may be amplified due to fixed friction force. The proposed fuzzy semi-active control method can generate control force according to structure response, and is very efficient in reducing structure responses.
     (4) The vibration control approach to the asymmetric-plan building using semi-active friction dampers subjected to multi-dimensional seismic inputs is investigated. In order to reduce the translational and rotational responses of structure, the piezoelectric friction dampers are located on x and y directions, respectively. The proposed strategy is used here to control irregular structure responses under seismic excitations. Numerical results indicate that the friction dampers that are located on x and y directions are effective in reducing both translational and rotational responses of irregular building, and semi-active control method can acquire better effect.
     (5) A series of shake table tests are conducted on a two-storey steel structure model controlled with a piezoelectric friction damper. The performance of the designed piezoelectric friction damper and the control strategy are evaluated experimentally. The simulation model including damper and structure has been built based on MTALAB/SIMULIMK software environment and hardware/software resources of dSPACE. Shaking table tests of the structure with piezoelectric friction damper is implemented by rapid control prototyping (RCP) technology. The seismic reductions are compared under different earthquake waves. Experimental results indicate that the designed piezoelectric friction damper is effective in mitigating both passive control and semi-active control, and the semi-active control strategy can achieve better performance as compared to passive state.
引文
[1] 李宏男主编.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [2] 李宏男.结构多维抗震理论.北京:科学出版社,2006.
    [3] Soong T T, Spencer B F. Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 2002, 24(3):243-259.
    [4] 黄尚廉.智能结构系统—防灾减灾的研究前沿.土木工程学报,2000,33(4):1-5.
    [5] Yao J P. Concept of structural control. Journal of Structrual Division, 1972, 98(ST7):1567-1573.
    [6] Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present, and future. Journal of Engineering Mechanics, 1997, 123(9): 897-971.
    [7] 李宏男等.结构振动与控制.北京:中国建筑工业出版社,2005.
    [8] 周福霖.工程结构减震控制.北京:地震出版社,1997.
    [9] 李宏男,阎石.中国结构控制的研究与应用.地震工程与工程振动,1999,19(1):107-112.
    [10] 李宏男.结构振动控制实践的新进展.世界地震工程,1995,11(2):34-39.
    [11] 欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社,2003.
    [12] 中华人民共和国国家标准(GB50011-2001).建筑抗震设计规范.北京:中国建筑工业出版社,2001.
    [13] 周锡元,吴育才.工程抗震的新发展.北京:清华大学出版社,2002.
    [14] 武田寿一.建筑物隔震、防振与控振.北京:中国建筑工业出版社。1993.
    [15] 杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题.力学进展,2003,33(3):302-212.
    [16] 苏经宇,曾德民.我国建筑结构隔震技术的研究与应用.地震工程与工程振动,2001,21(4):94-101.
    [17] 施卫星,李正升.建筑结构基础隔震系统的发展及应用.结构工程师,1997,13(1):14-18.
    [18] 张克猛,范晓军,黄幼玲.一种新型隔震器的研制.西安交通大学学报,2002,36(1):70-73.
    [19] 周云.摩擦耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [20] 周云.金属耗能减震结构设计.武汉:武汉理工大学出版社,2006.
    [21] 周云.粘滞阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [22] 周云.粘弹性阻尼减震结构设计.武汉:武汉理工大学出版社,2006.
    [23] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structure. Bulletin of N.Z. society for Earthquake Engineering, 1972, 5(3): 63-88.
    [24] 周云,刘季.圆环耗能器的研究.世界地震工程,1996,12(4):1-8.
    [25] 周云,刘季.双环软钢耗能器的研究.地震工程与工程振动,1998,18(2):117-123.
    [26] 李钢.新型金属阻尼器减震结构的试验及理论研究:(博士学位论文).大连:大连理工大学,2007.
    [27] 李宏男,李钢,李中军等.钢筋混凝土框架结构利用“双功能”软钢阻尼器的抗震设计.建筑结构学报,2007,28(4):36-43.
    [28] Pall A S, Marsh C. Response of friction damped braced frames. Journal of Structural Division, 1982, 108(6): 1313-1323.
    [29] 吴斌,张纪刚.基于几何非线性的Pall型摩擦阻尼器滞回特性分析与试验验证.地震工程与工程振动,2001,21(4):60-65.
    [30] 吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003,24(2):7-13.
    [31] 吴斌,张纪刚,欧进萍.Pall型摩擦阻尼支撑内力计算方法.世界地震工程,2004,20(2):6-11.
    [32] 吴斌,欧进萍.拟粘滞摩擦耗能器的性能试验与分析.世界地震工程,1999,15(1):1-12.
    [33] 吴斌,张纪刚,欧进萍.拟粘滞摩擦耗能器滞回特性及支撑内力分析.哈尔滨工业大学学报,2003,35(7):834-839.
    [34] 张纪刚.两种摩擦阻尼器抗震性能的数值分析和试验研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2002.
    [35] 吴波,李惠.液压粘弹性控制系统对建筑结构抗震控制的研究.地震工程与工程振动,1996,16(2):67-75.
    [36] 徐赵东,周洲,赵鸿铁等.粘弹性阻尼器的计算模型.工程力学,2001,18(6):88-93.
    [37] 吴波,郭安薪.设有粘弹性阻尼器的结构体系的受力分析.世界地震工程,1998,14(3):6-14.
    [38] 陈月明.建筑结构的粘弹阻尼振动控制:(博士学位论文).哈尔滨:哈尔滨建筑大学,1998.
    [39] 魏文晖,瞿伟廉.设置FVD框架结构的非线性地震反应控制研究.东南大学学报(自然科学版),2004,34(13):386-389.
    [40] 周云,刘季.粘弹性阻尼器结构的抗震设计方法.世界地震工程,1996,12(1):23-31.
    [41] Miyazaki M, Arima F, Kidate Y, et al. Earthquake response control design of building using viscous damping walls. Proceedings of the first east-asia pacific conference, 1986,3: 1882-1891.
    [42] 宋智斌.消能技术在抗震加固中的研究与应用.第六届全国地震工程学术会议,南京,2002.
    [43] 孙树民.自立式独柱平台的TMD减震控制研究.中国海洋平台,2000,15(6):6-9.
    [44] Lin Y Y, Cheng C M, Lee C H. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges. Engineering Structures, 2000, 22(9):1195-1204.
    [45] 顾明,项海帆.杨浦大桥抖振及控制分析.同济大学学报,1993,21(3):307-314.
    [46] 顾明,吴炜,项海帆.大跨桥梁颤振控制的试验研究.同济大学学报,1996,24(2):124-129.
    [47] 陈艾容,项海帆.斜拉桥涡激扭转振动的被动控制.同济大学学报,1994,22(4):487-492.
    [48] 赵光恒.土建结构振动控制研究进展.地震学刊,1999:35-42.
    [49] 胡继军,黄金枝,李春祥等.网壳TMD风振控制分析.建筑结构学报,2001,22(3):31-35.
    [50] 叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计.振动工程学报,2000,13(3):376-384.
    [51] Chen G D, Wu J N. Optimal placement of multiple tune mass dampers for seismic structures.Journal of Structural Engineering, 2001, 127(9): 1054-1062.
    [52] 蔡国平,孙峰,黄金枝.MTMD控制结构地震反应的特性研究.工程力学,2000,17(3):55—59.
    [53] 李春祥.地震作用下高层钢结构的最优MTMD控制策略及设计.计算力学学报,2002,19(1):83-88.
    [54] Lee S C, Reddy D V. Frequency tuning of offshore platform by liquid sloshing. Applied Ocean Research, 1982, 4(4): 226-231.
    [55] Kareem A, Sun W J. Stochastic response of structure with fluid-containing appendages.Journal of Sound and Vibration, 1987, 119(3): 189-408.
    [56] Fujino Y. Tuned liquid damper (TLD) for suppressing horizontal motion of structure. Journal of Engineering Mechanics, 1992, 118(10): 2017-2030.
    [57] Fujino Y, Sun L M. Vibration control by multiple tuned liquid dampers (MTLDs). Engineering Mechanics, 1993, 119(12): 3482-3502.
    [58] 李宏男,阎石,贾连光.利用调液阻尼器减振的结构控制研究进展.地震工程与工程振动,1995,15(3):99-110.
    [59] 李宏男,张玲,杨玉石.利用多个调液阻尼器减小高层建筑地震反应的研究.地震工程与工程振动,1997,17(1):23-31.
    [60] 瞿伟廉,宋波,陈研桂等.TLD对珠海金山大厦主楼风振控制设计.建筑结构学报,1995,16(3):21-36.
    [61] 程文(?),瞿伟廉,陆勤等.南京电视塔的风振控制.土木工程学报,1993,26(4):14-20.
    [62] 钱稼如,Warnitchai P.用TLD减小电视塔动力反应的振动台实验研究.建筑结构学报,1995,16(5):2-39.
    [63] Zhu B L. Test research on vibration of 1:50 model structure of 459m Shanghai ratio and TV tower with water tanks. USA/China/Japan Triateral workshop on structure, 1992.
    [64] 井秦阳.大连国贸大厦高层水箱减振控制研究与应用:(硕士学位论文).大连:大连理工大学:2005.
    [65] Rasouli S K, Yahyai M. Control of response of structures with passive and active tuned mass dampers. The Structure Design of Tall Buildings, 2002, 11(1): 1-14.
    [66] 宋根由.结构主动控制(AMD)系统实验与分析:(博士学位论文).哈尔滨:哈尔滨工业大学,1996.
    [67] 田石柱,刘季.结构模型的AMD主动控制实验.地震工程与工程振动,1999,19(4):90-94.
    [68] 欧进萍,王刚,田石柱.海洋平台结构的AMD主动控制试验研究.高技术通讯,2002,12(10):85-90.
    [69] Cao H, Reinhorn A M, Soong T T. Design of an active mass damper for a tall TV tower in Nanjing, China. Engineering Structures, 1998, 20(3), 134-143.
    [70] Kobori T, Takahashi M, Nasu T et al. Seismic response controlled structure with active variable stiffness system. Earthquake Engineering and Structural Dynamics, 1993, 22(11):925-941.
    [71] 周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究.广州大学学报(自然科学版),2002,1(1):69-74.
    [72] 吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法.振动工程学报,2003,16(3):306-310.
    [73] 吴波,刘汾涛,魏德敏.变刚度半主动控制结构的拟振型分解法.华南理工大学学报(自然科学版),2002,30(9):85-90,
    [74] 何玉敖,冯德平.主动变刚度结构体系(AVS)多模态优化控制研究.建筑结构学报,2000,21(3):53-59.
    [75] 李敏霞,欧进萍,王刚等.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,2000,20(4):96-100.
    [76] 李敏霞,刘季.变刚度半主动结构振动控制的试验研究.地震工程与工程振动,1998,18(4):90-95.
    [77] 李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析.振动与冲击,1999,18(2):81-83.
    [78] Yang N J, Wu J C, Li Z. Control of seismic-excited buildings using active variable stiffness systems. Engineering Structures, 1996, 18(8):589-596.
    [79] Nasu T, Kobori T, Takahashi M. Earthquake observation and efficiency evaluation of active variable stiffness. Proceedings of 4th international conference on adaptive structures, 1993:15-28.
    [80] Hrovat D, Barak P, Rabins M. Semi-active versus passive or active tuned mass damper for structural control. Journal of Engineering Mechanics, 1995, 109(3):149-166.
    [81] Kamagata S, Kobori T. Autonomous adaptive control of active variable stiffness system for seismic ground motion. Proceedings of 1st world conference on structure conrol, Los Angeles, California, 1994, TA4:33-42.
    [82] Feng Q, Shinozuka M. Use of a variable damper for hybrid control of bridge response under earthquake. Proceedings of U.S. national workshop on structural control research,USC publication, 1990.
    [83] Kawashima K, Unjoh S, Iida Het al. Effectiveness of the variable damper for reducing seismic response of highway bridges. Proceedings of Second US-Japan Workshop on Earthquake Protective Systems for Bridges, Tsukuba Science City, Japan, 1992.
    [84] Symans M D, Constantinou M C, Taylor D P, et al. Semi-active fluid viscous dampers for seismic response control. Proceedings of First World Conference on Structural Control,Pasadena, 1994.
    [85] Patten W N. New life for the walnut creek bridge via semi-active vibration control. Newsletter of the International Association for Structural Control, 1997, 2(1): 4-5.
    [86] Kobori T. Mission and perspective towards future structural control research. Proceedings of the 2nd World Conference on Structures Control, Kyoto, Japan, 1998(1): 25-34.
    [87] 孙作玉.变阻尼半主动结构控制:(博士学位论文).哈尔滨:哈尔滨工业大学,1998.
    [88] 李惠,袁雪松,吴波.粘滞液体变阻尼半主动控制器对结构抗震控制的试验研究.振动工程学报,2002,15(1):25-30.
    [89] Hrovat D, Barak P, and Rabins M. Semi-active versus passive or active tuned mass damper for structural control. Journal of Engineering Mechanics, 1983, 109(3):691-705.
    [90] Kelly J M, Hasegawa K. Application of a mass damper system to bridge structures. Report No. UCB/EERC 92/12, Earthquake Engineering Research Center, Berkeley, CA, 1992.
    [91] Abe M, Igusa T. Semi-active dynamic vibration absorbers for controlling transient response. Journal of Sound and Vibration, 1996, 198(5): 547-569.
    [92] Abe M. Semi-active tuned mass dampers for seismic protection of civil structures. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 743-749.
    [93] Pinkaew T, Fujino Y. Effectiveness of semi-active tuned mass dampers under harmonic excitation. Engineering Structures, 2001, 23(7): 850-856.
    [94] Lou T Y, Lutes L D, Li J J. Active tuned liquid damper for structural control. Proceedings of First World Confernece on Structural Conrol, Los hngeles, CA, 1994, TP1:70-79.
    [95] 瞿伟廉,李桂青.U型水箱对高层建筑和高耸结构风振控制试验和研究.建筑结构学报,1993,(5):37-43.
    [96] 李宏男,金峤.基于Takagi-Sugeno模型的半主动TLCD对偏心结构的减震控制.计算力学学报,2003,20(5):523-529.
    [97] 阎石.结构振动智能控制的人工神经网络与模糊逻辑方法:(博士学位论文).大连:大连理工大学,2000.
    [98] 霍林生.偏心结构利用调液阻尼器减震控制的研究:(博士学位论文).大连:大连理工大学,2005.
    [99] Qu W L, Xu Y L. Semi-active control of seismic response of tall building with podium structure using ER/MR dampers. The Structural Design of Tall Buildings, 2001, 10(3):179-192.
    [100] 瞿伟廉,吕明云,李学安.屋盖MR智能隔震系统对升船机结构顶部厂房地震鞭梢效应的模糊控制.地震工程与工程振动,2002,22(3):129-137.
    [101] 瞿伟廉,周耀.MR阻尼器对地震反应的模糊半主动控制.武汉理工大学学报,2005,27(1):44-46.
    [102] 周强,瞿维廉.安装MR阻尼器工程结构的非参数模型自适应控制.地震工程与工程振动,2004,24(4):127-132.
    [103] Xu Y L, Qu W L, Ko J M.Seismic response control of frame structures using MR/ER dampers. Earthquake Engineering and Structural Dynamics, 2000, 29(5): 557-575.
    [104] Xu Y L, Chen J, Ng C L. Semiactive seismic response control of buildings with podium structure. Journal of Structural Engineering, 2005, 131(6):890-899.
    [105] Li Z X, Xu L H. Performance tests and hysteresis model of MRF-04K damper. Journal of Structural Engineering, 2005, 131(8):1303-1306.
    [106] 李忠献,姜南,徐龙河等.不同控制策略下安装MRD的模型结构振动台试验与分析.建筑结构学报,2004,25(6):15-21.
    [107] 徐龙河,周云,李忠献.半主动磁流变阻尼控制方法的比较与分析.世界地震工程,2000,19(9):95-100.
    [108] 李忠献,张磊,王泽明.三类结构抗震控制措施控制效果的比较与分析.工程抗震和加固改造,2005,27(1):27-41.
    [109] 李秀领.非对称结构的磁流变阻尼器半主动控制:(博士学位论文).大连:大连理工大学,2006.
    [110] 李秀领,李宏男.MR阻尼结构振动控制的仿真试验研究.系统仿真学报,2006,18(5):1343-1346.
    [111] 李秀领,李宏男.磁流变阻尼器的双sigmoid模型及其试验验证.振动工程学报,2006,19(2):168-172.
    [112] Li H N, Li J, Song G B. Sub-optimal bang-bang control of buildings with piezoelectric friction dampers. Proceedings of SPIE, 2005, 5760: 423-433.
    [113] 李人厚.智能控制理论和方法.西安:西安电子科技大学出版社,1999.
    [114] 王永骥.神经元网络控制.北京:机械工业出版社,1999.
    [115] 李宏男,阎石.智能结构控制发展综述.地震工程与工程振动,1999,19(2):29-36.
    [116] Chen G D, Chen C Q. Semi-active control of a steel frame with piezoelectric friction dampers. Proceedings of SPIE, 2003, 5057: 207-217.
    [117] Chen G D. Piezoelectric friction dampers: recent development and laboratory implementation. The third China-Japan-US symposium on structural control and health monitoring, Dalian, China, 2004.
    [118] Chen G D, Wu J N, Garriett G. Preliminary design of piezoelectric friction dampers for reducing the seismic response of structures, Proceedings of the 14th ASCE Engineering Mechanics, Division, Specialty Conference, Austin, Texas, 2000:21-24.
    [119] 王社良,苏三庆,沈亚鹏.形状记忆合金拉索被动控制结构地震响应分析.土木工程学报,2000,33(1):56-62.
    [120] 倪立峰,李秋胜,李爱群等.新型形状记忆合金阻尼器的试验研究.地震工程与工程振动,2000,22(3):145-148.
    [121] 李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动,2003,23(1):133-139.
    [122] 李忠献,陈海泉,刘建涛.应用SMA复合橡胶支座的桥梁隔震.地震工程与工程振动,2002,22(2):143-148.
    [123] Desroches R, Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures, 2002, 24(5):325-332.
    [124] Williams G, Chiu G, Berhard R. Adaptive passive absorbers using shape memory alloys. Journal of Sound and Vibration, 2002, 249(5):835-848.
    [125] Chu S Y, Soong T T, Reinhorn A M, et al. Integration issues in implementation of structural control systems. Journal of Structure Control, 2002, 9(1):31-58.
    [126] Symans M D, Constantinou M C. Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering Structures, 1999, 21(6):469-487.
    [127] Kurata N, Kobori T, Takahashi M, et al. Actual seismic response controlled building with semi-active damper system. Earthquake Engineering and Structural Dynamics, 1999,28(11): 1427-1447.
    [128] Watakabe M, Tohdo M, Chiba O, et al. Response control performance of a hybrid mass damper applied to a tall building. Earthquake Engineering and Structural Dynamics, 2001,30(11): 1655-1676.
    [129] 吴彦文.高层建筑风振控制的A/TMD方法:(博士学位论文).武汉:武汉工业大学,1999.
    [130] Yang J N, Li Z, Danielians A, et al. Aseismic hybrid control of nonlinear and hyteretic structures. Journal of Engineering Mechanics, 1992, 118(7):1423-1456.
    [131] Yang J N, Wu J C, Kawashima K, et al. Hybrid control of seismic-excited bridge structures. Earthquake Engineering and Structural Dynamics, 1995, 24(11):1437-1451.
    [132] Madden G J, Wongprasert N, Symans M D. Analytical and numerical study of a smart sliding base isolation system for seismic protection of buildings. Computer-Aided Civil and Infrastructure Engineering, 2003, 18(1):18-30.
    [133] Nagashima I, Maseki R, Asami Y, et al. Performance of hybrid mass damper system applied to a 36-story high-rise building. Earthquake Engineering and Structural Dynamics, 2001,30(11):1615-1637.
    [134] 李爱群,瞿伟廉,程文瓖.南京电视塔风振的混合振动控制研究.建筑结构学报,1996,17(3):9-17.
    [135] 杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [136] 瞿伟廉,李卓球,姜德生等.智能材料-结构系统在土木工程中的应用.地震工程与工程振动,1999,19(3):87-95.
    [137] 姜德生,Glaus R O.智能材料、器件、结构及其应用.武汉:武汉工业出版社,2000.
    [138] 杜善义,冷劲松,王殿富.智能材料系统与结构.北京:科学出版社,2001.
    [139] 李宏男,李东升,赵柏东.光纤健康监测方法在土木工程中的研究与应用进展.地震工程与工程振动,2002,22(6):76-83.
    [140] 孙丽.光纤光栅传感技术与工程应用:(博士学位论文).大连:大连理工大学,2006.
    [141] 李宏男,赵晓燕.压电智能传感结构在土木工程中的研究与应用.地震工程与工程振动,2004,24(6):165-172.
    [142] 焦莉,李宏男.PZT的EMI技术在土木工程健康监测中的研究进展.防灾减灾工程学报,2006,26(1):102-108.
    [143] 吴波,李惠,孙科学.形状记忆合金在土木工程中的应用研究.世界地震工程,1999,15(3):1-13.
    [144] 闫云聚,姜节胜,任礼行.智能材料结构及其在振动控制中的应用研究评述与展望.西北工业大学学报,2000,18(1):35-40.
    [145] 崔迪,李宏男,宋钢兵.形状记忆合金在土木工程中的研究与应用进展.防灾减灾工程学报,2005,25(1):86-94.
    [146] 柯钢.智能材料结构在建筑工程中的应用.建筑技术开发,2005,32(3):75-76.
    [147] 欧进萍,关新春.土木工程智能结构体系的研究与发展.地震工程与工程振动,1999,19(2):21-28.
    [148] 周云,徐龙河,李忠献.智能流体减震控制技术的研究与应用.世界地震工程,1999,25(4):10-19
    [149] Markris N, Burton S A, Hill D, et al. Analysis and design of ER damper for seismic protection of structures. Journal of Engineering Mechanics, 1996, 122(10): 1003-1011.
    [150] 欧进萍,关新春.磁流变耗能器性能的试验研究.地震工程和工程振动,1999,19(4):76-81.
    [151] 李惠,毛晨曦.新型SMA耗能器及结构地震反应控制试验研究.地震工程与工程振动,2003,23(1):133-139.
    [152] 毛晨曦,李惠,欧进萍.形状记忆合金被动阻尼器及结构地震反应控制试验研究与分析.建筑结构学报,2005,26(3):38-44.
    [153] 张纪纲,吴斌,欧进萍.锥形形状记忆合金阻尼器性能分析与试验研究.地震工程与工程振动,2004,24(6):126-130.
    [154] 任文杰,李宏男,宋钢兵.基于形状记忆合金的X形板阻尼器的力学模型.振动与冲击,2006,25(4):53-57.
    [155] 杨亲民.智能材料的研究与开发.功能材料,1999,30(6):575-581.
    [156] 郑智能,张永兴,董强.智能材料及其在土木工程中的应用.重庆交通学院学报,2005,24(6):91-94.
    [157] 杨浩.基于智能算法的结构系统辨识及MR阻尼器半主动控制:(硕士学位论文).沈阳:沈阳建筑工程学院,2003.
    [158] 李宏男,李军.采用智能压电材料的土木工程结构控制研究进展.建筑结构学报,2005,26(3):1-9.
    [159] 余海湖,赵愚,姜德生.智能材料与结构的研究及应用.武汉理工大学学报,2001,23(11):37-41
    [160] Trajkov T N, Koppe H, Gabbert U. Vibration control of a funnel-shaped shell structure with distributed piezoelectric actuators and sensors. Smart Material and Structure, 2006,15(4):1119-1132.
    [161] Wang J D, Shepard W T, Williams K A. Active vibration control of a plate-like structure with discontinous boundary conditions. Smart material and Structural, 2006, 15(3):N51-N60.
    [162] Sethi V. System identification and active vibration control smart pultruded fiber-reinforced polymer I-beam: [Dissertation]. Akron, University of Akron, 2002.
    [163] Stranb F K. Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades. Smart Material and Structure, 2001, 10(1): 25-34.
    [164] Aizawa S, Kakizawa T, Higasino M. Case studies of smart materials for civil structures. Smart Material and Structure, 1998, 7(5):617-626.
    [165] Kamada T, Fujita T, Hatayama T. Active vibration control of frame structures with smart structures using piezoelectric actuators (Vibration control by control of bending moments of columns).Smart Material and Structure, 1997, 6(4):448-456.
    [166] 瞿伟廉,陈波,李学安等.压电材料智能力矩控制器对具有不确定参数升船结构项部厂房地震反应的鲁棒控制.地震工程与工程振动,2001,2l(2):145-151.
    [167] 李书进,瞿伟廉,王军武.压电材料智能控制器对框架结构地震反应的主动控制.地震工程与工程振动,2000,20(1):100-104.
    [168] Kamada T, Fujita T, Hatayama T, et al. Active vibration control of flexural-shear type frame structures with smart structures using piezoelectric actuators. Smart Material and Structure, 1998, 7(4): 479-488.
    [169] Fujita T. Active microvibration control of precision manufacturing factories with smart structure using piezoelectric actuators. Proceedings of SPIE, Newport Beach, CA, 2001,4330:449-459.
    [170] Song G B, Sethib V, Li H N. Vibration control of civil structures using piezoceramic smart materials: a review. Engineering Structures, 2006, 28(11): 1513-1524.
    [171] Song G B, Vlattas J, Johnson S E, et al. Truss active vibration control of a space truss using PZT stack actuator. American Society of Mechanical Engineers, Aerospace Division, 1999, 59:263-268.
    [172] 阎绍泽,吴德隆,叶青等.用于自适应可展结构的压电智能主动杆.清华大学学报,2002,42(6):762-765.
    [173] 欧进萍,关新春,吴斌等.智能型一压电摩擦耗能器.地震工程与工程振动,2000,20(1):81-86. ’
    [174] 吴斌,张纪刚,欧进萍.考虑几何非线性的Pall型摩擦耗能器滞回特性分析.工程力学,2003,20(1):21-26.
    [175] Wu B, Zhang J G, Ou J P, et al. Hysteretic behavior of an improved pseudo viscous frictional damper. The 13th World Conference on Earthquake Engineering, 2004.
    [176] 欧进萍,杨飏.压电T型变摩擦阻尼器及其性能试验与分析,2003,23(4):171-177.
    [177] 杨飏,欧进萍,刘光聪.T型压电变摩擦阻尼器性能试验与分析,压电与声光,2005,27(5):580-582.
    [178] 瞿伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制.地震工程与工程振动,2000,20(1):94-99.
    [179] Xu Y L, Qu W L, Chen Z H. Control of wind-excited truss tower using semiactve friction damper. Journal of Structural Engineering, 2001, 127(8):861-868.
    [180] 李立州,胡卫兵.新型压电阻尼器本构模型分析.西安建筑科技大学学报,2003,35(2):123-126.
    [181] Li J, Li H N, Song G B. Semi-active vibration suppression using piezoelectric dampers based on bang-bang control laws. 3rd China-Japan-US symposium on structural control and health monitoring, Dalian, China, 2004.
    [182] Li B N, Li J, Song G B. Improved seismic control of structure with variable friction dampers by GA. Proceedings of IEEE on Intelligent Control, Cyprus, 2005: 310-315.
    [183] Soong T T, Dargush G F. Passive energy dissipation systems in structural engineering.Chichester, Wiley, 1997
    [184] Chen C Q, Chen G D. Shake table tests of a quarter-scale three-story building model with piezoelectric friction dampers. Structural Control and Health. Monitoring, 2004, 11(4):239-257.
    [185] Chen G D, Chen C C. Semi-active control of the 20-story benchmark building with piezoelectric friction dampers. Journal of Engineering Mechanics, 2004, 13(4):393-400.
    [186] Durmaz O, Clark W W. Experimental and analytical studies of a novel semi-active piezoelectric coulomb damper. Proceedings of SPIE, 2002, 4697:258-273.
    [187] Garrett G T, Chen G D, Cheng F Y, et al. Experimental characterization of piezoelectric friction dampers. Proceedings of SPIE, 2001, 4330:405-415.
    [188] Chen, G D, Garrett, G T, Chen, C C, et al. Piezoelectric friction dampers for earthquake mitigation of building: design, fabrication, and characterization. Structural Engineering and Mechanics: an International Journal, 2004, 17(3-4):539-556.
    [189] Chen G D, Chen C Q. Behavior of piezoelectric friction dampers under dynamic loading. Proceedings of SPIE, 2000, 3988:54-63.
    [190] Unsal M, Nieqrecki C, Crane Ⅲ C. A new semi-active piezoelectric-based friction damper. Proceedings of the SPIE, 2003, 5052: 413-420.
    [191] 胡卫兵,王骏涛.压电摩擦阻尼隔震结构地震响应及控制分析.振动与冲击,2007,26(2):79-83.
    [192] Morita K, Fujita T, Ise S, et al. Development and application of induced strain actuators for building structures. Proceedings of SPIE, 2001, 4330: 426-437.
    [193] Han S J. Active/Passive Seismic Control of Structures:[dissertation].The Catholic University of America, 2002.
    [194] Chen G D, Smith D. Efficiency of piezoelectric wedge actuators for fine tuning of mass dampers in structural applications. 15th ASCE Engineering Mechanics Conference, Columbia University, New York, 2002.
    [195] 杨飏.结构振动控制的智能阻尼器性能与智能隔振系统:(博士学位论文).哈尔滨:哈尔滨工业大学,2003.
    [196] Kannan S, Uras H, Aktan H M. Active control of building seismic response by energy dissipation. Earthquake Engineering and Structural Dynamics, 1995, 24(5): 747-759.
    [197] Fujita T, Shimazaki M, Yutaka H, et al. Semiactive seismic isolation system using controllable friction damper. Bulletin of Earthquake Resistant Structure Research Center,1994, 27: 21-31.
    [198] Inaudi J A. Modulated homogeneous friction: A semi-active damping strategy. Earthquake Engineering and Structural Dynamics, 1997, 26(3):361-376.
    [199] Agrawal A K, Yang J N. Semi-active control strategies for bildings subjected to near-field earthquakes. Proceedings of SPIE, 2000, 3988:359-370.
    [200] He W L, Agrawal A K, Yang J N. Novel semiactive friction controller for linear structures against earthquakes. Journal of Structural Engineering, 2003, 129(7): 941-950.
    [201] Lu L Y. Predictive control of seismic structures with semi-active friction dampers. Earthquake Engineering and Structural Dynamics, 2004, 33(5): 647-668.
    [202] Lu L Y. Semi-active modal control for seismic structures with variable friction dampers. Engineering Structure, 2004, 26(4): 437-454.
    [203] Chen C Q, Chen G D. Comparative study on semi-active control algorithms for piezoelectric friction dampers. Proceedings of the 11th SPIE Annual Symposium on Smart Structures and Materials, San Diego, California, 2004.
    [204] Nishitani A, Nitta Y, Itoh A. Semi-active structural control with variable friction dampers. Proceeding of the American Control Conference, San Diego, 1999: 1017-1021.
    [205] Nishitani A, Nitta Y, Itoh A, et al. Semiactive variable-friction damper control with simple algorithm. Proceedings of the American Control Conference, Chicago, 2000, June,503-506.
    [206] 李军.智能压电摩擦阻尼器的控制理论与试验研究:(硕士学位论文).大连:大连理工大学,2005.
    [207] 杜永峰.安装智能摩擦阻尼器的高层建筑结构振动控制的一般算法.兰州理工大学学报,2005,31(2):103-106.
    [208] Takagi K, Sugeno M. Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 1985, 15:116-132.
    [209] Choi K M, Cho S W, Jung H J, et al. Semi-active fuzzy control for seismic response reduction using magnetorheological damlpers. Earthquake Engineering and Structural Dynamics, 2004, 33(6): 723-736.
    [210] Ok S Y, Kim D S, Park K S, et al. Semi-active fuzzy control of cable-stayed bridges using magneto-rheological damlpers. Engineering Structures, 2007, 29(5): 776-788.
    [211] Pourzeynali S, Lavasani H H, Modarayi A H. Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 2007,29(3):346-357.
    [212] Kim S B, Yun C B. Sliding mode fuzzy control: theory and verification on a benchmark structure. Earthquake Engineering and Structural Dynamics, 2000, 29(11): 1587-1608.
    [213] Wu Z, Soong T T. Modified bang-bang control law for structural control implementation. Journal of Engineering Mechanics, 1996, 122(8): 771-777.
    [214] Wen Y K. Equivalent linearization of hysteretic systems under random excitation. Journal of Applied Mechanics, 1980, 47(EM2): 150-154.
    [215] Moreschi L M, Singh M P. Design of yielding metallic and friction dampers for optimal seismic performance. Earthquake Engineering and Structural Dynamics, 2003, 32(8):1291-1311.
    [216] 李宏男,霍林生.调液阻尼器对结构扭转耦联振动控制的优化设计.计算力学学报,2005,22(2):129-134.
    [217] Ahlawat A S, Ramaswamy A. Multiobjective optimal FLC driven hybrid mass damper system for torsionally coupled, seismicclly excited structures. Earthquake Engineering and Structural Dynamics, 2002, 31(12): 2121-2139.
    [218] Singh M P, Singh S, Moreschi L M. Tuned mass dampers for response control of torsional buildings. Earthquake Engineering and Structural Dynamics, 2002, 31(4): 749-769.
    [219] Arfiadi Y, Muhammad N S. Passive and active control of three-dimensional buildings. Earthquake Engineering and Structural Dynamics, 2000, 29(3):377-396.
    [220] Filiatrault A, Cherry S. Seismic design spectra for friction-damped structures. Journal of Structural Engineering, 1990, 116(5): 1334-1355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700