尾砂固结排放技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了处理西石门铁矿的尾矿,运用尾砂固结排放技术,将固结的尾矿排放到西石门铁矿的北区塌陷坑。通过理论分析、实验室试验、数值模拟、和小型工业试验等手段,研究了新型尾砂固结胶凝材料,分析了尾砂固结过程的机理,对尾砂固结体的稳定性也进行了研究,同时也阐述了尾砂浓缩-固结一体化技术,针对尾砂固结排放技术的应用也开展了研究。研究结果表明在西石门铁矿实施尾砂固结排放,在技术上是可行的,在经济上也是合理的,同时这种对尾矿的处理方式有利于环境保护和生态恢复。由此可以得出,尾砂固结排放技术的开发及应用,有助于促进尾矿处理技术的新发展,从而改变传统的利用尾矿库存放尾矿的方式,进而可以消除尾矿库的存在可能造成的环境污染及溃坝等安全隐患。
In order to dispose the tailings of Xishimen iron mine, the technology ofemission of cemented tailings is applied, and the cemented tailings are discharged intothe collapse pit on the north part of Xishimen iron mine. By means of theoreticalanalysis, laboratory experiments, numerical simulation, and small-scale industrial test,the study on the new binding material for cementing tailings is conducted, and themechanism for the cementation of tailings is analized, the stability of cementedtailings structures is analized numerically as well. In addition, the technology ofintegrating concentration and cementation together is introduced, and the applicationof the emission of cemented tailings is also demonstrated. The research resultsillustrated that, applying the technology of emission of cemented tailings on disposingthe tailings of Xishimen iron mine, is technically feasible and economicallyreasonable. Besides, this treatment of tailings is beneficial to environmental protectionand ecological restoration. Therefore, the development and application of thistechnology is helpful to the development of techniques of handling tailings.Furthermore, this technology is able to change the traditional way of storing tailingsin tailings reservoir, which in turn can eliminate the environmental pollution as wellas the potential safety hazard of dam breakage caused by the tailings reservoir.
引文
[1]袁世伦,胡国斌,杨承祥.金属矿山充填技术的回顾与展望[J].江西有色金属,2004,18(3):11-12.
    [2]王湘桂,唐开元.矿山充填采矿法综述[J].矿业快报,2008,(12):1-2.
    [3]李冬青.我国金属矿山充填技术的研究与应用[J].采矿技术,2001,1(2):16-19.
    [4]吴志安.充填采矿法应用范围的扩展[J].金属矿山,2004,(5):22-23.
    [5]谢龙水.矿山胶结充填技术的发展[J].湖南有色金属,2003,19(4):1-5.
    [6]吕辉,陈广平.矿山胶结充填技术评述与展望[J].矿业快报,2004,(10):1-6.
    [7]郭爱国,张兴华.我国充填采矿现状及发展[J].矿山测量,2005,(1):60-61.
    [8]杨泽,侯克鹏,乔登攀.我国充填技术的应用现状与发展趋势[J].矿业快报,2008,(4):1-5.
    [9]万海涛,方勇,肖广哲,秦杨.充填采矿法的应用现状及发展方向[J].世界有色金属,2009,(8):26-28.
    [10]束桂林,孙树杉,王建华.高炉矿渣耢作为高性能掺台料的研究与应用[J].粉煤灰,2001,(2):17-18.
    [11]何哲祥,谢开维,谢长江.工业炉碴用于矿山试验的试验研究[J].矿业研究与开发,1995,15(4):15-17.
    [12]张钦礼,过江,王新民.粉煤灰全尾砂胶结充填新技术[J].有色金属,1999,(2):5-7.
    [13]王立刚,朱曦光.我国粉煤灰资源的综合利用现状及今后发展重点[J].矿业研究与开发,1999,(4):3-5.
    [14]顾贵先.粉煤灰在金川矿山胶结充填中的应用[J].有色矿山,1994,(4):15-16.
    [15]过江,彭续承.粉煤灰作为充填胶结剂之探讨[J].有色金属设计,1997,(2):2-4.
    [16]饶运章.降低胶结充填成本的途径及应用[J].中国矿业,1997,6(5):33-38.
    [17]饶运章.低廉充填胶凝材料配合比试验[J].中国矿业,1998,7(5):26-29.
    [18]胡家国,古德生,郭力.粉煤灰胶凝性能的探讨[J].金属矿山,2003,(6):48-52.
    [19]王新民,姚建,田冬梅等.磷石膏作为胶结充填骨料性能的实验研究[J].金属矿山,2005,(12):13-15.
    [20]陈嘉生,王泽群,范平之等.粉煤灰在新桥硫铁矿井下充填中的应用[J].金属矿山,2001,(8):36-38.
    [21]张绍国,唐桂弟,庞欣荣等.粉煤灰在高峰公司井下充填应用试验[C].//2008首届中西部十二省市自治区有色金属工业发展论坛论文集.2008:65-68.
    [22]祝丽萍,倪文,张旭芳,黄晓燕.赤泥-矿渣-水泥基全尾砂胶结充填料的性能与微观结构[J].北京科技大学学报,2010,(7):838-842.
    [23]祝丽萍,倪文,张旭芳,黄迪,张玉燕.赤泥-矿渣少熟料体系制备全尾砂胶结充填料试验研究[J].金属矿山,2009,(11):175-178.
    [24]祝丽萍,倪文,黄迪,黄晓燕,王中杰.赤泥膏体和似膏体全尾砂胶结充填料研究[J].矿业研究与开发,2011,(4):17-21.
    [25]陈云嫩,梁礼明.低成本充填胶凝材料的开发研究.有色金属(矿山部分).2004,56(5):12-14.
    [26]陈云嫩,梁礼明.脱硫石膏胶结尾砂充填的研究[J].金属矿山,2003,(3):45-47.
    [27]陈云嫩,梁礼明.湿法烟气脱硫石膏在胶结尾砂充填的应用[J].矿产综合利用,2005,(1):42-45.
    [28]江梅.磷石膏胶结充填技术开发及应用[J].非金属矿,2006,29(2):32-34.
    [29]姚建,王新民,田冬梅等.磷石膏和粉煤灰胶结充填料的性能试验研究[J].矿业研究与开发,2006,26(2):44-48.
    [30]付毅,徐小荷,任凤玉.大用量有色炉渣胶结充填料试验研究[J].有色金属(矿山部分),2001,53(2):13-14.
    [31]孙恒虎.高水固结充填采矿[M].机械工业出版社,1998.
    [32]孙恒虎.高水速凝材料及其应用[M].中国矿业大学出版社,1994.
    [33]王培月.高水材料固结尾砂充填工艺在玲珑金矿的应用[J].中国矿业.2004.13(9):50-52.
    [34]田斌.高水固化材料与尾砂用于胶结充填[J].化工矿物与加工,1999,(2):5-16.
    [35]邢林.高水速凝固化材料充填技术的应用与效果[J].金属矿山,2001,(7):1-5.
    [36]张良云.凤凰山铜矿高水固化充填试验[J].金属矿山,1997,(8):17-19.
    [37] L.S.布热津斯基.浓缩尾矿的露天“干堆”处理[J].国外金属矿山,2002,(6):49-57.
    [38]储德应.梅山铁矿尾矿高效浓缩技术的实践[J].中国矿业,2001,10(3):59-60.
    [39]曹刚.莱芜铁矿浓缩脱水工艺的改进[J].金属矿山,1997,(2):27-29.
    [40]吕宪俊,连民杰.金属矿山尾矿处理技术进展[J].金属矿山,2005,(08):1-4.
    [41]李国昌,王萍.黄金尾矿透水砖的制备及性能研究[J].金属矿山,2006,(06):78-82.
    [42]刘磊,吕宪俊,王健,金子桥.浓缩型旋流器自动控制系统的研究[J].中国矿业,2009,(01):59-61.
    [43]王文潜,黄云峰.深度浓密与膏体制备[J].金属矿山,2001(10):32-34.
    [44]全克闻.NGS型高效深锥浓缩机的应用[J].金属矿山,1996,(1):44-47.
    [45]吕宪俊.水力旋流器在尾矿浓缩脱水中的应用[J].矿业快报,2002,(8):100-102.
    [46]蔡志斌.鲁中选矿厂尾矿高浓度浓缩工艺的探讨[J].金属矿山,1992,(3):57-59.
    [47]杨小生.高效旋流器—新型絮凝剂混凝沉降尾矿浓密工艺研究[J].国外金属矿选矿,1994,(1):15-19.
    [48] Turgut Yalcin. An Improved dewatering process for mill tailings[J]. C M Bulletin,1989,82(924):48-54.
    [49]《中国黄金生产实用技术》编委会.中国黄金生产实用技术[M].北京:冶金工业出版社,1998.
    [50]程秀绵.陶瓷过滤机在尼古拉选矿厂的应用[J].有色金属(选矿部分),2008,(1),34-36.
    [51]王海军.陶瓷过滤机在磷精矿脱水中的应用[J].IM&P化工矿物与加工,2008,(1),32-33.
    [52]刘伟东.硫铁矿用陶瓷过滤机脱水的半工业实验[J].过滤与分离,2000,10(2),24-25.
    [53]罗升,邓新发.国产陶瓷过滤机过滤分级尾砂试验研究[J].矿冶工程,2007,27(1):25-27.
    [54]梁国海,洪小鹏.尾矿压滤干堆工艺在排山楼金矿的成功应用与改造实践[J].黄金,2003,24(12):47-49.
    [55]陈希龙.尾矿浆全压滤工艺在全泥氰化炭浆厂的应用[J].黄金,1998,19(10):34-36.
    [56]杜兆根,刘新农.全自动压滤机在氰化厂中的应用[J].黄金,1996,17(4):31-34.
    [57]罗中兴,谢纪元.论压滤技术在氰化提金厂的应用[J].黄金,1996,17(4):27-30.
    [58]延吉生.矿山生态环境综合整治是矿业面临的重要任务[J].金属矿山,2002(12):5-7.
    [59]张兴凯,王启明,向桂生.金属非金属尾矿库安全县长及分析[J]中国安全生产科学技术,2006,2(2),60-62.
    [60]谢旭阳,田文旗,王云海等.我国尾矿库安全现状分析及管理对策研究[J].中国安全生产科学技术,2009,5(2):5-9.
    [61]张培安.浅谈尾矿库的安全技术管理[J].有色矿山,2003,32(2):32-35.
    [62]李仲学,曹志国,赵怡晴.基于Safety case和PDCA的尾矿库安全保障体系[J].系统工程理论与实践,2010,(05):936-944.
    [63]彭康,李夕兵,王世鸣,赵国彦,刘志祥.基于未确知测度模型的尾矿库溃坝风险评价[J].中南大学学报(自然科学版),2012,(04):1447-1452.
    [64]王涛,侯克鹏,郭振世,张成良.层次分析法(AHP)在尾矿库安全运行分析中的应用[J].岩土力学,2008,(S1):680-686.
    [65]李全明,张兴凯,王云海,张丙印.尾矿库溃坝风险指标体系及风险评价模型研究[J].水利学报,2009,(08):989-994.
    [66]王柏纯,王泽斌.冶金矿山尾矿处理技术发展回顾和展望[A].中国冶金矿山企业协会、中国矿业联合发展研究中心.2010年第三届尾矿库安全运行技术高峰论坛论文集[C].中国冶金矿山企业协会、中国矿业联合发展研究中心,2010:4.
    [67]张善法,孟令顺,杜晓娟.瞬变电磁法在山东某金矿尾矿库安全隐患排查中的应用[J].吉林大学学报(地球科学版),2010,(5):1177-1182.
    [68]姚香.黄金尾矿干堆技术若干问题的探讨[J].金属矿山,2005,Suppl:527-530
    [69]谢伟,隋利军,何哲祥.我国尾矿处置技术的现状及设想[J].矿业快报,2008,(5):10-12.
    [70] Williams M P A, Ennis P C. Suitability of the central thickened discharge method for nickel tailings disposalin Western Australia. Proceedings of the1996Nickel Conference, Kalgoorlie,Australia,1996.
    [71] Nguyen Q D, Boger D V. Application of technology to solving tailings disposal problems. InternationalJournal of Mineral Processing,1998,54(3-4):217-233.
    [72] Robinsky E I. Tailings dam failures need not be disasters——the Thickened Tailings Disposal(TTD) system.C M Bulletin,1999,92(1028):140-142.
    [73] Cincilla W A, et al. Geotechnical factors affecting the surface placement of process tailings in paste form.Australasian Institute of Mining and Metallurgy Publication,1998(1):337-340.
    [74] Spearing A J S, Millette D and Gay F. The potential use of foam technology in underground backfilling andsurface tailings disposal[A]. Proc. Of Mass Min2000[C]. Brisban, Australia: Australasian Institute of Miningand Metallurgy Publication Series,2000:193-197.
    [75]金大安.撰山子金矿尾矿压滤新工艺的应用[J].有色矿山,1998,(5):22-25.
    [76]白金绿,赵连全.尾矿压滤干式堆存处理工艺[J].黄金,2000,(5):40-41.
    [77]邢万芳,金英豪,姚香.黄金尾矿干堆技术若干问题探讨[J].有色金属(矿山部分),2008,(01):48-49.
    [78]刘远清,李传营,王博.尾矿压滤干堆技术在金岭铁矿的应用[J].金属矿山,2006,Suppl.:479-481.
    [79] Fall. M, Pokharel. M.,2010. Coupled effects of sulphate and temperature on the strength development ofcemented tailings backfills: Portland cement-paste backfill. Cement and Concrete Composites32(10),819-828.
    [80] Abdul-Hussian. N., Fall. M.,2012. Thermo-hydro-mechanical behaviour of sodium silicate-cementedpaste tailings in column experiments. Tunnelling and Underground Space Technology,(29):85-93.
    [81] Wu, D., Fall, M., Cai, S.,2012. Coupled Modeling of Temperature Distribution and Evolution in CementedTailings Backfill Structures That Contain Mineral Admixtures. Geotechnical and Geological Engineering30(4),935-961.
    [82] Nasir, O., and Fall, M.,2010. Coupling binder hydration, temperature and compressive strength developmentof underground cemented paste backfll at early ages. Tunnelling and Underground Space Technology25(1),9-20.
    [83] Schutter, G. De, Taerwe, L.,1995. General hydration model for Portland cement and blast furnace slagcement. Cement and Concrete Research25(3),593-604.
    [84] Knudsen, J.,1984. The dispersion model for hydration of Portland cement:1general concepts. Cement andConcrete Research14,622-630.
    [85] Ezziane, K., Bougara, A., Kadri, A., Khelaf, H., Kadri, E.,2007. Compressive strength of mortar containingnatural pozzolan under various curing temperature. Cement and Concrete Composites29(8),587-593.
    [86] Fall, M., Benzaazoua, M.,2005. Modeling the effect of sulphate on strength development of paste backfll andbinder mixture optimization. Journal of Cement and Concrete Research35(2),301-314.
    [87] Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I., Deveci, H.,2005. Effect of properties of tailings and binder onthe short-and long-term strength and stability of cemented paste backfll. Materials Letters59(28),3703-3709.
    [88] Kim, J.K., Moon, Y.H., Eo, S.H.,1998. Compressive strength development of concrete with different curingtime and temperature. Cement Concrete Research28(12),1761-1773.
    [89] Schutter, G. De,1999. Hydration and temperature development of concrete made with blast-furnace slagcement. Cement and Concrete Research29,143-149.
    [90] Paulini, P.,1990. Reaction mechanisms of concrete admixtures. Cement and Concrete Research20,910-918.
    [91] Yilmaz, E., Kesima, A., Ercidi, B.,2004. Strength development of paste backfll simples at Long term usingdifferent binders. In: Proceedings of8th Symposium MineFill04, China, pp.281-285.
    [92] Tank R C,Carino N J. Rate Constant Functions for Strength Development of Concrete[J]. ACI MaterialJournal,1991,88(1):74-83.
    [93]许德胜.大体积混凝土水化反应温度场与应力场分析[D].浙江大学,2005.
    [94] F. Tomosawa, T. Noguchi, C. Hyeon, Simulation model for temperature rise and evolution of thermal stress inconcrete based on kinetic hydration model of cement, in: S. Chandra (Ed.), Proceedings of Tenth InternationalCongress Chemistry of Cement. Gothenburg, Sweden, vol.4,1997, pp.72-75.
    [95] Ki-Bong Park, Nam-Yong Jee, In-Seok Yoon, Han-Seung Lee, Prediction of temperature distribution inhigh-strength concrete using hydration model, ACI Mater J105(2008)180-186.
    [96] S. Swaddiwudhipong, D. Shen, M.H. Zhang, Simulation of the exothermic hydration process of Portlandcement, Adv Cem Res14(2002)61-69.
    [97] Nasir, O., and Fall, M.,2009. Modeling the heat development in hydrating CPB structures. Computer andGeotechnics36(7),1207-1218.
    [98] Vagelis G. Papadakis, Experimental investigation and theoretical modeling of silica fume activity in concrete,Cem Concr Res29(1999)79-86.
    [99] Vagelis G. Papadakis, S. Tsimas, Effect of supplementary cementing materials on concrete resistance againstcarbonation and chloride ingress, Cem Concr Res30(2000)291-299.
    [100] Vagelis G. Papadakis, Effect of fy ash on Portland cement systems, Part I: low-calcium fy ash, Cem ConcrRes29(1999)1727–1736.
    [101] Vagelis G. Papadakis, Effect of fy ash on Portland cement systems, Part II: high calcium fy ash, Cem ConcrRes30(2000)1647-1654.
    [102] V.G. Papadakis, C.G. Vayenas, M.N. Fardis, Physical and chemical characteristics affecting the durability ofconcrete, ACI Mater J88(1991)186-196.
    [103] Wang, X.Y., and Lee, H.S.,2010. Modeling the hydration of concrete incorporating FA or slag. Cement andConcrete Research,40(7):984-996.
    [104] F. Tomosawa, T. Noguchi, C. Hyeon, Simulation model for temperature rise and evolution of thermal stressin concrete based on kinetic hydration model of cement, in: S. Chand ra (Ed.), Proceedings of TenthInternational Congress Chemistry of Cemen t. Gothenburg, Sweden, vol.4,1997, pp.72-75.
    [105] Grice T. Recent mine developments in Australia. Proceeding of the7th international symposium on miningwith backfill (MINEFILL)2001;351-7.
    [106] Zelic, J., Rusic, D., Krstulovic, R.,2004. A mathematical model for prediction of compressive strength incement–silica fume blends. Cement and Concrete Research34,2319-2328.
    [107] Chanvillard, G., Aloia, L.D.,1997. Concrete strength estimation at early ages: modifcation of the method ofequivalent age. ACI Materials Journal94(6),520-530.
    [108]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:525-538.
    [109]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009:51-52.
    [110] M. Philips. Reclamation-The use of computer aided design to integrate reclamation and mine planning[A].In:Proceedings of Queensland coal symposium[C]. Brisbane,29-30,Aug.1991:133-140.
    [111] R. G. Darmody. Coal mine subsidence: The effect of mitigation on crop yield s[A]. Proceedings ofsubsidence workshop due to underground mining[C]. Kentucky,22-25,Jun.1993:182-187.
    [112] R. G. Darmody. Modeling agricultural impacts of long wall mine subsidence: A GIS approach[J].IJSM,R&E,1995,(9):63-68.
    [113] Streltsov. The importance of mine surveying to rational ecological management[A]. Proceedings of8thinternational congress&exhibition, International society for mine surveying(ISM)[C]. Lexington,Kentucky,Sep.22-27,1991.]
    [114] Runkle. Effect of long wall mining on surface soil moisture and tree growth[A]. Proceedings of3rdsubsidence workshop due to underground mining[C]. Kentucky,22-25,Jun.1993:173-181.
    [115] Singh and S. Bhattacharya. Proposed criteria for assessing subsidence damage to renewable resource lands[J]. Mining Engineering,Mar.1987:189-193.
    [116] Kuo. Reclamation of a gob pile in Southwest Indiana, an innovative approach. In: Proceedings of1990National symposium40506-0108-May14-18,1990:181-189.
    [117] K. Mukhopadhyay. Environmental ramifications in surface mining with respect to land degradation underIndian context[J]. Journal of mines, metals&fuels, Aug-Sep,1994:200-205.
    [118] K. G. Evans. Erosion Prediction models and factors affection the application of the Universal Soil LossEquation to post-mining landscapes in central Queensland, In: Proceedings of Queensland coalsymposium,Brisbane,29-30,Aug.1991:123-131.
    [119] Duglas Baker. A methodology for integrating materials balance and land reclamation[J]. IJSM,R&E,1996(10):143-146.
    [120] R.L. Mc Nearny. Knight mine reclamation: A study of revegtation difficulties in a semiarid environment[J].IJ SM,R&E,1995(9):113-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700