去甲基化酶FBXL10通过抑制FOXC1促进乳腺癌增殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组蛋白去甲基化酶FBXL10(F-box and leucine-rich repeat protein 10)是最大的组蛋白去甲基化酶亚家族JmjC蛋白家族的成员之一,编码它的基因定位于12q24.31,具有特异性的H3K4me3和H3K36me2/1去甲基化酶活性。FBXL10又名JHDM1B(Jmjc domian-containing histone demethylase 1B)、KDM2B(lysine (K)-specific demethylase 2B)、Ndy-1(Not dead yet-1),FBXL10蛋白具有JmjC去甲基化酶活性结构域, CXXC DNA结合结构域, PHD植物同源结构域, proline-rich脯氨酸富集结构域, F-box结构域和leucine-rich repeat结构域。关于FBXL10在癌症方面的功能研究颇有争议,根据细胞背景的不同,可分为抑癌和致癌两方面,已有报道FBXL10在人类淋巴瘤和乳腺癌中有高表达。
     转录因子FOXC1是Forkhead box(Fox)家族中的亚家族FOXC的成员之一, FOXC1蛋白含有转录调节区、DNA结合区和一些其他的结构。我们的实验发现FBXL10与FOXC1在两种转移能力不同的乳腺癌细胞系MCF-7和MDA-MB-231中的表达水平呈现明显负相关,进一步分别过表达和干涉实验证实FBXL10能够调控FOXC1基因的转录。本实验室此前的研究表明,FOXC1在乳腺癌细胞系中的外源表达能够抑制乳腺癌细胞的增殖,PcG家族蛋白EZH2能够通过影响FOXC1基因启动子处组蛋白乙酰化和H3K27的三甲基化来抑制FOXC1,而组蛋白去甲基化酶FBXL10在乳腺癌中的功能以及此功能的实现是否与FOXC1有关仍未见报道。
     本论文旨在研究组蛋白去甲基化酶FBXL10对乳腺癌细胞增殖的影响及其功能的实现是否通过FOXC1起作用。MTT结果显示,外源过表达去甲基化酶FBXL10能明显促进乳腺癌细胞MCF7的增殖。荧光素酶报告基因、反转录PCR(RT-PCR)和western bloting结果表明,FBXL10可明显抑制FOXC1的表达水平。
     本项研究初步探讨了FBXL10在乳腺癌增殖方面的功能,确定了FOXC1为FBXL10又一个全新的靶基因,为深入研究FBXL10基因的功能及其转录调控机制奠定了基础,同时也为进一步揭示FBXL10的生物学功能提供了线索。
FBXL10 gene is a member of the largest histone demethylase Jmjc subfamily,and it is mapped to chromosome 12q24.31,has H3K4me3 and H3K36me2/1-specific demethylase activity.FBXL10 also known as JHDM1B(Jmjc domian-containing histone demethylase 1B)、KDM2B(lysine (K)-specific demethylase 2B)、Ndy-1(Not dead yet-1)。FBXL10 protein has a conserved Jmjc demethylase active domain,CXXC DNA-bingding domain,PHD domain,proline-rich domain,F-box domain and leuine-rich repeat domain.According to the different context of the cells,there is controversy about the function of the FBXL10 on the cancer progression,and it is known that FBXL10 overexpressed in human lymphomas and mammary adenocarcinomas.
     Transcription factor FOXC1 is a member of the Forkhead box(FOX) family,possess a transactivation domain,a DNA-bingding domain and some other domains.We discovererd that the expression of FBXL10 gene was negatively correlated to the FOXC1 between two different breast cancer cell lines MCF-7 and MDA-MB-231,and FBXL10 could transcriptionaly regulate the expression of FOXC1 gene by overexpress and RNAi experiment.The research in my lab discovered that overexpression of FOXC1 inhibited proliferation,and EZH2 could represss FOXC1 gene by impacting its histone H3K27 tri-methylation and acetylation modifications.However,it is unreported that the function of histone demethylase FBXL10 in the breast cancer and if the process is related to FOXC1.
     The aim of our study was to clarify the function of the histone demethylase FBXL10 on the proliferation and if the function is related to FOXC1.Through MTT,we found that overexpression of FBXL10 could promote proliferation of MCF-7 and by DLR,Reverse Transcription PCR and western blot assays,we found that FBXL10 inhibited FOXC1 expression.
     The data presented in this thesis demonstrated the function of FBXL10 to the proliferation of breast cancer cells,and FOXC1 is a new target of FBXL10 protein.The study lays the foundation for the research of the function FBXL10 protein and its transcription regulation mechanism,meanwhile it provides the clues for the biological function of FBXL10.
引文
[1] Berger SL (2002) Histone modifications in transcriptional regulation[J]. Curr Opin Genet Dev 12:142–148..
    [2] Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: Determinants, mechanisms, and functions[J]. Annu Rev Biophys Biomol Struct 31:361–392.
    [3] Strahl BD, Allis CD (2000) The language of covalent histone modifications[J]. Nature 403:41–45.
    [4] Kwon CS, Wagner D (2007) Unwinding chromatin for development and growth: A few genes at a time[J]. Trends Genet 23:403–412.
    [5] Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol 6:838–849.
    [6] Pasini, D., Hansen, K.H., Christensen, J., Agger, K., Cloos, P.A.C., and Helin, K. 2008. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2[J]. Genes & Dev. (in press) doi: 10.1101/gad.470008.
    [7] Tahiliani, M., Mei, P., Fang, R., Leonor, T., Rutenberg, M., Shimizu, F., Li, J., Rao, A., and Shi, Y. 2007. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation[J]. Nature 447: 601–605.
    [8] Potter, G.B., Beaudoin III, G.M., DeRenzo, C.L., Zarach, J.M., Chen, S.H., and Thompson, C.C. 2001. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor[J]. Genes & Dev. 15: 2687–2701.
    [9] Ahmed, S., Palermo, C., Wan, S., and Walworth, N.C. 2004. A novel protein with similarities to Rb binding protein 2 compensates for loss of Chk1 function and affects histone modification in fission yeast[J]. Mol. Cell. Biol. 24: 3660–3669.
    [10] Klose, R.J., Yan, Q., Tothova, Z., Yamane, K., Erdjument-Bromage, H., Tempst, P., Gilliland, D.G., Zhang, Y., and Kaelin Jr., W.G. 2007. The retinoblastoma binding protein RBP2 is an H3K4 demethylase[J]. Cell 128: 889–900.
    [11] Metzger, E., Wissmann, M., Yin, N., Muller, J.M., Schneider, R., Peters, A.H., Gunther, T., Buettner, R., and Schule, R. 2005.
    [12] Garcia-Bassets, I., Kwon, Y.S., Telese, F., Prefontaine, G.G., Hutt, K.R., Cheng, C.S., Ju, B.G., Ohgi, K.A., Wang, J., Escoubet-Lozach, L., et al. 2007. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors[J]. Cell 128: 505–518.
    [13] Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells[J]. Cell 125: 315–326.
    [14] Agger, K., Cloos, P.A., Christensen, J., Pasini, D., Rose, S., Rappsilber, J., Issaeva, I., Canaani, E., Salcini, A.E., and Helin, K. 2007. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development[J]. Nature 449: 731–734.
    [15] Klose, R.J., Kallin, E.M., and Zhang, Y. 2006a. JmjC-domaincontaining proteins and histone demethylation[J]. Nat. Rev. Genet. 7: 715–727.
    [16] DeSanta, F., Totaro, M.G., Prosperini, E., Notarbartolo, S., Testa, G., and Natoli, G. 2007. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing[J]. Cell 130: 1083–1094.
    [17] Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., et al. 2007a. A histone H3 lysine 27 demethylase regulates animal posterior development[J]. Nature 449: 689–694.
    [18] Lee, M.G., Villa, R., Trojer, P., Norman, J., Yan, K.P., Reinberg, D., Croce, L.D., and Shiekhattar, R. 2007b. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination[J]. Science 318: 447–450.
    [19] Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A.H., Schlegelberger, B., Stein, H., Dorken, B., Jenuwein, T., and Schmitt, C.A. 2005. Oncogene-induced senescence as an initial barrier in lymphoma development[J]. Nature 436: 660–665.
    [20] Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A.J., Barradas, M., Benguria, A., Zaballos, A., Flores, J.M., Barbacid, M., et al. 2005. Tumour biology: Senescence in premalignant tumours[J]. Nature 436: 642.
    [21] Lazzerini Denchi, E., Attwooll, C., Pasini, D., and Helin, K. 2005. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland[J]. Mol. Cell. Biol. 25: 2660–2672.
    [22] Michaloglou, C., Vredeveld, L.C., Soengas, M.S., Denoyelle, C., Kuilman, T., van der Horst, C.M., Majoor, D.M., Shay, J.W., Mooi, W.J., and Peeper, D.S. 2005. BRAFE600-associated senescence-like cell cycle arrest of human naevi[J]. Nature 436: 720–724.
    [23] Narita, M., Nunez, S., Heard, E., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence[J]. Cell 113: 703–716.
    [24] Cloos, P.A., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., Hansen, K.H., and Helin, K. 2006. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3[J]. Nature 442: 307–311.
    [25] Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination[J]. Science 306, 279–283 (2004).
    [26] Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).
    [27] Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell 119, 941–953 (2004).
    [28] Metzger,E.et al. LSD1 demethylates repressive histone marks to promote androgen-receptordependent transcription[J]. Nature 437, 436–439 (2005).
    [29] Tsukada,Y., Fang,J., Erdjument-Bromage,H., Warren,M.E.,Borchers,C.H., Tempst,P. and Zhang,Y. (2006) Histone demethylation by a family of JmjC domain-containing proteins[J].Nature, 439, 811–816.
    [30] Klose, R.J., Yamane, K., Bae, Y., Zhang, D., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. 2006b. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36[J]. Nature 442: 312–316.
    [31] Fodor, B.D., Kubicek, S., Yonezawa, M., O’Sullivan, R.J., Sengupta, R., Perez-Burgos, L., Opravil, S., Mechtler, K., Schotta, G., and Jenuwein, T. 2006. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells[J]. Genes & Dev. 20: 1557–1562.
    [32] Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases[J]. Cell 125: 467–481.
    [33] Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. 2006. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor[J]. Cell 125: 483–495.
    [34] Christensen, J., Agger, K., Cloos, P.A., Pasini, D., Rose, S., Sennels, L., Rappsilber, J., Hansen, K.H., Salcini, A.E., and Helin, K. 2007. RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3[J]. Cell 128: 1063–1076.
    [35] Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H.H., Whetstine, J.R., Bonni, A., Roberts, T.M., and Shi, Y. 2007. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases[J]. Cell 128: 1077–1088.
    [36] Lee, M.G., Norman, J., Shilatifard, A., and Shiekhattar, R. 2007a. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein[J]. Cell 128: 877–887.
    [37] Jepsen, K., Solum, D., Zhou, T., McEvilly, R.J., Kim, H.J., Glass, C.K., Hermanson, O., and Rosenfeld, M.G. 2007. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron[J]. Nature 450: 415–419.
    [38] Paul A.C. Cloos, Jesper Christensen, Karl Agger, and Kristian Helin. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease [J]. Genes & Dev. 2008 22:1118
    [39] Joshi, A.A. and Struhl, K. 2005. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation[J]. Mol. Cell 20: 971–978..
    [40] Li, B., Gogol, M., Carey, M., Pattenden, S.G., Seidel, C., and Workman, J.L. 2007. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription[J]. Genes & Dev. 21: 1422–1430.
    [41] Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box[J]. Cell 86, 263–274 (1996).
    [42] Ayton, P. M., Chen, E. H. & Cleary, M. L. Binding to nonmethylated CpG DNA is essential for targetrecognition, transactivation, and myeloid transformation by an MLL oncoprotein[J]. Mol. Cell. Biol. 24, 10470–10478 (2004).
    [43] Jorgensen, H. F., Ben-Porath, I. & Bird, A. P. MBD1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains[J]. Mol. Cell. Biol. 24, 3387–3395 (2004).
    [44] Lee, J. H. & Skalnik, D. G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian SET1 histone H3–Lys4 methyltransferase complex, the analogue of the yeast SET1/COMPASS complex[J]. J. Biol. Chem. 280, 41725–41731 (2005).
    [45] Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor[J]. Cell 125, 483–495 (2006).
    [46] Hu, Z. et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31[J]. Oncogene 20, 6946–6954 (2001).
    [47] Lee, J. W., Choi, H. S., Gyuris, J., Brent, R. & Moore, D. D. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor[J]. Mol. Endocrinol. 9, 243–254 (1995).
    [48] Cachon-Gonzalez, M. B. et al. Structure and expression of the hairless gene of mice[J]. Proc. Natl Acad. Sci. USA 91, 7717–7721 (1994).
    [49] Ahmad, W. et al. Alopecia universalis associated with a mutation in the human hairless gene[J]. Science 279, 720–724 (1998).
    [50] Potter, G. B. et al. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor[J]. Genes Dev. 15, 2687–2701 (2001).
    [51] Kim, J. et al. Tudor, MBT and chromo domains gauge the degree of lysine methylation[J]. EMBO Rep. 7, 397–403 (2006).
    [52] Huang, Y., Fang, J., Bedford, M. T., Zhang, Y. & Xu, R. M. Recognition of hstone H3 lysine-4 methylation by the double tudor domain of JMJD2A[J]. Science 312, 748–751 (2006).
    [53] Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9 methylation and HP1γare associated with transcription elongation through mammalian chromatin[J]. Mol. Cell 19, 381–391 (2005).
    [54] Bannister, A. J. et al. Spatial distribution of di- and trimethyl lysine 36 of histone H3 at active genes[J]. J. Biol. Chem. 280, 17732–17736 (2005).
    [55] Keogh, M.C., Kurdistani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins, S.R., Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., et al. 2005. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex[J]. Cell 123: 593–605.
    [56] Carrozza, M.J., Li, B., Florens, L., Suganum, T., Swanson, S.K., Lee, K.K., Shia, W.J., Anderson, S., Yates, J., Washburn, M.P., et al. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription[J]. Cell 123: 581–592.
    [57] Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1chromodomain[J]. Nature 410: 120–124.
    [58] Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins[J]. Nature 410: 116–120.
    [60] Yang, Z.Q., Imoto, I., Pimkhaokham, A., Shimada, Y., Sasaki, K., Oka, M., and Inazawa, J. 2001. A novel amplicon at 9p23-24 in squamous cell carcinoma of the esophagus that lies proximal to GASC1 and harbors NFIB[J]. Jpn. J. Cancer Res. 92: 423–428.
    [61] Yamane, K., Tateishi, K., Klose, R.J., Fang, J., Fabrizio, L.A., Erasing the methyl markGENES & DEVELOPMENT 1139 Downloaded from genesdev.cshlp.org on July 29, 2008 - Published by Cold Spring Harbor Laboratory Press Erdjument-Bromage, H., Taylor-Papadimitriou, J., Tempst, P., and Zhang, Y. 2007. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation[J]. Mol. Cell 25: 801–812.
    [62] Noma, K., Allis, C.D., and Grewal, S.I. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries[J]. Science 293: 1150–1155.
    [63] Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E., Emre, N.C., Schreiber, S.L., Mellor, J., and Kouzarides, T. 2002. Active genes are tri-methylated at K4 of histone H3[J]. Nature 419: 407–411.
    [64] Liang, G., Lin, J.C., Wei, V., Yoo, C., Cheng, J.C., Nguyen, C.T., Weisenberger, D.J., Egger, G., Takai, D., Gonzales, F.A., et al. 2004. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome[J]. Proc. Natl. Acad. Sci. 101: 7357–7362.
    [65] Schneider, R., Bannister, A.J., Myers, F.A., Thorne, A.W., Crane-Robinson, C., and Kouzarides, T. 2004. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes[J]. Nat. CellBiol. 6: 73–77.
    [66] Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., McMahon, S., Karlsson, E.K., Kulbokas III, E.J., Gingeras, T.R., et al. 2005. Genomic maps and comparative analysis of histone modifications in human and mouse[J]. Cell 120: 169–181.
    [67] Pavri, R., Zhu, B., Li, G., Trojer, P., Mandal, S., Shilatifard, A., and Reinberg, D. 2006. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II[J]. Cell 125: 703–717.
    [68] Vermeulen, M., Mulder, K.W., Denissov, S., Pijnappel, W.W., van Schaik, F.M., Varier, R.A., Baltissen, M.P., Stunnenberg, H.G., Mann, M., and Timmers, H.T. 2007. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4[J]. Cell 131: 58–69.
    [69] Hong, S., Cho, Y.W., Yu, L.R., Yu, H., Veenstra, T.D., and Ge, K. 2007. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases[J]. Proc. Natl. Acad. Sci. 104: 18439–18444.
    [70] Xiang, Y., Zhu, Z., Han, G., Lin, H., Xu, L., and Chen, C.D. 2007a. JMJD3 is a histone H3K27 demethylase[J]. Cell Res. 17: 850–857.
    [71] Greenfield, A. et al. An H-YDb epitope is encoded by a novel mouse Y chromosome gene[J]. Nature Genet. 14, 474–478 (1996).
    [72] Greenfield, A. et al. The UTX gene escapes X inactivation in mice and humans[J]. Hum. Mol. Genet. 7, 737–742 (1998).
    [73] Takeuchi, T., Kojima, M., Nakajima, K. & Kondo, S. Jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background[J]. Mech. Dev. 86, 29–38 (1999).
    [74] Jung, J., Kim, T. G., Lyons, G. E., Kim, H. R. & Lee, Y. Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein[J]. J. Biol. Chem. 280, 30916–30923 (2005).
    [75] Kim, T. G., Chen, J., Sadoshima, J. & Lee, Y. Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors[J]. Mol. Cell. Biol. 24, 10151–10160 (2004).
    [76] Kim, T. G., Jung, J., Mysliwiec, M. R., Kang, S. & Lee, Y. Jumonji represses alpha-cardiac myosin heavy chain expression via inhibiting MEF2 activity[J]. Biochem. Biophys. Res. Commun. 329, 544–553 (2005).
    [77] Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor[J]. Genes Dev. 16, 1466–1471 (2002).
    [78] Tsuneoka, M., Koda, Y., Soejima, M., Teye, K. & Kimura, H. A novel myc target gene, mina53, that is involved in cell proliferation[J]. J. Biol. Chem. 277, 35450–35459 (2002).
    [79] Eilbracht, J., Kneissel, S., Hofmann, A. & Schmidt-Zachmann, M. S. Protein NO52—a constitutive nucleolar component sharing high sequence homologies to protein NO66[J]. Eur. J. Cell Biol. 84, 279–294 (2005).
    [80] Zhang, Y. et al. The human mineral dust-induced gene, MDIG, is a cell growth regulating gene associated with lung cancer[J]. Oncogene 24, 4873–4882 (2005).
    [81] Liu, C., Gilmont, R. R., Benndorf, R. & Welsh, M. J. Identification and characterization of a novel protein from Sertoli cells, PASS1, that associates with mammalian small stress protein hsp27[J]. J. Biol. Chem. 275, 18724–18731 (2000).
    [82] Fadok, V. A. et al. A receptor for phosphatidylserinespecific clearance of apoptotic cells[J]. Nature 405, 85–90 (2000).
    [83] Bose, J. et al. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal[J]. J. Biol. 3, 15 (2004).
    [84] Raymond Pfau, Alexandros Tzatsos, Sotirios C. Kampranis, Oksana B. Serebrennikova, Susan E. Bear,and Philip N. Tsichlis.(2008). Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process[J].Cell biology,105:1907-1912.
    [85] Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, PaganoM.(2007) JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes[J].Nature 450:309–313.
    [86] Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi[J]. Genes Dev. 17, 443–448 (2003).
    [87] Dousset, T. et al. Initiation of nucleolar assembly is independent of RNA polymerase I transcription[J]. Mol. Biol. Cell 11, 2705–2717 (2000).
    [88] Koyama-Nasu,R., David,G. and Tanese,N. (2007) The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun[J]. Nat. Cell Biol., 9, 1074–1080.
    [89] Brock, H. W., and C. L. Fisher. 2005. Maintenance of gene expression patterns[J].Dev. Dyn. 232:633–655.
    [90] Buszczak, M., and A. C. Spradling. 2006. Searching chromatin for stem cell identity[J].Cell 125:233–236.
    [91] Cao, R., Y. Tsukada, and Y. Zhang. 2005. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol[J]. Cell 20:845–854.
    [92] Cao, R., and Y. Zhang. 2004. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3[J]. Curr. Opin. Genet. Dev. 14:155–164.
    [93] Cardozo, T., and M. Pagano. 2004. The SCF ubiquitin ligase: insights into a molecular machine[J]. Nat. Rev. Mol. Cell Biol. 5:739–751.
    [94] Carrozza, M. J., B. Li, L. Florens, T. Suganuma, S. K. Swanson, K. K. Lee, W. J. Shia, S. Anderson, J. Yates, M. P. Washburn, and J. L. Workman. 2005. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription[J]. Cell 123:581–592.
    [95] Cattoretti, G., L. Pasqualucci, G. Ballon, W. Tam, S. V. Nandula, Q. Shen, T. Mo, V. V. Murty, and R. Dalla-Favera. 2005. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice[J]. Cancer Cell 7:445–455.
    [96] Chang, C. C., B. H. Ye, R. S. K. Chaganti, and R. Dalla-Favera. 1996. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor[J]. Proc. Natl. Acad. Sci. USA 93:6947–6952.
    [97] Kamminga LM, et al. (2006) The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion[J]. Blood 107:2170–2179.
    [98] Bracken AP, et al. (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells[J]. Genes Dev 21:525–530.
    [99] Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions[J]. Genes Dev 20:1123–1136.
    [100] Jacobs JJ, Kieboom K, Marino S, DePinho RA, van LohuizenM(1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus[J]. Nature 397:164–168.
    [101] Gil J, Bernard D, Martinez D, Beach D (2004) Polycomb CBX7 has a unifying role in cellular lifespan[J]. Nat Cell Biol 6:67–72.
    [102] Dietrich N, et al. (2007) Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus[J]. EMBO J 26:1637–1648.
    [103] Sanchez C, et al. (2007) Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor[J]. Mol Cell Proteomics 6:820–834.
    [104] Gearhart MD, Corcoran CM,Wamstad JA, Bardwell VJ (2006) Polycomb group and SCF ubiquitinligases are found in a novel BCOR complex that is recruited to BCL6 targets[J]. Mol Cell Biol 26:6880–6889.
    [105] Alexandros Tzatsos, Raymond Pfau, Sotirios C. Kampranis, and Philip N. Tsichlis. Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus[J]. PNAS, 2009,5.
    [106] Lehmann, O J, Sowden, J C, Carlsson, P, et al. Fox's in development and disease[J]. Trends Genet, 2003, 19(6): 339-344.
    [107]曹冬梅,卢建.叉头框(Fox)转录因子家族的结构与功能[J].生命科学, 2006, 18(5): 491-496.
    [108]付艳,邓伟国,李玉林,三浦直行.叉头框c2在中轴骨骼发育过程中的作用[J].中国病理生理杂志, 2004, 20(11) :1966 - 1971
    [109] So C W, Cleary M L.Common mechanism for oncogenic activation of MLL by forkhead family protein.Blood[J].2003,101(2):633-639.
    [110] Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in cancer[J]. Nat Rev Cancer 7:847–859.
    [111] Huang, L, Chi, J, Berry, F B, et al. Human p32 is a novel FOXC1-interacting protein that regulates FOXC1 transcriptional activity in ocular cells[J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5243-5249.
    [112]LehmannOJ,SowdenJC,CarlssonP,JordanT,BhattacharyaSS:Fox’sindevelopmentanddisease[J].TrendsGenet 2003; 19: 339–344.
    [113] Gould DB, Jaafar MS, Addison MK et al: Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: relevance to ocular dysgenesis and hearing impairment[J]. BMC Med Genet 2004; 5: 17.
    [114] Chanda B, Asai-Coakwell M, Ye M et al: A novel mechanistic spectrum underlies glaucoma associated chromosome 6p25 copy number variation[J]. Hum Mol Genet 2008; 17: 3446– 3458
    [115] Nishimura DY, Swiderski RE, Alward WL et al: The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25[J]. Nat Genet 1998; 19: 140– 147.
    [116] Le Caignec C, De Mas P, Vincent MC et al: Subtelomeric 6p deletion: clinical, FISH, and array CGH characterization of two cases[J]. Am J Med Genet A 2005; 132A: 175– 180.
    [117] Descipio C, Schneider L, Young TL et al: Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher– Schinzel (3C) syndrome[J]. Am J Med Genet A 2005; 134A: 3– 11.
    [118] Lehmann OJ, Ebenezer ND, Jordan T et al: Chromosomal duplication involving the forkhead transcription factor gene FOXC1 causes iris hypoplasia and glaucoma[J]. Am J Hum Genet 2000; 67: 1129–1135.
    [119] Nishimura DY, Searby CC, Alward WL et al: A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye[J]. Am J Hum Genet 2001; 68: 364– 372.
    [120] Noga Bloushtain-Qimron, Jun Yao, Eric L. Snyder, et al. Cell type-specific DNA methylation patterns in the human breast[J]. PNAS, 2008, 105(37): 14076–14081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700