聚硅氧烷/聚苯醚共聚物膜的制备及其优先透醇性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物发酵与渗透汽化耦合技术已被证明是一种高效节能的连续化生产生物质燃料的方法,这项技术的关键是发展高性能、稳定性好的渗透汽化膜材料。本论文以生物能源中的燃料乙醇、丁醇为背景,利用聚苯醚(PPO)的“刚性”分子链对聚二甲基硅氧烷(PDMS)的“柔性”分子链进行改性,合成一系列不同“软-硬”段比例的聚二甲基硅氧烷-聚苯醚嵌段(PDMS-b-PPO)共聚物;采用溶剂挥发法制备均质膜,研究醇和水分子在膜中的溶解扩散性能差异;采用相转化法制备出高通量的非对称膜,借助现代分析手段,考察膜的微观结构、形貌对醇/水分离性能的变化规律;进一步研究了溴取代的聚苯醚(BPPO),在陶瓷支撑体上交替组装BPPO和PDMS,原位制备了聚二甲基硅氧烷/聚苯醚交联共聚(c-PDMS/BPPO)膜。本研究将为优先透醇膜材料的结构设计和调控提供理论指导。
     首先,利用阳离子开环反应和基团取代反应制备了二甲胺基封端的聚二甲基硅氧烷,探讨了合成反应中的主要影响因素,并利用FTIR和元素分析仪对产物结构进行表征。通过自制的二甲胺基封端聚二甲基硅氧烷和商业化氨丙基封端聚二甲基硅氧烷分别与羟基封端的聚苯醚反应,利用聚合物分子链末端上的活性基团进行反应合成了聚二甲基硅氧烷-聚苯醚嵌段(PDMS-b-PPO)共聚物,从理论上分析了嵌段反应的可行性并摸索了适宜的反应条件,利用FTIR、NMR和DSC对PDMS-b-PPO共聚物的结构进行表征,对比了两种端基的PDMS和PPO反应的难易程度。
     其次,在不同原料比下合成了一系列PDMS含量不同的PDMS-b-PPO共聚物,通过溶剂挥发法将其制备成均质膜,考察了组分比对PDMS-b-PPO均质膜渗透汽化性能的影响。根据溶解度参数原则和Flory-Huggins相互作用参数理论,分别计算了PDMS-b-PPO膜的溶解度参数、渗透组分与PDMS-b-PPO膜的相互作用参数及其扩散系数,结合AFM、EDX、SAXS和DSC对PDMS-b-PPO膜的微观形貌和结构进行表征,探讨了PDMS-b-PPO膜的组分比对其热力学行为、动力学行为和宏观分离性能的影响。
     再次,通过相转化法制备了不同PDMS含量的PDMS-b-PPO非对称膜,采用SEM、EDX、XRD和AFM等手段对膜结构进行表征,研究了组分比对PDMS-b-PPO非对称膜微观形貌、表面疏水性及结晶性能的影响,考察了操作条件对PDMS-b-PPO非对称膜渗透汽化性能的影响。通过对比PDMS-b-PPO均质膜和非对称膜的微观形貌、热力学和动力学行为,从理论上解释了两种膜在宏观性能上的差别。结果表明,PDMS-b-PPO非对称膜显示了更高的渗透通量。当操作温度为60℃,铸膜液中聚合物浓度为11wt%,原料液乙醇浓度为5wt%时,渗透通量可达1400g·m~(-2)·h~(-1)。
     最后,利用Wohl-Ziegler反应制备了一系列溴化聚苯醚(BPPO),并通过控制光照时间调控BPPO的溴化率。在微滤陶瓷管式基膜上交替组装BPPO和PDMS,原位制备了PDMS/BPPO交联共聚(c-PDMS/BPPO)膜,并将其用于正丁醇/水的渗透汽化分离。结果表明,随着浸渍时间的增加,分离因子减小,通量增大;随着BPPO溴化率的增大,分离因子呈现出先增大后减小的趋势。当浸渍时间为1.33h,溴化率为34wt%时,c-PDMS/BPPO膜的性能较好,分离因子为35,通量为220g·m~(-2)·h~(-1)。另外,在200h的连续透正丁醇/水实验中,c-PDMS/BPPO膜呈现出较好的稳定性。这表明BPPO增强了PDMS的成膜性及耐溶胀性能。
The coupling of fermentation and pervaporation for bio-fuel has been proven asan efficient and low energy consumption technology route. Researchers are alwaysfocus on the design of membrane which has high separation performance and stability,and the development of novel membrane materials with perfect separationperformance and good mechanical properties is the key point in pervaporation. Basedon the ground of ethanol and butanol in bio-fuel, this study synthesized thepolydimethylsiloxane-block polyphenylene oxide (PDMS-b-PPO) copolymers withdifferent composition, through the modification of PDMS by PPO. PDMS-b-PPOhomogeneous membranes were prepared by solvent evaporating method, and then thedifferent solubility and diffusion of ethanol and water in the membrane were studied.High flux PDMS-b-PPO asymmetric membranes were prepared by phase-inversionmethod, and the morphologies and pervaporation performance were studied.Furthermore, bromide-substituted polyphenylene oxide (BPPO) was synthesized,althernately assembled PDMS and BPPO on ceramic membrane for preparing thecross-linked-PDMS/BPPO membranes. This study is benefit to the design ofmembrane material for alcohol concentration.
     First, amido-terminated polydimethylsiloxane were synthesized by the methodsof positive ion ring-opening reaction and substitution reaction, the effect oftemperature, ratio of raw materials and the amount of end-capping reagent onsynthesis of amido-terminated polydimethylsiloxane were studied, and the productwas characterized by FTIR and element analysis.Orientation reaction between amidoor amine groups on PDMS chains and the hydroxyl groups on PPO chains wereconducted for obtaining the PDMS-b-PPO copolymers with different composition.The effects of temperature, ratio of raw materials and the amount of end-cappingreagent on synthesis of amido-terminated polydimethylsiloxane were studied, thePDMS-b-PPO copolymers were characterized by FTIR,1H-NMR, DSC, and thereaction between PPO with two different PDMS was compared.
     Second, a series of PDMS-b-PPO membranes with different PDMS content wereprepared by solvent evaporation method with suitable conditions. The permselectivityof these membranes were discussed as the variety of PDMS content. According to theFlory-Huggins principle, the solubility parameters of PDMS-b-PPO membranes, theinteraction parameters of ethanol and water with membrane, the diffusion parameterswere calculated, and the morphologies of PDMS-b-PPO membrane werecharacterized by AFM, EDX, SAXS and DSC, the relationship of PDMS content withthe thermodynamic of PDMS-b-PPO membranes was studied.
     Third, a series of PDMS-b-PPO asymmetric membranes with different PDMScontent have been prepared by phase-inversion process, the morphologies of thesemembranes were characterized by SEM, EDX, XRD and AFM, and the effect ofPDMS content on the morphology, hydrophobility and crystallization of themembrane, and the effect of operation conditions on the pervaporation performance ofPDMS-b-PPO asymmetric membranes with different PDMS content were studied.The differences of separation performance of PDMS-b-PPO homogeneous andasymmetric membranes were discussed by comparing the morphologies andthermodynamics of these two membranes. The results showed that the PDMS-b-PPOasymmetric membrane shows better flux than that of PDMS-b-PPO homogeneousmembrane. When polymer concentration in casting solution was11wt%, operatingtemperature was60℃, feed concentration was5wt%and the flux was1400g·m~(-2)·h~(-1).
     At last, a series of BPPO with different bromide-substituted ratio were firstlysynthesized through Wohl-Ziegler reaction, and the bromide-substituted ratio ofBPPO was controlled by illumination time. An in-situcross-linked-polydimethylsiloxane/brominated polyphenylene oxide(c-PDMS/BPPO) membrane on ceramic tube has been prepared for the recovery ofbutanol by pervaporation. BPPO and PDMS were sequentially assembled and in-situcross-linked to form the final c-PDMS/BPPO membrane. As the results shown, theseparation factor increased and the flux decreased as the increase of dipping time. Onthe other hand, the separation factor increased first and then decreased as the increaseof bromide-substituted ratio of BPPO. The pervaporation experiments ofbutanol-water mixture indicated that the c-PDMS/BPPO membrane exhibited anacceptable flux of220g·m~(-2)·h~(-1)and high separation factor of35towards butanol,when the bromide-substituted ratio was34wt%and the dipping time was1.33h.Moreover, the c-PDMS/BPPO membrane performed excellent stability in an about200h continuous butanol recovery, as compared to the PDMS membrane.
引文
[1]徐惠娟,王世峰,龙敏南.燃料酒精生产的研究进展[J].厦门大学学报(自然科学版),2006,45:37~42
    [2] H. S. Kheshgi, R. C. Prince, G. Marland. The potential of biomass fuels in thecontext of global climate change: Focus on transportation fuels[J]. Annu. Rev. Env.Resour.,2000,25:199~244.
    [3] C. Roca, L. Olsson. Increasing ethanol productivity during xylose fermentation bycell recycling of recombinant Saccharomyces cerevisiae[J]. Appl. Microbiol.Biotechnol.,2003,60:560~563.
    [4] H. L. Chum, R. P. Overend. Biomass and renewable fuels[J]. Fuel Process.Technol.,2001,71:187~195.
    [5] T. ak r, K. Y. Arga, M. M. Alt nta, K. lgen. Flux analysis of recombinantSaccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production[J].Process Biochem.,2004,39:2097~2108.
    [6]杨斌,吕燕萍,谭字榴等.乙醇连续发酵与膜分离耦合过程研究进展[J].膜科学与技术,1997,17:9-17.
    [7]刘继泉,胡存,秦娟妮.膜分离技术在无水乙醇生产中的应用[J].酿酒,2005,32:38-40.
    [8]杨富国,方正,余世袁等.膜分离技术在低聚木糖制备及发酵中的应用[J].林产化学与工业,2003,22:77-81.
    [9] P. Shao, R. Y. M. Huang. Polymeric membrane pervaporation[J]. J. Membr. Sci.,2007,287:162~179.
    [10] O. Sae-Khow, S. Mitra. Pervaporation in chemical analysis[J]. J. Chromatogr. A.,2010,1217:2736~2746.
    [11] J. G. Wijmans, R. W. Baker. The solution–diffusion model: a review[J]. J.Membr. Sci.,1995,107:1~21.
    [12] P. D. Chapman, T. Oliveira, A. G. Livingston, K. Li. Membranes for thedehydration of solvents by pervaporation[J]. J. Membr. Sci.,2008,318:5~37.
    [13] B. Bolto, M. Hoang, Z. L. Xie. A review of membrane selection for thedehydration of aqueous ethanol by pervaporation[J]. Chem. Eng. Process.,2011,50:227~235.
    [14] L. M. Vane. A review of pervaporation for product recovery from biomassfermentation processes[J]. J. Chem. Technol. Biotechnol.,2005,80:603~629.
    [15] P. A. Kober. Pervaporation, perstillation and percrystallisation[J]. J. Am. Chem.Soc.,1917,9:44~948.
    [16] J. Neel, in Pervaporation Membrane Separation Processes[M], R. Y. M. Huang,Ed., Elsevier, Amsterdam,1991, Chap.1.
    [17] R. C. Bining, F. E. James. New separate by membrane permeate[J]. PetroleumRefinerance,1958,37:214~215.
    [18] Y. Nagase, S. Mori, K. Matsui. Chemical modification ofpoly(substituted-acetylene). Ⅳ. Pervaporation of organic liquid/water mixturethrough poly(1-phenyl-1-propyne)/polydimethylsiloxane graft copolymermembrane[J]. J. Appl. Polym. Sci.,1989,37:1259-1267.
    [19] J. Neel, Q. T. Nguyen, R. Clement. Fractionation of a binary liquid mixture bycontinuous pervaporation[J]. J. Membr. Sci.,1983,15:43~62.
    [20] R. Rautenbach, R. Albrecht. Separation of organic binary mixtures bypervaporation[J]. J. Membr. Sci.,1980,7:203~223.
    [21] C. Chiranjivi, R. Sinha, P. S. S. Rao, C. V. Rao. Separation of the mixture ofxylene and isoamyl alcohol by pervaporation[J]. Ind. J. Technol.,1982,20:135~138.
    [22] Y. Surmio, H. Takeo. Separation of some aqueous amine solutions bypervaporation through poly(4-vinylpyridine) membrane[J]. Kobunshi Ronbunshu,1982,39:407~414.
    [23] M. H. V. Mulder, F. Kruitz, C. A. Smolders. Separation of isomeric xylenes bypervaporation through cellulose ester membranes[J]. J. Membr. Sci.,1982,11:349~363.
    [24] T. Junichi, H. Tadashi, Y. Shiro, I. Masahisa, S. Isao. Separation ofbenzene-cyclohexane azeotropic mixture through polymeric membranes withmicrophase separated structures[J]. Polym. J.,1982,14:347~353.
    [25] S. Fumio, O. Kenji. Pervaporation of benzene-cyclohexane mixture bypoly(γ-methyl L-glutamate) membrane and synergetic effect of their mixture ondiffusion rate[J]. J. Appl. Polym. Sci.,1982.27:4229~4238.
    [26] S. Fumio, O. Kenji, T. Naomichi. Pervaporation of athermal mixture ofbenzene-toluene by poly(ethylene terephthalate) membrane and synergetic effect onconcentration dependence of diffusion rate[J]. J. Appl. Polym. Sci.,1982.27:2179~2188.
    [27] M. H. V. Mulder, H. J. Oude, H. Hegeman, C. A. Smolders. Ethanol-waterseparation by pervaporation[J]. J. Membr. Sci.,1983,16:269~284.
    [28] P. Schissel, R. A. Orth. Separation of ethanol-water mixtures by pervaporationthrough thin, composite membranes[J]. J. Membr. Sci.,1984,17:109~120.
    [29] C. Larchet, G. Bulvestre, M. Guillou. Separation of benzene-n-heptane mixturesby pervaporation with elastomeric membranes. Ⅱ. Contribution of sorption to theseparation mechanism[J]. J. Membr. Sci.,1984,17:263~274.
    [30] R. Plubprasit, G. Djelveh, J. C. Mora, R. Bes. Pervaporation in hollow fibers:efficiency coefficient via the fractal concept. J. Membr. Sci.,1984,21:321~331.
    [31] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna. Separation oforganic–organic mixtures by pervaporation-a review. J. Membr. Sci.,2004,241:1~21.
    [32] L. G. Lin, Y. Z. Zhang, Y. Kong. Recent advances in sulfur removal fromgasoline by pervaporation[C]. Fuel2009,88:1799~1809.
    [33] N. Tanihara, K. Tanaka, H. Kita, K. Okamoto. Pervaporation of organic liquidmixtures through membranes of polyimides containing methylsubstitutedphenylenediamine moieties[J]. J. Membr. Sci.,1994,95:161~169.
    [34] N. Tanihara, N. Umeo, T. Kawabata, K. Tanaka, H. Kita, K. Okmoto.Pervaporation of organic liquid mixtures through poly(ether imide) segmentedcopolymer membranes[J]. J. Membr. Sci.,1995,104:181~192.
    [35]时钧,袁权,高从堦.膜技术手册[M],北京:化学工业出版社,2001.
    [36] A. Malack, H. Muhammad, G. K. Anderson. Use of MnO2as a dynamicmembrane with crossflow microfiltration: Slow membraning technique[J].Desalination,1997,109:15~24.
    [37] S. C. Georgen, S. Thomas. Transport phenonmena through polymeric system[J].Prog. Polym. Sci.,2001,26:985~1017.
    [38]张宝幸.渗透蒸发膜分离的实验研究[J].石油化工,2003,31:544~546.
    [39] X. H. Li, S. C. Wang. Some characteristics of pervaporation for diluteethanol-water mixtures by alcohol-permselective composite membrane[J]. Sep. Sci.Technol.,1996,31(20):2867~2873.
    [40] R. C. Binning, R. J. Lee, J. F. Jennings. Separation of liquid mixtures bypervaporation[J]. Ind. Eng. Chem.,1961,53:45~54.
    [41] T. Okada, T. Matsuura. A new transport model for pervaporation[J]. J. Membr.Sci.,1991,59:133~150.
    [42] J. J. Shich, R. Y. M. Huang. A pseudophase-change solution-diffusion model forpervaporation (Ⅱ) Single mixture permeation. Sep. Sci. Technol.,1998,33:767~785.
    [43] J. J. Shieh, R. Y. M. Huang. A pseudophase-change solution-diffusion model forpervaporation (Ⅱ) Binary mixture permeation[J]. Sep. Sci. Technol.,1998,33:933~957.
    [44] O. Kedem. The role of coupling in pervaporation[J]. J. Membr. Sci.,1989,47:277~285.
    [45] T. Okada, M. Yoshikawa, T.Matsuura. A study on the Pervaporation ofethanol/water mixtures on the basis of Pore flow model[J]. J. Membr. Sci.,1991,59:169-181.
    [46] C. L. Hu, B. Li, R. L. Guo. Pervaporation performance of chitosan–poly(acrylicacid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueoussolution[J]. Sep. Purif. Technol.,2007,55:327-334.
    [47] K. Krtstyna, B. Michhad, P. Dorota. Removal of volatile compounds from thewastewaters by use of pervaporation[J]. Desalination,2008,223:344-348.
    [48] S. Lue, D. T. Lee, J. Y. Chen. Diffusivity enhancement of water vapor inpoly(vinyl alcohol)-fumed silica nano-composite membranes: correlation withpolymer crystallinity and free-volume properties[J]. J. Member. Sci.,2008,325:831-839.
    [49] D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci.,13,1741(1969).
    [50] R. J. Good, in Contact Angle, Wettability and Adhesion, K. L. Mittal, Ed., VSP,Utrecht,1993.
    [51]徐永福.渗透汽化的研究和应用Ⅰ.基础研究[J].膜科学与技术,1987,7(3):6~10.
    [52]徐永福.渗透汽化的研究和应用Ⅱ.基础研究[J].膜科学与技术,1987,7(4)::4~8.
    [53] Y. Zhu, G. Minet, T. T. Tsotsis. A continuous pervaporation membrane reactorfor the study of esterification reactions using composite polymeric/ceramicmembranes[J]. Chem. Eng. Sci.,1996,51:4103~4113.
    [54] U. Sander, P. Soukup. Design and operation of a pervaporation plant for ethanoldehydration[J]. J. Membr. Sci.,1988,36:463~475.
    [55] A. Shanley, G. Ondrey, S. Moore. Pervaporation finds its niche[J]. Chem. Eng.,1994,101(9):34~37.
    [56] H. E. A. Bruschke. Industrial applications of membrane separation processes[J].Pure Appl. Chem.,1995,67:993~1002.
    [57] N. Tanihara, K. Tanaka, H. Kita, K. Okamoto. Pervaporation of organic liquidmixtures through membranes of polyimides containing methylsubstitutedphenylenediamine moieties[J]. J. Membr. Sci.,1994,95:161~169.
    [58] N. Tanihara, N. Umeo, T. Kawabata, K. Tanaka, H. Kita, K. Okmoto.Pervaporation of organic liquid mixtures through poly(ether imide) segmentedcopolymer membranes[J]. J. Membr. Sci.,1995,104:181~192.
    [59] J. Neel, in Pervaporation Membrane Separation Processes[M], R. Y. M. Huang,Ed., Elsevier, Amsterdam,1991, Chap.1.
    [60] P. J. Flory, Priciples of polymer chemistry[M], Cornell Univ. Press, New York,1953.
    [61]朱长乐,刘茉饿.膜科学技术[M].浙江:浙江大学出版社,1992.
    [62] X. S. Feng, R. Y. M. Huang. Liquid separation by membrane pervaporation. Areview[J]. Ind. Eng. Chem. Res.,1997,36:1048~1066.
    [63] D. R. Lloyd, T. B. Meluch. Materials science of synthetic membranes[M].American chemical society,1985.
    [64] K. J. Kim, G. Chowdhury, T. Matsuura. Low pressure reverse osmosisperformances of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) thin filmcomposite membranes: effect of coating conditions and molecular weight ofpolymer[J]. J. Membr. Sci.,2000,179:43~52.
    [65] K. Kim, G. Chowdhury, T. Matsuura. Low pressure reverse osmosis performanceof sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) thin film compositemembranes: effect of coating conditions and molecular weight of polymer[J]. J.Membr. Sci.,2004,179:43~52.
    [66] J. M. Gohil, P. Ray. Polyvinyl alcohol as the barrier layer in thin film compositenanofiltration membranes: preparation, characterization, and performanceevaluation[J]. J. Colloid Interface Sci.,2009,338:121~127.
    [67] A. F. Ismail, A. R. Hassana. Effect of additive contents on the performances andstructural properties of asymmetric polyethersulfone (PES) nanofiltrationmembranes[J]. Sep. Purif. Technol.,2007,55:98~109.
    [68] T. Matsuura. Progress in membrane science and technology for seawaterdesalination: a review[J]. Desalination,2001,134:47~54.
    [69] H. H. Nijhuis. Removal of organics from water by pervaporation[M]. Netherland:University of Twente,1995.
    [70] H. Scholz, A. Hubner, W. Kohnen, H. Steinhauser, G. Ellinghorst. Radiationcured composite membranes: optimum combination of selective layer and poroussupport//R. Bakish. Proceedings of the fourth international conference ofpervaporation process in the chemical industry[J]. Engelwood, NJ: Bakish MaterialCorp.,1989:189~198.
    [71] W. Heinzelmann. Fabrication methods for pervaporation membranes//R. Bakish.Proceedings of the fifth international conference of pervaporation processes in thechemical industry[J]. Engelwood, NJ: Bakish Material Corp.,1991:22~30.
    [72] I. F. J. Vankelecom, B. Moersmans, G. Verschueren, P. A. Jacobs. Intrusion ofPDMS top layers in porous supports[J]. J. Membr. Sci.,1999,158:289~297.
    [73] S. Farooq, I. A. Karimi. Modeling support resistance in zeolite membranes[J]. J.Membr. Sci.,2001,186:109~121.
    [74] F. Lipnizki, J. Olsson, P. Wu, A. Weis, G. Tragardh, R. W. Field. Hydrophobicpervaporation: influence of the support layer of composite membranes on the masstransfer[J]. Sep. Sci. Tech.,2002,37:1747~1770.
    [75] X. Feng, R. Y. M. Huang. Separation of isopropanol from water bypervaporation using silicone-based membranes[J]. J. Membr. Sci.1992,74:171~181.
    [76] W. Liu, S. L. Ji, H. X. Guo, J. Gao, Z. P. Qin. In situ cross-linked-PDMS/BPPOmembrane for the recovery of butanol by pervaporation[J]. J. Appl. Polym. Sci., DOI:10.1002/app.40004.
    [77]由涛,陈龙翔,张庆文,洪厚胜.聚二甲基硅氧烷的改性技术及其渗透汽化性能的影响因素[J].合成橡胶工业,2009,32:435~439.
    [78]由涛,陈龙翔,张庆文,张继民,洪厚胜.聚二甲基硅氧烷在渗透汽化技术中的研究进展[J].化工新型材料,2009,37:1~4.
    [79] J. X. L. Fen, W. Wang. Optimization of preparation conditions forpolydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes usingresponse surface methodology[J]. J. Membr. Sci.,2008,311:23-33.
    [80] H. L. Sun, L. Y. Lu, X. Chen. Pervaporation dehydration of aqueous ethanolsolution using H-ZSM-5filled chitosan membranes[J]. Sep. Purif. Technol.,2008,58:429-436.
    [81] J. Y. Lai, S. H. Li, K. R. Lee. Permselectivities of polysiloxaneimide membranefor aqueous ethanol mixture in pervaporation[J]. J. Membr. Sci.,1994,93:273-282.
    [82] L. Li, Z. Xiao, S. Tan. Composite PDMS membrane with high flux for theseparation of organics from water by pervaporation[J]. J. Membr. Sci.,2004,243:177-187.
    [83]李晓禾,王世昌,程雷生.优先透醇膜渗透汽化分离过程影响因素的研究[J].高分子材料科学与工程,1993,6:115-118.
    [84]陈新平,郑骅,陈向红,等.高硅ZSM-5沸石填充硅橡胶膜的醇/水渗透蒸发分离性质[J].高等学校化学学报,1993,14:154-158.
    [85] C. Chang, M. Chang. Preparation of multi-layer silicone/PVDF compositemembranes for pervaporation of ethanol aqueous solutions[J]. J. Membr. Sci.,2004,238:117-122.
    [86] L. M. J. Vane. A review of pervaporation for product recovery from biomassfermentation processes[J]. J. Chem. Technol. Biotechnol.,2005,80:603~629.
    [87] T. Masuda, E. Isobe, T. Higashimura. Polymerization of1-(trimethylsilyl)-1-propyne by halides of niobium(V) and tantalum(V) and polymerproperties[J]. Macromolecules,1985,18:841~845.
    [88] V. J. R. Gonziilez, M. J. A. Gonzilez, D. C. Lbpez. Pervaporation ofethanol-water mixtures through poly(1-trimethylsilyl-1-propyne)(PTMSP)[J].Desalination,2002,149:61~65.
    [89] V. V. Volkov, A. G. Fadeev, V. S. Khotimsky. Effects of synthesis conditions onthe pervaporation properties of poly[1-(trimethylsilyl)-1-propyne] useful formembrane bioreactors[J]. J. Appl. Polym. Sci.,2004,91:2271~2277.
    [90] S. L. Schmidt, M. D. Myers, S. S. Kelley. Evaluation of PTMSP membranes inachieving enhanced ethanol removal from fermentations by pervaporation[J]. Appl.Biochem. Biotechnol.,1997,63/55:469~482.
    [91] A. G. Fadeev, S. S. Kelley, J. D. Mcmillan. Effect of yeast fermentationby-products on poly[1-(trimetthylsilyl)-1-propyne] pervaporation performance[J]. J.Membr. Sci.,2003,214:229~238.
    [92] V. J. R. Gonzalez, D. C. Lopez, M. J. A. Gonzalez. Pervaporation performanceof PTMSP membranes at high temperatures[J]. J. Appl. Polym. Sci.,2003,90:2255~2259.
    [93] T. Kashiwagi, T. Okada, K. Okita. Separation of ethanol from ethanol/watermixtures by plasma-polymerized membranes from silicone compounds[J]. J. Membr.Sci.,1988.36:353~362.
    [94] K. Ishihara, K. Matsui. Pervaporation of ethanol-water mixture throughcomposite membranes composed of styrene-fluoroalkyl acrylate graft copolymers andcross-linked polydimethylsiloxane membrane[J]. J. Appl. Polym. Sci.,1987,34:437~440.
    [95]方军,黄继才,杨治中.中国专利, CN1239012A,1999.
    [96] T. Uragami, T. Doi, T. Miyata. Control of permselectivity with surfacemodifications of poly[1-(trimethylsilyl)-1-propyne] membranes[J]. J. Adhesion&Adhesives.,1999,19:405~409.
    [97] P. Sukitpaneenit, T. S. Chung. PVDF/Nanosilica dual-Layer hollow fibers withenhanced selectivity and flux as novel membranes for ethanol recovery[J]. Ind. Eng.Chem. Res.,2012,51:978~993.
    [98] W. H. Yuan, H. R. Chen, R. R. Chang, L. Li. Synthesis and characterization ofhigh performance NaA zeolite-polyimide composite membranes on a ceramic hollowfiber by dip-coating deposition[J]. Desliantion,2011,273:343~351.
    [99]李冰冰,许振良,郑忠生,孙德,李然. PDMS/PES中空纤维渗透汽化复合膜的制备[J].膜科学与技术,2009,29:29~33.
    [100] B. K. Nandi, R. Uppaluri, M. K. Purkait. Effects of dip coating parameters onthe morphology and transport properties of cellulose acetate-ceramic compositemembranes[J]. J. Membr. Sci.,2009,330:246~258.
    [101] R. J. R. Uhlhorn, M. H. B. J. Huisin’tveld, K. Keizer, A. J. Burggraaf. Synthesisof ceramic membranes. Part I: Synthesis of non-supported and supported y-aluminamembranes without defects[J]. J. Mater. Sci.,1992,27:527~537.
    [102] J. Zhu, Y. Q. Fan, N. P. Xu. Modified dip-coating method for preparation ofpinhole-free ceramic membranes[J]. J. Membr. Sci.,2011,367:14~20.
    [103] Y. Liu, B. Q. He, J. X. Li, R. D. Sanderson, L. Lei, S. B. Zhang. Formation andstructural evolution of biphenyl polyamide thin film on hollow fiber membrane duringinterfacial polymerization[J]. J. Membr. Sci.,2011,373:98~106.
    [104] S. P. Sun, T. A. Hatton, S. Y. Chan, T. S. Chung. Novel thin-film compositenanofiltration hollow fiber membranes with double repulsion for effective removal ofemerging organic matters from water[J]. J. Membr. Sci.,2012,401-402:152~162.
    [105] K. Pan, P. Fang, B. Cao. Novel composite membranes prepared by interfacialpolymerization on polypropylene fiber supports pretreated by ozone-inducedpolymerization[J]. Deslination,2012,294:36~43.
    [106] J. Zuo, Y. Wang, S. P. Sun, T. S. Chung. Molecular design of thin filmcomposite (TFC) hollow fiber membranes for isopropanol dehydration viapervaporation[J]. J. Membr. Sci.,2012,405-406:123~133.
    [107] Q. F. An, W. S. Hung, S. C. Lo, Y. H. Li, M. D. Guzman, C. C. Hu, K. R. Lee,Y. C. Jean, J. Y. Lai. Comparison between free volume characteristics of compositemembranes fabricated through static and dynamic interfacial polymerizationprocesses[J]. Macromolecules,2012,45:3428~3435.
    [108] G. Decher, J. D. Hong, J. Schmidt. Development of self-assembly LbLtechnology[R]. Thin Solid Films,1992,210:831~837.
    [109] F. V. Ackern, L. Krasemann, B. Tieke. Ultrathin membranes for gas separationand pervaporation prepared upon electrostatic self-assembly of polyelectrolytes[R].Thin Solid Films,1998,327:762~766.
    [110] G. J. Zhang, X. Song, S. L. Ji, N. X. Wang, Z. Z. Liu. Self-assembly of innerskin hollow fiber polyelectrolyte multilayer membranes by a dynamic negativepressure layer-by-layer technique[J]. J. Membr. Sci.,2008,325:109~116.
    [111] H. Q. Tang, G. J. Zhang, S. L. Ji. Rapid assembly of polyelectrolyte multilayermembranes using an automatic spray system[J]. AIChE Journal,2013,59:250~257.
    [112] R. Wang, L. L. Shan, G. J. Zhang, S. L. Ji. Multiple sprayed compositemembranes with high flux for alcohol permselective pervaporation[J]. J. Membr.Sci.,DOI: http://dx.doi.org/10.1016/j.memsci.2013.01.006.
    [113] T. C. Bowen, H. Kalipcilar, J. L Falconer. Pervaporation of organic/watermixtures through B-ZSM-5zeolite membranes on monolith supports[J]. J. Membr.Sci.,2003,215:235-247.
    [114] S. Li, V. A. Tuan, J. L. Falconer. Properties and separation performance ofGe-ZSM-5membranes MicroPor[J]. Mesopor. Mater.,2003,58:137-154.
    [115] W. S. Ling, T. C. Thian, S. Bhatia. Synthesis, characterization andpervaporation properties of microwave synthesized zeolite A membrane[J].Desalination,2011,277:383-389.
    [116] I. F. J. Vankelecom, J. D. Kinderen, B. M. Dewitte. Incorporation ofHydrophobic Porous Fillers in PDMS Membranes for Use in Pervaporation[J]. Russ. J.Phys. Chem. B,1997,101:5182-5185.
    [117] J. M. Duval, B. Folkers, M. H. V. Mulder. Separation of a toluene/ethanolmixture by pervaporation using active carbon-filled polymeric membranes[J]. Sep.Sci. Technol.,1994,29:357-361.
    [118]李光亮编著.有机硅高分子化学[M].北京:科学出版社,1998.
    [119] L. M. J. Vane. A review of pervaporation for product recovery from biomassfermentation processes[J]. J. Chem. Technol. Biotechnol.,2005,80:603-629.
    [120] S. Takegami, H. Yamada, S. Tsujii. Pervaporation of ethanol/water mixturesusing novel hydrophobic membranes containing polydimethylsiloxane[J]. J. Membr.Sci.,1992,75:93-105.
    [121]顾瑾,邓利容,白云翔,张林,陈欢林. VTES交联PDMS渗透汽化膜分离水中乙醇性能的研究[J].膜科学与技术,2010,30:19-24.
    [122]唐俏瑜,王莉,展侠,李十中,李继定,李天成.高选择性PDMS/PVDF复合膜渗透汽化分离乙醇/水混合物[J].膜科学与技术,2011,31:1-5.
    [123] K. Ishihara, K. Matsui. Pervaporation of ethanol-water mixture throughcomposite membranes composed of styrene-fluoroalkyl acrylate graft copolymers andcross-linked polydimethylsiloxane membrane[J]. J. Appl. Polym. Sci.,1987,34:437-440.
    [124]李冰冰,许振良,郑忠生,孙德,李然. PDMS/PES中空纤维渗透汽化复合膜的制备[J].膜科学与技术,2009,29:29-33.
    [125] L. Li, Z. Y. Xiao, S. J. Tan, L. Pu, Z. B. Zhang. Composite PDMS membranewith high flux for the separation of organics from water by pervaporation[J]. J.Membr. Sci.,2004,243:177-187.
    [126] Y. Nagase, S. Mori, K. Matsui. Chemical modification of poly(substitutedacetylene). Ⅳ. Pervaporation of organic liquid/water mixture throughpoly(1-phenyl-1-propyne)/poly(dimethylsiloxane) graft copolymer membrane[J]. J.Appl. Polym. Sci.,1989,37:1259~1267.
    [127]侯丹,卫旺,夏珊珊,相里粉娟,陈袆玮,金万勤.无机盐对聚二甲基硅氧烷/陶瓷复合膜渗透汽化性能的影响[J].化工学报,2009,60:389-393.
    [128]展侠,冯旭东,叶宏,刘洋,李继定.支撑层对PDMS复合膜渗透汽化性能的影响[J].高分子材料科学与工程,2012,28:47-51.
    [129] L. M. Vane, V. V. Namboodiri, T. C. Bowen. Hydrophobic zeolite-siliconerubber mixed matrix membranes for ethanol-water separation: Effect of zeolite andsilicone component selection on pervaporation performance[J]. J. Membr. Sci.,2008,308:230-239.
    [130] H. J. C. T. Henneppe, D. Bargeman, M. H. V. Mulder. J. Membr. Sci.,1987,35:39-55.
    [131] M. D. Jia, K. V. Peinemann, R. D. Behling. J. Membr. Sci.,1992,73:119-128.
    [132] B. Adnadjevi, J. Jovanovi, S. Gajinov. Effect of different physicochemicalproperties of hydrophobic zeolites on the pervaporation properties ofPDMS-membranes[J]. J. Membr. Sci.,1997,136:173-179
    [133] B. Moermans, W. D. Beuchelaer, I. F. J. Vankelecom, R. Ravishankar, J. A,Martens, P. A. Jacobs. Incorporation of nano-sized zeolites in membranes[J]. Chem.Commun.,2000,2467-2468.
    [134] H. L. Zhou, Y. Su, X. R. Chen, S. L. Yi, Y. H. Wan. Modification of silicalite-1by vinyltrimethoxysilane (VTMS) and preparation of silicalite-1filledpolydimethylsiloxane (PDMS) hybrid pervaporation membranes[J]. Sep. Purif.Technol.,2010,75:286-294.
    [135] T. Ikegami, H. Yanagishita, D. Kitamoto, H. Negishi, K. Haraya, T. Sano.Concentration of fermented ethanol by pervaporation using silicalite membranescoated with silicone rubber[J]. Desalination,2002,149:49~54.
    [136] T. Miyata, J. I. Higuchi, H. Okuno, T. Uragami. Preparation ofpolydimethylsiloxane/polystyrene interpenetrating polymer network membranes andpermeation of aqueous ethanol solutions through the membranes by pervaporation[J].J. Appl. Polym. Sci.,1996,61:1315~1324.
    [137] Y. Nagase, S. Mori, K. Matsui. Chemical modification of poly(substitutedacetylene). IV. Pervaporation of organic liquid/water mixture through poly(1-phenyl-1-propyne)/poly(dimethylsiloxane) graft copolymer membrane[J]. J. Appl. Polym.Sci.,1989,37:1259~1267.
    [138] M. Kitagawa, S. Takegami, Y. Tokiwa. Free-radical polymerization of areducing vinyl sugar ester in dimethylformamide and water[J]. Macromolecular RapidCommunications,1998,19:155~158.
    [139] T.Miyata, S. Obata, T. Uragami. Morphological effects of microphaseseparation on the permselectivity for aqueous ethanol solutions of block and graftcopolymer membranes containing poly(dimethylsiloxane)[J]. Macromolecules,1999,32:3712~3720.
    [140] Q. Zhao, J. W. Qian, Q. An, Z. H. Zhu, P. Zhang, Y. X. Bai. Studies onpervaporation characteristics of polyacrylonitrile-b-poly(ethylene glycol)-b-polyacrylonitrile block copolymer membrane for dehydration of aqueous acetonesolutions[J]. J. Membr. Sci.,2008,311:284~293.
    [141] A. K. Jha, L. Chen, R. D. Offeman, N. P. Balsara. Effect of nanoscalemorphology on selective ethanol transport through block copolymer membranes[J]. J.Membr. Sci.,2011,373:112~120.
    [142]蒋晓钧,施艳荞,陈观文.溴代聚苯醚膜对有机液/水混合体系的渗透汽化分离[J].膜科学与技术,2000,20:16~20.
    [143] M. Khayet, J. P. G. Villalueng, M. P. Godino. Preparation and application ofdense poly(phenylene oxide) membranes in pervaporation[J]. J. Collo. Interf. Sci.,2004,278:410~422.
    [144] C. Decker. Photoinitiated crosslinking polymerization[J]. Prog. Polym. Sci.,1996,21,593-650.
    [145]纪树兰,曾小雅,秦振平等.聚苯醚/聚砜复合膜对乙醇/水混合体系的渗透汽化分离[J].北京工业大学学报,2011,37:893~897.
    [146] J. Neel. Pervaporation Membrane Separation Processes[M], R. Y. M. Huang,Ed., Elsevier, Amsterdam,1991, Chap.1.
    [147] P. J. Flory. Priciples of polymer chemistry[M], Cornell Univ. Press, New York,1953.
    [148] W.Ji, S.K.Sikdar, S.T.Hwang. Sorption, diffusion and permeation of1,1,1-trichloroethane through absorbent-filled polymeric membranes[J]. J. Membr.Sci.,1995,103:243~255.
    [149]展侠,李继定,黄军其,陈翠仙.渗透汽化优先透醇分离膜[J].化学进展,2008,20(9):1416~1426.
    [150] K. C. Khulbe, T. Matsuura, G. Lamarche, H. J. Kim. The morphologycharacterization and performance of dense PPO membranes for gas separation[J]. J.Membr. Sci.,1997,135:211~223.
    [151] J. Schauer, H. H. Schwarz, C. Eisold. Pervaporation and membrane distillationthrough membranes made of poly(2,6-dimethyl-1,4-phenylene oxide)[J].Angewandte Makromolekulare Chemie,1993,206(1):193~198.
    [152] J. Marjan, Z. Marko, S. Stojan. Visible-light-promoted Wohl-Zieglerfunctionalization of organic molecules with N-bromosuccinimide under solvent-freereaction conditions[J]. Helv. Chim. Acta.,2009,92:555~566.
    [153] G. Liu, D.Hou, W.Wei, F.Xiangli, W.Jin. Pervaporation separation ofbutanol-water mixtures using polydimethylsiloxane/ceramic composite membrane[J].Chin. J. Chem. Eng.,2011,19,40~44.
    [154] E. A.Fouad, X. Feng. Use of pervaporation to separate butanol from diluteaqueous solutions: effects of operating conditions and concentration polarization[J]. J.Membr. Sci.,2008,323,428~435.
    [155] E. El-Zanati, E. Abdel-Hakim, O. El-Ardi, M. Fahmy. Modeling andsimujlation of butanol separation from aqueous solutions using pervaporation[J]. J.Membr. Sci.,2006,280,278~283.
    [156] H. Tan, Y. Wu, T. Li. Pervaporation of n-butanol aqueous solution throughZSM-5-PEBA composite membranes[J]. J. Appl. Polym. Sci.,2013, DOI:10.1002/APP.38704.
    [157] A. G. Fadeev, Y. A. Selinskaya, S. S. Kelley. Extraction of butanol fromaqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne)[J]. J.Membr. Sci.,2001,186,205~217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700