心律失常的临床和遗传学基础及治疗相关的并发症
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:AMP激活蛋白激酶(AMPK)由α、β和γ三个亚单位组成。编码γ2亚单位的PRKAG2基因突变与遗传性心室预激、传导系统紊乱和心肌肥厚有关。其心肌肥厚常常类似肥厚性心肌病的表现。
     目的:本研究的目的是在呈现左室肥厚(LVH)的人群中找出PRKAG2心脏综合征的患者。
     方法和结果:研究入选了19名有无法解释LVH且相互之间并无血缘关系的患者作为研究对象。所有对象均进行了临床和遗传学评估。结果,有4名患者存在心动过缓,但其中仅仅一位19岁的男性有心室预激的表现。这名患者在3年后出现了充血性心力衰竭。对他进行电生理研究发现房室附加旁路和房室传导阻滞共存。心室组织学分析可见细胞内大量糖原累积、肌纤维紊乱和间质纤维化。对其DNA进行直接测序发现在PRKAG2基因第1453核苷酸位点处一个碱基由A转变为G(c.1453A>G),这导致PRKAG2基因编码产物的第485位氨基酸残基由赖氨酸转变为谷氨酸(p.Lys485Glu, K485E)。K485在不同物种之间是高度保守的。在该患者的其他家庭成员及215个健康对照人群中没有发现K485E突变。为了评价残基K485在AMPK结构和功能中的作用,我们对其进行了计算机模型预测。静电学演算表明K485与AMPKβ亚单位的保守性残基D248相互之间形成盐桥,这对调节酶的功能是至关重要的。K485E突变破坏了两者之间的连接。结论:我们在一名年轻的患者身上发现了一个新生的新的PRKAG2突变,他的病情进展提示PRKAG2心脏综合征需要更多的医学关注。对于合并无法解释的左室肥厚、心室预激、传导系统缺陷和/或早发心力衰竭的患者进行PRKAG2基因遗传学筛查是极其重要的。
     背景:先天性长QT综合征(long QT syndrome, LQTS)是遗传性致心律失常疾病,特征为基础心电图QT间期延长伴高发的致命性心律失常风险。LQT2是由于编码快速延迟整流钾电流α亚单位的KCNH2基因突变引起钾电流减少所致。现行治疗LQT2的药物主要是β受体阻滞剂。但是,维拉帕米对LQT2的疗效尚不清楚。
     目的:本研究的目的是阐明维拉帕米对LQT2的疗效及其相关的作用机制。
     方法:我们评价了一位高度疑似LQT2的先证者在应用维拉帕米治疗前后其心电图QT间期的变化以及心律失常的发生情况。我们也对患者及其家庭成员进行了遗传学检测已明确基因型别。而且,我们利用兔左室楔形心肌块技术评价了维拉帕米对LQT2模型心内外膜动作电位持续时间(APD90),跨壁复极离散度(TDR)和尖端扭转型室速(TdP)发作的影响。E-4031(0.5μmol/L)被用于构建LQT2模型。
     结果:我们在先证者基因组DNA中发现了一个位于KCNH2跨膜孔区的D609N突变。这个突变也同样存在于先证者子代中,但未在其他家庭成员中发现该突变。在先证者接受维拉帕米治疗后,其心电图QT间期逐渐缩短,心律失常发作次数也明显较少。在LQT2模型上,我们观察到E-4031优先延长内膜APD90,所以导致QT间期延长和TDR增加,引起早期后除极(EAD)和TdP发作。维拉帕米(0.5~2.5μmol/L)对LQT2模型内外膜APD90产生剂量依赖性的缩短,且缩短内膜APD90的作用更强,所以减少QT间期和TDR,抑制EAD和TdP的发作。
     结论:我们的资料表明维拉帕米通过减少TDR抑制LQT2模型TdP的发作。研究提示维拉帕米可以作为治疗LQT2的一种药物选择。
     背景:心脏损伤后综合征(Postcardiac injury syndrome, PCIS)是各种心脏损伤后出现的并发症,但是心脏小穿孔是一个常常被忽略的病因。我们报道了一系列因为射频消融导致心脏穿孔所诱发的PCIS病例。
     方法和结果:在1728例射频导管消融手术中,21名(1.2%)患者发生了超声确认的心脏穿孔,所有穿孔的患者均不需要外科干预治疗。其中,6名(6/21,28.6%)患者诊断为心脏穿孔并发PCIS,因为他们除了呈现心包积液/填塞外,也出现了胸腔积液(6/6,100%)和发热(4/6,66.7%)。4名(4/6,66.7%)并发PCIS和4名(4/15,26.7%)未并发PCIS的患者进行了心包穿刺引流,但是在穿孔后头24小时的引流量两者之间没有显著差异(441.3±343.9ml vs.182.5±151.3ml,P=0.248)。在6个PCIS患者中,胸腔积液分别在消融术后3小时至4天被检测到(中位数:2天),主要表现为双侧(4/6,66.7%),单侧均位于左侧。与未并发PCIS的穿孔患者相比,有PCIS的患者平均年龄更大(64.8±7.3岁vs.45.9±14.8岁,P=0.0078),更可能伴发高血压(66.7%vs.6.7%,P=0.0114),而且住院时间明显延长(34.2±15.8天)。
     结论:在导管消融过程中出现心脏小穿孔的患者,超过25%可能发展PCIS。这类PCIS易发生在老年和伴发有高血压的患者,临床特征为早期出现的胸腔积液。
Introduction: The major structure elements of the AMP activated protein kinase(AMPK), are α, β, and γ sunbunits. Mutations in PRKAG2have been associated witha cardiac syndrome including inherited ventricular preexcitation, conduction disorderand hypertrophy mimicking hypertrophic cardiomyopathy. The aim of the presentstudy was to identify PRKAG2syndrome among patients presenting with leftventricular hypertrophy (LVH).
     Methods and Results: Nineteen unrelated subjects with unexplained LVH wereclinically and genetically evaluated. Among4patients with bradycardia,manifestations of preexcitation were only found in a19year old male who alsodeveloped congestive heart failure3years later. Electrophysiological study of thiscase, identified the coexistence of an AV accessory pathway and AV conduction defect.Histological analysis of his ventricular tissue isolated by biopsy confirmed excessiveglycogen accumulation, prominent myofibrillar disarray and interstitial fibrosis.Direct sequencing of his DNA revealed a heterozygous mutation in PRKAG2consisting of an A to G transition at nucleotide1453(c.1453A>G), predicting asubstitution of a glutamic acid for lysine at residue485(p.Lys485Glu, K485E).Lys485is highly conserved among species and the mutation was absent in hisunaffected family members and in215healthy controls. To assess the role of K485inthe structure and function of the protein, computational modeling calculations andconservation analyses were performed. Electrostatic calculations indicate that K485forms a salt bridge with the conserved D248residue in the AMPK β subunit, which iscritical for proper regulation of the enzyme, and the K485E mutant disrupts theconnection.
     Conclusions: Our study identifies a novel de novo PRKAG2mutation in a young, inwhich progression of the disease warrants close medical attention. It also underlines the importance of molecular screening of PRKAG2gene in patients with unexplainedLVH, ventricular preexcitation, conduction defect, and/or early onset of heart failure.
     Background: Congenital long QT syndrome (LQTS) is a hereditary arrhythmogenicdisease characterized by a prolongation of the QT interval at basal ECG and by a highrisk of life threatening arrhythmias. Loss of function mutations in KCNH2gene whichencodes the α subunit of the rapidly activating delayed rectifier potassium current (IKr)is responsible for LQT2. Current pharmacological treatments for LQT2primarilyinclude the use of β adrenoreceptor antagonists. However, the therapeutic effects ofverapamil on LQT2remain unclear.
     Objective: To investigate the clinical effectiveness of verapamil on LQT2patientsand its electrophysiologic mechanism by which verapamil suppresses torsades depointes (TdP) in a developed left ventricular wedge model of LQT2.Methods: The clinical course was evaluated in a suspected LQT2proband before andafter administration of verapamil by intravenous and oral routes. Genetic screeningfor KCNH2gene was examined in the proband and her family members.Transmembrane action potentials of epicardial (Epi) and endocardial (Endo) cellswere recorded simultaneously at a basic cycle length of2000ms from an arteriallyperfused wedge of rabbit left ventricle together with a transmural ECG. E4031(0.5mol/L) was used to block IKr(LQT2model). We examined the effect of verapamilon action potential duration (APD), transmural dispersion of repolarization (TDR)and the development of TdP in LQT2model of LQTS.
     Results: In the LQTS patient with TdP, we identified the D609N mutation in thetransmembrane pore region of KCNH2. The proband’s son carried the same mutationand showed prolonged corrected QT interval. The symptomatic ventriculararrhythmias of the proband were effectively suppressed by oral verapamil therapy. InLQT2models, E4031preferentially prolonged APD in Endo rather than Epi, therebydramatically increasing the QT interval and TDR. Spontaneous or Programmed electrical stimulation induced early afterdepolarization (EAD) was observed in Endo,and subsequent TdP occurred. Verapamil (0.5to2.5mol/L) dose dependentlyabbreviated APD in Endo more than in Epi, thereby significantly decreasing the QTinterval, TDR, and suppressing EAD and TdP.
     Conclusions: Our data suggest that verapamil prevents TdP in LQT2Model of theLQTS by reducing TDR. These results indicate a possible therapeutic role ofverapamil in the treatment of LQT2patients.
     Background: Postcardiac injury syndrome (PCIS) is a complication of a variety ofcardiac injuries, of which small heart perforation is the etiology that is oftenunrecognized. We reported a series of patients with PCIS secondary to cardiacperforation during catheter ablation procedures.
     Methods and Results: Out of1728radiofrequency catheter ablation procedures,21patients (1.2%) were complicated by echo defined cardiac perforation not requiringsurgical intervention. Among them,6patients (6/21,28.6%) were diagnosed withPCIS secondary to cardiac perforation because they also developed pleural effusions(6/6,100%) and fever (4/6,66.7%) in addition to pericardial effusion/tamponade.Four patients with PCIS (4/6,66.7%) and four patients without PCIS (4/15,26.7%)underwent pericardial drainage but the drainage volume during the first24hours wasnot significantly different (441.3±343.9ml vs.182.5±151.3ml, P=0.248). In the6PCIS patients, pleural effusion was detected from3hours to4days (median:2days)after ablation procedure, predominantly bilateral (66.7%) or left sided if unilateral.Patients with PCIS were older (64.8±7.3yrs vs.45.9±14.8yrs, P=0.0078), weremore likely accompanied by hypertension (66.7%vs.6.7%, P=0.0114) and had aprolonged hospital stay (34.2±15.8days).
     Conclusions: More than25%of patients with small cardiac perforation duringcatheter ablation may develop PCIS which can be masked by pericardialeffusion/tamponade. This kind of PCIS is more likely associated with elder orhypertensive patients and is usually characterized by early onset of pleural effusion.
引文
1. Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophiccardiomyopathy. Human molecular genetics.2002;11:24992506.
    2. Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, SalmonA, Ostman Smith I, Watkins H. Mutations in the gamma(2) subunit ofamp activated protein kinase cause familial hypertrophic cardiomyopathy:Evidence for the central role of energy compromise in disease pathogenesis.Human molecular genetics.2001;10:12151220.
    3. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, AhmadF, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R. Identificationof a gene responsible for familial wolff parkinson white syndrome. The NewEngland journal of medicine.2001;344:18231831.
    4. Gollob MH, Green MS, Tang AS, Roberts R. Prkag2cardiac syndrome:Familial ventricular preexcitation, conduction system disease, and cardiachypertrophy. Current opinion in cardiology.2002;17:229234.
    5. Arad M, Benson DW, Perez Atayde AR, McKenna WJ, Sparks EA, Kanter RJ,McGarry K, Seidman JG, Seidman CE. Constitutively active amp kinasemutations cause glycogen storage disease mimicking hypertrophiccardiomyopathy. The Journal of clinical investigation.2002;109:357362.
    6. Burwinkel B, Scott JW, Buhrer C, van Landeghem FK, Cox GF, Wilson CJ,Grahame Hardie D, Kilimann MW. Fatal congenital heart glycogenosis causedby a recurrent activating r531q mutation in the gamma2subunit ofamp activated protein kinase (prkag2), not by phosphorylase kinase deficiency.American journal of human genetics.2005;76:10341049.
    7. Akman HO, Sampayo JN, Ross FA, Scott JW, Wilson G, Benson L, Bruno C,Shanske S, Hardie DG, Dimauro S. Fatal infantile cardiac glycogenosis withphosphorylase kinase deficiency and a mutation in the gamma2subunit ofamp activated protein kinase. Pediatric research.2007;62:499504.
    8. Arad M, Moskowitz IP, Patel VV, Ahmad F, Perez Atayde AR, Sawyer DB,Walter M, Li GH, Burgon PG, Maguire CT, Stapleton D, Schmitt JP, Guo XX,Pizard A, Kupershmidt S, Roden DM, Berul CI, Seidman CE, Seidman JG.Transgenic mice overexpressing mutant prkag2define the cause ofwolff parkinson white syndrome in glycogen storage cardiomyopathy.Circulation.2003;107:28502856.
    9. Sidhu JS, Rajawat YS, Rami TG, Gollob MH, Wang Z, Yuan R, Marian AJ,DeMayo FJ, Weilbacher D, Taffet GE, Davies JK, Carling D, Khoury DS,Roberts R. Transgenic mouse model of ventricular preexcitation andatrioventricular reentrant tachycardia induced by an amp activated proteinkinase loss of function mutation responsible for wolff parkinson whitesyndrome. Circulation.2005;111:2129.
    10. Davies JK, Wells DJ, Liu K, Whitrow HR, Daniel TD, Grignani R, Lygate CA,Schneider JE, Noel G, Watkins H, Carling D. Characterization of the role ofgamma2r531g mutation in amp activated protein kinase in cardiachypertrophy and wolff parkinson white syndrome. American journal ofphysiology. Heart and circulatory physiology.2006;290:H19421951.
    11. Banerjee SK, Ramani R, Saba S, Rager J, Tian R, Mathier MA, Ahmad F. Aprkag2mutation causes biphasic changes in myocardial ampk activity anddoes not protect against ischemia. Biochemical and biophysical researchcommunications.2007;360:381387.
    12. Murphy RT, Mogensen J, McGarry K, Bahl A, Evans A, Osman E, Syrris P,Gorman G, Farrell M, Holton JL, Hanna MG, Hughes S, Elliott PM, MacraeCA, McKenna WJ. Adenosine monophosphate activated protein kinasedisease mimicks hypertrophic cardiomyopathy and wolff parkinson whitesyndrome: Natural history. Journal of the American College of Cardiology.2005;45:922930.
    13. Sternick EB, Oliva A, Gerken LM, Magalhaes L, Scarpelli R, Correia FS,Rego S, Santana O, Brugada R, Wellens HJ. Clinical, electrocardiographic,and electrophysiologic characteristics of patients with a fasciculoventricularpathway: The role of prkag2mutation. Heart rhythm: the official journal ofthe Heart Rhythm Society.2011;8:5864.
    14. Pan M, Deng Y, Chang Q, Yang H, Bi X, Xiang H, Li C. Detection of leftventricular regional relaxation abnormalities in patients with hypertrophiccardiomyopathy by quantitative tissue velocity imaging. J Huazhong Univ SciTechnolog Med Sci.2004;24:185188.
    15. Yi SH, Ren L, Yang TT, Liu L, Wang H, Liu Q. Myocardial lesions afterlong term administration of methamphetamine in rats. Chinese medicalsciences journal=Chung kuo i hsueh k'o hsueh tsa chih/Chinese Academy ofMedical Sciences.2008;23:239243.
    16. Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L,Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ. Structural basisfor amp binding to mammalian amp activated protein kinase. Nature.2007;449:496500.
    17. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C,Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR,Carling D, Gamblin SJ. Structure of mammalian ampk and its regulation byadp. Nature.2011;472:230233.
    18. Humphrey W, Dalke A, Schulten K. Vmd: Visual molecular dynamics. Journalof molecular graphics.1996;14:3338,2738.
    19. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics ofnanosystems: Application to microtubules and the ribosome. Proceedings ofthe National Academy of Sciences of the United States of America.2001;98:1003710041.
    20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignmentsearch tool. Journal of molecular biology.1990;215:403410.
    21. Lage R, Dieguez C, Vidal Puig A, Lopez M. Ampk: A metabolic gaugeregulating whole body energy homeostasis. Trends in molecular medicine.2008;14:539549.
    22. Lang T, Yu L, Tu Q, Jiang J, Chen Z, Xin Y, Liu G, Zhao S. Molecular cloning,genomic organization, and mapping of prkag2, a heart abundant gamma2subunit of5' amp activated protein kinase, to human chromosome7q36.Genomics.2000;70:258263.
    23. Arad M, Seidman CE, Seidman JG. Amp activated protein kinase in the heart:Role during health and disease. Circulation research.2007;100:474488.
    24. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D. Characterization ofamp activated protein kinase gamma subunit isoforms and their role in ampbinding. The Biochemical journal.2000;346Pt3:659669.
    25. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, NormanDG, Hardie DG. Cbs domains form energy sensing modules whose binding ofadenosine ligands is disrupted by disease mutations. The Journal of clinicalinvestigation.2004;113:274284.
    26. Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, KucherlapatiR, Towbin JA, Seidman JG, Seidman CE. Shared genetic causes of cardiachypertrophy in children and adults. The New England journal of medicine.2008;358:18991908.
    27. Van Belle Y, Michels M, Jordaens L. Focal af ablation after pulmonary veinisolation in a patient with hypertrophic cardiomyopathy using cryothermalenergy. Pacing and clinical electrophysiology: PACE.2008;31:13581361.
    28. Kelly BP, Russell MW, Hennessy JR, Ensing GJ. Severe hypertrophiccardiomyopathy in an infant with a novel prkag2gene mutation: Potentialdifferences between infantile and adult onset presentation. Pediatric cardiology.2009;30:11761179.
    29. Tan HL, van der Wal AC, Campian ME, Kruyswijk HH, ten Hove Jansen B,van Doorn DJ, Oskam HJ, Becker AE, Wilde AA. Nodoventricular accessorypathways in prkag2dependent familial preexcitation syndrome reveal adisorder in cardiac development. Circulation. Arrhythmia andelectrophysiology.2008;1:276281.
    30. Roberts JD, Veinot JP, Rutberg J, Gollob MH. Inherited cardiomyopathiesmimicking arrhythmogenic right ventricular cardiomyopathy. Cardiovascularpathology: the official journal of the Society for Cardiovascular Pathology.2010;19:316320.
    31. Gollob MH. Modulating phenotypic expression of the prkag2cardiacsyndrome. Circulation.2008;117:134135.
    32. Gollob MH, Seger JJ, Gollob TN, Tapscott T, Gonzales O, Bachinski L,Roberts R. Novel prkag2mutation responsible for the genetic syndrome ofventricular preexcitation and conduction system disease with childhood onsetand absence of cardiac hypertrophy. Circulation.2001;104:30303033.
    1. Dyck JR, Lopaschuk GD. Ampk alterations in cardiac physiology andpathology: Enemy or ally? The Journal of physiology.2006;574:95112.
    2. Hardie DG, Hawley SA, Scott JW. Amp activated proteinkinase development of the energy sensor concept. The Journal of physiology.2006;574:715.
    3. Arad M, Seidman CE, Seidman JG. Amp activated protein kinase in the heart:Role during health and disease. Circulation research.2007;100:474488.
    4. Towler MC, Hardie DG. Amp activated protein kinase in metabolic controland insulin signaling. Circulation research.2007;100:328341.
    5. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S,Andreelli F. Ampk inhibition in health and disease. Critical reviews inbiochemistry and molecular biology.2010;45:276295.
    6. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C,Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR,Carling D, Gamblin SJ. Structure of mammalian ampk and its regulation byadp. Nature.2011;472:230233.
    7. Frederich M, Balschi JA. The relationship between amp activated proteinkinase activity and amp concentration in the isolated perfused rat heart. TheJournal of biological chemistry.2002;277:19281932.
    8. Hardie DG, Salt IP, Hawley SA, Davies SP. Amp activated protein kinase: Anultrasensitive system for monitoring cellular energy charge. The Biochemicaljournal.1999;338(Pt3):717722.
    9. Sakamoto K, Zarrinpashneh E, Budas GR, Pouleur AC, Dutta A, Prescott AR,Vanoverschelde JL, Ashworth A, Jovanovic A, Alessi DR, Bertrand L.Deficiency of lkb1in heart prevents ischemia mediated activation ofampkalpha2but not ampkalpha1. American journal of physiology.Endocrinology and metabolism.2006;290:E780788.
    10. Scholz R, Suter M, Weimann T, Polge C, Konarev PV, Thali RF, Tuerk RD,Viollet B, Wallimann T, Schlattner U, Neumann D. Homo oligomerization andactivation of amp activated protein kinase are mediated by the kinase domainalphag helix. The Journal of biological chemistry.2009;284:2742527437.
    11. Fisslthaler B, Fleming I. Activation and signaling by the amp activated proteinkinase in endothelial cells. Circulation research.2009;105:114127.
    12. Ruderman NB, Saha AK, Kraegen EW. Minireview: Malonyl coa,amp activated protein kinase, and adiposity. Endocrinology.2003;144:51665171.
    13. Li J, Miller EJ, Ninomiya Tsuji J, Russell RR,3rd, Young LH. Amp activatedprotein kinase activates p38mitogen activated protein kinase by increasingrecruitment of p38mapk to tab1in the ischemic heart. Circulation research.2005;97:872879.
    14. Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF.5aminoimidazole4carboxamide1beta d ribofuranoside (aicar) stimulatesmyocardial glycogenolysis by allosteric mechanisms. American journal ofphysiology. Regulatory, integrative and comparative physiology.2003;284:R936944.
    15. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion channelremodeling in the heart: Heart failure, myocardial infarction, and atrialfibrillation. Physiological reviews.2007;87:425456.
    16. Tian R, Musi N, D'Agostino J, Hirshman MF, Goodyear LJ. Increasedadenosine monophosphate activated protein kinase activity in rat hearts withpressure overload hypertrophy. Circulation.2001;104:16641669.
    17. Beauloye C, Bertrand L, Horman S, Hue L. Ampk activation, a preventivetherapeutic target in the transition from cardiac injury to heart failure.Cardiovascular research.2011;90:224233.
    18. Li HL, Yin R, Chen D, Liu D, Wang D, Yang Q, Dong YG. Long termactivation of adenosine monophosphate activated protein kinase attenuatespressure overload induced cardiac hypertrophy. Journal of cellularbiochemistry.2007;100:10861099.
    19. Chan AY, Dolinsky VW, Soltys CL, Viollet B, Baksh S, Light PE, Dyck JR.Resveratrol inhibits cardiac hypertrophy via amp activated protein kinase andakt. The Journal of biological chemistry.2008;283:2419424201.
    20. Furukawa T, Kurokawa J. Potassium channel remodeling in cardiachypertrophy. Journal of molecular and cellular cardiology.2006;41:753761.
    21. Zhang P, Hu X, Xu X, Fassett J, Zhu G, Viollet B, Xu W, Wiczer B, BernlohrDA, Bache RJ, Chen Y. Amp activated protein kinase alpha2deficiencyexacerbates pressure overload induced left ventricular hypertrophy anddysfunction in mice. Hypertension.2008;52:918924.
    22. Lee JW, Park S, Takahashi Y, Wang HG. The association of ampk with ulk1regulates autophagy. PloS one.2010;5:e15394.
    23. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R.Defective DNA replication impairs mitochondrial biogenesis in human failinghearts. Circulation research.2010;106:15411548.
    24. Hu X, Xu X, Lu Z, Zhang P, Fassett J, Zhang Y, Xin Y, Hall JL, Viollet B,Bache RJ, Huang Y, Chen Y. Amp activated protein kinase alpha2regulatesexpression of estrogen related receptor alpha, a metabolic transcription factorrelated to heart failure development. Hypertension.2011;58:696703.
    25. Ventura Clapier R, Garnier A, Veksler V. Transcriptional control ofmitochondrial biogenesis: The central role of pgc1alpha. Cardiovascularresearch.2008;79:208217.
    26. Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, WalshK. Adiponectin deficiency exacerbates cardiac dysfunction following pressureoverload through disruption of an ampk dependent angiogenic response.Journal of molecular and cellular cardiology.2010;49:210220.
    27. Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH.Reduction of amp activated protein kinase alpha2increases endoplasmicreticulum stress and atherosclerosis in vivo. Circulation.2010;121:792803.
    28. Guo R, Ren J. Deficiency in ampk attenuates ethanol induced cardiaccontractile dysfunction through inhibition of autophagosome formation.Cardiovascular research.2012;94:480491.
    29. Russell RR,3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, GiordanoFJ, Mu J, Birnbaum MJ, Young LH. Amp activated protein kinase mediatesischemic glucose uptake and prevents postischemic cardiac dysfunction,apoptosis, and injury. The Journal of clinical investigation.2004;114:495503.
    30. Young LH. Amp activated protein kinase conducts the ischemic stressresponse orchestra. Circulation.2008;117:832840.
    31. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, FunahashiT, Ouchi N, Walsh K. Adiponectin protects against myocardialischemia reperfusion injury through ampk and cox2dependent mechanisms.Nature medicine.2005;11:10961103.
    32. Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, AhmadF, Lozado R, Shah G, Fananapazir L, Bachinski LL, Roberts R. Identificationof a gene responsible for familial wolff parkinson white syndrome. The NewEngland journal of medicine.2001;344:18231831.
    33. Sternick EB, Oliva A, Gerken LM, Magalhaes L, Scarpelli R, Correia FS,Rego S, Santana O, Brugada R, Wellens HJ. Clinical, electrocardiographic,and electrophysiologic characteristics of patients with a fasciculoventricularpathway: The role of prkag2mutation. Heart rhythm: the official journal ofthe Heart Rhythm Society.2011;8:5864.
    34. Patel VV, Arad M, Moskowitz IP, Maguire CT, Branco D, Seidman JG,Seidman CE, Berul CI. Electrophysiologic characterization and postnataldevelopment of ventricular pre excitation in a mouse model of cardiachypertrophy and wolff parkinson white syndrome. Journal of the AmericanCollege of Cardiology.2003;42:942951.
    35. Light PE, Wallace CH, Dyck JR. Constitutively active adenosinemonophosphate activated protein kinase regulates voltage gated sodiumchannels in ventricular myocytes. Circulation.2003;107:19621965.
    36. Sukhodub A, Jovanovic S, Du Q, Budas G, Clelland AK, Shen M, SakamotoK, Tian R, Jovanovic A. Amp activated protein kinase mediatespreconditioning in cardiomyocytes by regulating activity and trafficking ofsarcolemmal atp sensitive k(+) channels. Journal of cellular physiology.2007;210:224236.
    37. Turrell HE, Rodrigo GC, Norman RI, Dickens M, Standen NB. Phenylephrinepreconditioning involves modulation of cardiac sarcolemmal k(atp) current bypkc delta, ampk and p38mapk. Journal of molecular and cellular cardiology.2011;51:370380.
    38. Yoshida H, Bao L, Kefaloyianni E, Taskin E, Okorie U, Hong M,Dhar Chowdhury P, Kaneko M, Coetzee WA. Amp activated protein kinaseconnects cellular energy metabolism to katp channel function. Journal ofmolecular and cellular cardiology.2012;52:410418.
    39. Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, SumanR, Peers C, Hardie DG, Evans AM. Phosphorylation of the voltage gatedpotassium channel kv2.1by amp activated protein kinase regulates membraneexcitability. Proceedings of the National Academy of Sciences of the UnitedStates of America.2011;108:1813218137.
    40. Klein H, Garneau L, Trinh NT, Prive A, Dionne F, Goupil E, Thuringer D,Parent L, Brochiero E, Sauve R. Inhibition of the kca3.1channels byamp activated protein kinase in human airway epithelial cells. Americanjournal of physiology. Cell physiology.2009;296:C285295.
    41. Alesutan I, Munoz C, Sopjani M, Dermaku Sopjani M, Michael D, Fraser S,Kemp BE, Seebohm G, Foller M, Lang F. Inhibition of kir2.1(kcnj2) by theamp activated protein kinase. Biochemical and biophysical researchcommunications.2011;408:505510.
    42. Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrillationpathophysiology: Mechanistic insights and therapeutic opportunities.European heart journal.2012;33:18701877.
    43. Turdi S, Fan X, Li J, Zhao J, Huff AF, Du M, Ren J. Amp activated proteinkinase deficiency exacerbates aging induced myocardial contractiledysfunction. Aging cell.2010;9:592606.
    44. Ikeda Y, Sato K, Pimentel DR, Sam F, Shaw RJ, Dyck JR, Walsh K.Cardiac specific deletion of lkb1leads to hypertrophy and dysfunction. TheJournal of biological chemistry.2009;284:3583935849.
    45. de Jong S, van Veen TA, van Rijen HV, de Bakker JM. Fibrosis and cardiacarrhythmias. Journal of cardiovascular pharmacology.2011;57:630638.
    46. Qu Z. Critical mass hypothesis revisited: Role of dynamical wave stability inspontaneous termination of cardiac fibrillation. American journal ofphysiology. Heart and circulatory physiology.2006;290:H255263.
    47. Sidhu JS, Rajawat YS, Rami TG, Gollob MH, Wang Z, Yuan R, Marian AJ,DeMayo FJ, Weilbacher D, Taffet GE, Davies JK, Carling D, Khoury DS,Roberts R. Transgenic mouse model of ventricular preexcitation andatrioventricular reentrant tachycardia induced by an amp activated proteinkinase loss of function mutation responsible for wolff parkinson whitesyndrome. Circulation.2005;111:2129.
    48. Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, SteinmeyerK, Bleich M, Kaab S, Hinterseer M, Kartmann H, Kreuzer E, Dugas M,Steinbeck G, Nabauer M. Reprogramming of the human atrial transcriptome inpermanent atrial fibrillation: Expression of a ventricular like genomicsignature. Circulation research.2005;96:10221029.
    49. Barth AS, Tomaselli GF. Cardiac metabolism and arrhythmias. Circulation.Arrhythmia and electrophysiology.2009;2:327335.
    50. Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, Ladroue C, Madhu B,Roberts N, De Souza A, Fredericks S, Stubbs M, Griffiths JR, Jahangiri M, XuQ, Camm AJ. Combined metabolomic and proteomic analysis of human atrialfibrillation. Journal of the American College of Cardiology.2008;51:585594.
    51. Ono N, Hayashi H, Kawase A, Lin SF, Li H, Weiss JN, Chen PS,Karagueuzian HS. Spontaneous atrial fibrillation initiated by triggered activitynear the pulmonary veins in aged rats subjected to glycolytic inhibition.American journal of physiology. Heart and circulatory physiology.2007;292:H639648.
    52. Ausma J, Coumans WA, Duimel H, Van der Vusse GJ, Allessie MA, BorgersM. Atrial high energy phosphate content and mitochondrial enzyme activityduring chronic atrial fibrillation. Cardiovascular research.2000;47:788796.
    53. Cha YM, Dzeja PP, Shen WK, Jahangir A, Hart CY, Terzic A, Redfield MM.Failing atrial myocardium: Energetic deficits accompany structuralremodeling and electrical instability. American journal of physiology. Heartand circulatory physiology.2003;284:H13131320.
    54. De Souza AI, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, CammAJ, Nattel S. Proteomic and metabolomic analysis of atrial profibrillatoryremodelling in congestive heart failure. Journal of molecular and cellularcardiology.2010;49:851863.
    55. Hwang JT, Kwon DY, Park OJ, Kim MS. Resveratrol protects ros induced celldeath by activating ampk in h9c2cardiac muscle cells. Genes&nutrition.2008;2:323326.
    56. Zhang Y, Liu Y, Wang T, Li B, Li H, Wang Z, Yang B. Resveratrol, a naturalingredient of grape skin: Antiarrhythmic efficacy and ionic mechanisms.Biochemical and biophysical research communications.2006;340:11921199.
    57. Nattel S, Carlsson L. Innovative approaches to anti arrhythmic drug therapy.Nature reviews. Drug discovery.2006;5:10341049.
    58. Nattel S. From guidelines to bench: Implications of unresolved clinical issuesfor basic investigations of atrial fibrillation mechanisms. The Canadianjournal of cardiology.2011;27:1926.
    1. Goldenberg I, Moss AJ. Long qt syndrome. Journal of the American Collegeof Cardiology.2008;51:22912300.
    2. Napolitano C, Bloise R, Monteforte N, Priori SG. Sudden cardiac death andgenetic ion channelopathies: Long qt, brugada, short qt, catecholaminergicpolymorphic ventricular tachycardia, and idiopathic ventricular fibrillation.Circulation.2012;125:20272034.
    3. Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, Denning C.Drug evaluation in cardiomyocytes derived from human induced pluripotentstem cells carrying a long qt syndrome type2mutation. European heartjournal.2011;32:952962.
    4. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. Herg k(+)channels: Structure, function, and clinical significance. Physiological reviews.2012;92:13931478.
    5. Patel C, Antzelevitch C. Pharmacological approach to the treatment of longand short qt syndromes. Pharmacology&therapeutics.2008;118:138151.
    6. Quan XQ, Bai R, Liu N, Chen BD, Zhang CT. Increasing gap junctioncoupling reduces transmural dispersion of repolarization and prevents torsadede pointes in rabbit lqt3model. Journal of cardiovascular electrophysiology.2007;18:11841189.
    7. Quan XQ, Bai R, Lu JG, Patel C, Liu N, Ruan Y, Chen BD, Ruan L, Zhang CT.Pharmacological enhancement of cardiac gap junction coupling preventsarrhythmias in canine lqt2model. Cell communication&adhesion.2009;16:2938.
    8. Choi BR, Burton F, Salama G. Cytosolic ca2+triggers earlyafterdepolarizations and torsade de pointes in rabbit hearts with type2long qtsyndrome. The Journal of physiology.2002;543:615631.
    9. Yamauchi S, Yamaki M, Watanabe T, Yuuki K, Kubota I, Tomoike H.Restitution properties and occurrence of ventricular arrhythmia in lqt2type oflong qt syndrome. Journal of cardiovascular electrophysiology.2002;13:910914.
    10. Shimizu W, Ohe T, Kurita T, Kawade M, Arakaki Y, Aihara N, Kamakura S,Kamiya T, Shimomura K. Effects of verapamil and propranolol on earlyafterdepolarizations and ventricular arrhythmias induced by epinephrine incongenital long qt syndrome. Journal of the American College of Cardiology.1995;26:12991309.
    11. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C,Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH,Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW,Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze Bahr E,Lehmann MH, Schwartz K, Coumel P, Bloise R. Genotype phenotypecorrelation in the long qt syndrome: Gene specific triggers for life threateningarrhythmias. Circulation.2001;103:8995.
    12. Jacobs A, Knight BP, McDonald KT, Burke MC. Verapamil decreasesventricular tachyarrhythmias in a patient with timothy syndrome (lqt8). Heartrhythm: the official journal of the Heart Rhythm Society.2006;3:967970.
    13. Erdogan O, Aksoy A, Turgut N, Durusoy E, Samsa M, Altun A. Oralverapamil effectively suppressed complex ventricular arrhythmias andunmasked u waves in a patient with andersen tawil syndrome. Journal ofelectrocardiology.2008;41:325328.
    14. Milberg P, Reinsch N, Osada N, Wasmer K, Monnig G, Stypmann J,Breithardt G, Haverkamp W, Eckardt L. Verapamil prevents torsade de pointesby reduction of transmural dispersion of repolarization and suppression ofearly afterdepolarizations in an intact heart model of lqt3. Basic research incardiology.2005;100:365371.
    15. Balasubramaniam R, Grace AA, Saumarez RC, Vandenberg JI, Huang CL.Electrogram prolongation and nifedipine suppressible ventricular arrhythmiasin mice following targeted disruption of kcne1. The Journal of physiology.2003;552:535546.
    16. Thomas G, Gurung IS, Killeen MJ, Hakim P, Goddard CA, Mahaut Smith MP,Colledge WH, Grace AA, Huang CL. Effects of l type ca2+channelantagonism on ventricular arrhythmogenesis in murine hearts containing amodification in the scn5a gene modelling human long qt syndrome3. TheJournal of physiology.2007;578:8597.
    17. Aiba T, Shimizu W, Inagaki M, Noda T, Miyoshi S, Ding WG, Zankov DP,Toyoda F, Matsuura H, Horie M, Sunagawa K. Cellular and ionic mechanismfor drug induced long qt syndrome and effectiveness of verapamil. Journal ofthe American College of Cardiology.2005;45:300307.
    18. Chouabe C, Drici MD, Romey G, Barhanin J, Lazdunski M. Herg andkvlqt1/isk, the cardiac k+channels involved in long qt syndromes, are targetsfor calcium channel blockers. Molecular pharmacology.1998;54:695703.
    19. Duan JJ, Ma JH, Zhang PH, Wang XP, Zou AR, Tu DN. Verapamil blocks hergchannel by the helix residue y652and f656in the s6transmembrane domain.Acta pharmacologica Sinica.2007;28:959967.
    20. Ko EA, Park WS, Son YK, Ko JH, Choi TH, Jung ID, Park YM, Hong da H,Kim N, Han J. Calcium channel inhibitor, verapamil, inhibits thevoltage dependent k+channels in rabbit coronary smooth muscle cells.Biological&pharmaceutical bulletin.2010;33:4752.
    21. Abernethy DR, Schwartz JB. Calcium antagonist drugs. The New Englandjournal of medicine.1999;341:14471457.
    22. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G. Experimental models oftorsade de pointes. Cardiovascular research.1998;39:178193.
    23. Schwartz PJ. Pharmacological and non pharmacological management of thecongenital long qt syndrome: The rationale. Pharmacology&therapeutics.2011;131:171177.
    1. Soloff LA, Zatuchni J, Janton OH, O'Neill TJ, Glover RP. Reactivation ofrheumatic fever following mitral commissurotomy. Circulation1953;8:48197.
    2. Khan AH. The postcardiac injury syndromes. Clin Cardiol1992;15:6772.
    3. Imazio M, Hoit BD. Post cardiac injury syndromes. An emerging cause ofpericardial diseases. Int J Cardiol (2012),http://dx.doi.org/10.1016/j.ijcard.2012.09.052.
    4. Imazio M, Brucato A, Rovere ME, et al. Contemporary features, risk factors,and prognosis of the post pericardiotomy syndrome. Am J Cardiol2011;108:11837.
    5. Miller RH, Horneffer PJ, Gardner TJ, Rykiel MF, Pearson TA. Theepidemiology of the postpericardiotomy syndrome: a common complication ofcardiac surgery. Am Heart J1988;116:13239.
    6. Bendjelid K, Pugin J. Is Dressler syndrome dead? Chest2004;126:16802.
    7. Shahar A, Hod H, Barabash GM, Kaplinsky E, Motro M. Disappearance of asyndrome: Dressler's syndrome in the era of thrombolysis. Cardiology1994;85:2558.
    8. Imazio M, Negro A, Belli R, et al. Frequency and prognostic significance ofpericarditis following acute myocardial infarction treated by primarypercutaneous coronary intervention. Am J Cardiol2009;103:15259.
    9. Ofori Krakye SK, Tyberg TI, Geha AS, Hammond GL, Cohen LS, Langou RA.Late cardiac tamponade after open heart surgery: incidence, role ofanticoagulants in its pathogenesis and its relationship to thepostpericardiotomy syndrome. Circulation1981;63:13238.
    10. Stelzner TJ, King TE, Jr., Antony VB, Sahn SA. The pleuropulmonarymanifestations of the postcardiac injury syndrome. Chest1983;84:3837.
    11. Cabalka AK, Rosenblatt HM, Towbin JA, et al. Postpericardiotomy syndromein pediatric heart transplant recipients. Immunologic characteristics. Tex HeartInst J1995;22:1706.
    12. Zeltser I, Rhodes LA, Tanel RE, et al. Postpericardiotomy syndrome afterpermanent pacemaker implantation in children and young adults. Ann ThoracSurg2004;78:16847.
    13. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for anageing population. Immunology2007;120:43546.
    14. Wu D, Meydani SN. Age associated changes in immune and inflammatoryresponses: impact of vitamin E intervention. J Leukoc Biol2008;84:90014.
    15. Koller ML, Maier SK, Bauer WR, Schanzenbacher P. Postcardiac injurysyndrome following radiofrequeny ablation of atrial flutter. Z Kardiol2004;93:5605.
    16. Escaned J, Ahmad RA, Shiu MF. Pleural effusion following coronaryperforation during balloon angioplasty: an unusual presentation of thepostpericardiotomy syndrome. Eur Heart J1992;13:7167.
    17. Park JS, Kim DH, Choi WG, et al. Postcardiac injury syndrome afterpercutaneous coronary intervention. Yonsei Med J2010;51:2846.
    18. Gungor B, Ucer E, Erdinler IC. Uncommon presentation of postcardiac injurysyndrome: Acute pericarditis after percutaneous coronary intervention. Int JCardiol2008;128:e1921.
    19. Turitto G, Abordo MG, Jr., Mandawat MK, Togay VS, El Sherif N.Radiofrequency ablation for cardiac arrhythmias causing postcardiac injurysyndrome. Am J Cardiol1998;81:36970.
    20. Tang RB, Liu XH, Dong JZ, Liu XP, Kang JP, Ma CS. Postcardiac injurysyndrome complicating circumferential pulmonary vein radiofrequencyablation for atrial fibrillation. Chin Med J (Engl)2007;120:19402.
    21. Krishnan MN, Luqman N, Nair R, et al. Recurrent postcardiac injurysyndrome mimicking cardiac perforation following transvenous pacing: Anunusual presentation. Pacing Clin Electrophysiol2006;29:13124.
    22. Tsai WC, Liou CT, Cheng CC, Tsai KS, Cheng SM, Lin WS. Post CardiacInjury Syndrome after Permanent Pacemaker Implantation. Acta Cardiol Sin.2012;28:5355.
    23. Sasaki A, Kobayashi H, Okubo T, Namatame Y, Yamashina A. Repeatedpostpericardiotomy syndrome following a temporary transvenous pacemakerinsertion, a permanent transvenous pacemaker insertion and surgicalpericardiotomy. Jpn Circ J2001;65:3434.
    24. Berberich T, Haecker FM, Kehrer B, et al. Postpericardiotomy syndrome afterminimally invasive repair of pectus excavatum. J Pediatr Surg2004;39:e13.
    25. Burgwardt K, Smally AJ. Postpericardiotomy syndrome following minimallyinvasive coronary artery bypass. J Emerg Med1998;16:7379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700