可重复使用液体火箭发动机关键部件损伤动力学与减损控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国发展可重复使用液体火箭发动机技术的需求,以某新型液氧煤油发动机为研究对象,对发动机减损控制技术所涉及的发动机系统动力学建模与仿真、关键部件结构动力学与损伤动力学建模与仿真、发动机减损控制律综合分析方法、基于模糊逻辑的在线减损控制方法等主要方面进行了系统深入的研究。所发展的可重复使用液体火箭发动机减损控制理论与方法,对改进和提高发动机系统可靠性、结构部件耐用性以及发动机工作寿命具有重要作用,相关研究结果也可为可重复使用液体火箭发动机起动过程、转工况过程和关机过程的方案设计提供重要参考。
     论文建立了某型液氧煤油发动机低频集中参数系统动力学模型,基于Matlab/ Simulink平台,开发实现了具有一定通用性的发动机系统动力学仿真软件,该仿真软件可以对液氧煤油发动机工作全过程进行数值仿真。基于该仿真软件,对发动机起动过程、转工况过程和关机过程进行了大量的数值模拟。研究发现,流量调节器起动流量、流量调节器转级速率、末端流量等参量的设置对发动机瞬变过程具有重要影响。对于可重复使用液体火箭发动机而言,这些参量的设置不仅影响发动机动态特性,而且直接影响关键部件损伤的发展。
     建立了发动机冷却夹套隔片和涡轮叶片的结构动力学模型和损伤动力学模型,系统地探究了发动机系统起动、转工况和关机等过程中冷却夹套隔片和涡轮叶片损伤发展规律。研究发现:发动机在稳态工况下,冷却夹套隔片和主涡轮叶片损伤发展缓慢;发动机在起动过程、由高工况向低工况转变过程和关机过程等瞬变过程中所产生的冷却夹套隔片损伤增量较大;发动机在起动过程和由额定工况向高工况转变过程中所产生的主涡轮叶片损伤增量较大。研究结果表明,进行发动机减损控制,需要重点针对瞬变过程进行减损。通过对材料性能和冷却通道结构对冷却夹套隔片损伤影响的研究,以及瞬变过程中流量调节器流量和转级速率对冷却夹套隔片和主涡轮叶片损伤影响的研究,发现:不同的起动方案和工况调节方案所引起的关键部件损伤增量差异很大,对这些方案进行优化设计,对提高关键部件耐用性和发动机可靠性十分有益。
     系统地研究了液体火箭发动机减损控制律的综合分析问题,发展并实现了基于多目标粒子群算法的发动机减损控制方法。指出发动机减损控制律的综合分析问题可转换为由发动机系统性能目标函数、冷却夹套隔片损伤目标函数、主涡轮叶片损伤目标函数等构成的多目标优化问题,优化得到的控制输入序列即为发动机减损控制律。研究结果表明:(1)在发动机起动、由额定工况向高工况转变和由高工况向低工况转变等瞬变过程中,通过合理选取优化后的控制输入序列,在系统性能损失不明显的情况下,可以不同程度地减少发动机瞬变过程中冷却夹套隔片和主涡轮叶片损伤增量;(2)在发动机起动过程中,通过牺牲发动机系统性能,不一定能减少冷却夹套隔片损伤增量,但可以较大幅度地减少主涡轮叶片损伤增量。
     针对发动机在线减损控制问题,提出了一种基于模糊逻辑的智能减损控制方案,设计实现了能够同时减少冷却夹套隔片和主涡轮叶片两个关键部件损伤增量的模糊减损控制器。研究结果表明:(1)设计的模糊减损控制器能够在线判断冷却夹套隔片和主涡轮叶片损伤情况,并自主采取合适的减损控制策略,具有一定智能性;(2)在发动机起动、由额定工况向高工况转变和由高工况向低工况转变等不同的瞬变过程中,模糊减损控制器的减损效果略有差异,但都达到减损的目的,且发动机系统性能损失不明显;关键部件损伤越大,应用模糊减损控制器后,关键部件损伤增量减少越明显。
In order to develop the concerned techniques about reusable liquid-propellant rocket engines, taking certain LOX/Kerosene rocket engine as the object investigated, some main aspects of engine damage-mitigating control (DMC) such as system dynamics modeling and simulating, critical components’structural dynamics and damage dynamics modeling and simulating, synthesis of the rocket engine DMC law and on-line DMC method based on fuzzy logic have been studied in this dissertation. The theory and techniques developed in the dissertation can be used to improve and enhance engine’s system reliability, structural durability of critical components, and service life of the rocket engine. The results can also provide valuable reference for optimizing the scheme of startup process, state regulating process and shutdown process of reusable liquid-propellant rocket engines.
     The system dynamics model of the LOX/Kerosene rocket engine was built by using standard lumped parameter methods. Based on the model, a universal simulation software for the rocket engine based on Matlab/Simulink was developed which can be applied to simulate the whole process of the rocket engine. Different operating schemes of the startup process, state regulating process and shutdown process were simulated by using the software. The results show that the setup of flow regulator’s startup mass flow-rate, flow regulator’s change rate and end mass flow-rate has an important influence on characteristics of the transient process of rocket engine. The influence of these factors on the reusable liquid-propellant rocket engine is not only dynamic performance, but also damage evolving process of the critical components.
     The structural and damage dynamics models of coolant channel ligaments (CCL) and turbine blades (TB) were also built. Based on these models, CCL and TB damage evolution law during the startup process, state regulating process and shutdown process were investigated. Some important results have been obtained. For examples, the damage of CCL and TB evolving is slow during steady state, while the damage accumulation of CCL during startup process, HTL process (a regulating process from high operating condition preseted to low operating condition preseted) and shutdown process is very obvious. In addition, the damage accumulation of TB during startup process and RTH process (a regulating process from rated condition to high working condition preseted) is also obvious. The results indicate that DMC of the rocket engine should put emphasis on the transient processes. The effects of material property and geometrical dimensions of CCL on damage evolution of CCL, the effects of flow regulator’s mass flow-rate and change rate on damage evolution of CCL and TB, were all studied. The results show that different schemes of startup and state regulation can make distinct damage accumulation of CCL and TB. Optimizing these schemes is very valuable to improve reliability and structural durability of critical components.
     It is presented and clarified that analysis and synthesis of DMC law can be dealt as a muti-objectives optimization. For DMC of liquid-propellant rocket engines, three objective functions including performance function, damage of CCL function and damage of TB function can be constructed. The optimized control input sequences are the DMC laws. The theory and methodology of analysis and synthesis on the DMC law based on multi-objective particle swarm optimization is clarified and discussed with simulation computation. The results show that: (i) the optimized control input sequences can reduce the damage accumulation of CCL and TB during the transient process such as startup process, RTH process and HTL process by insignificant sacrifice on the system performance; (ii) appreciable loss on the system performance can considerably reduce damage accumulation of TB during startup process, but it may not work to CCL.
     In order to develop on-line damage-mitigating control method, the design and realization of the intelligent damage-mitigating controller (DMCer) based on fuzzy logic, which can reduce both CCL and TB’s damage accumulation, were also discussed and studied. The results of simulating computation with the DMCer for the rocket engine show that: (i) the DMCer can monitor the damage of the CCL and TB, and take proper DMC law in time if necessary; (ii) the DMCer can reduce the damage accumulation of CCL and TB during startup process, RTH process and HTL process with insignificant loss on system performance, and the effect of damage reduction will be more obvious along with the damage evolving.
引文
[1]曹志杰.可重复使用运载技术新进展[J].国际太空,2000(8):1-4
    [2]丁丰年,张恩昭等.论我国重复使用运载器推进系统方案[J].火箭推进, 2004,30(3):13-18
    [3]才满瑞.可重复使用空间往返运输系统的最新发展[J].航天控制,2004,22(4):21-25
    [4]王振国,罗世彬,吴建军编著.可重复使用运载器研究进展[M].长沙:国防科技大学出版社,2004
    [5] Dumbacher D. NASA’s Second Generation Reusable Launch Vehicle Program-Introduction, Status, Future Plans[C]. AIAA2002-3613: 7-10
    [6] Way, David W. SCORES-Developing an Object-oriented Rocket Propulsion Analysis Tool[C]. AIAA 98-3227: 13-15
    [7] Accettura A G, et al. Investigations and Considerations about Reusable Lo(x)/HC Engines as Key Technologies for Future Launch Vehicles[C]. AIAA2002-3846: 7-10
    [8] Delma C, Freeman J R, et al. Reusable Launch Vehicle Techonology Program[C]. Acta Astranautica, 1997, 41(11): 777-790
    [9]曹志杰.可重复使用运载技术新进展[J].国际太空,2004(8):1-5
    [10]熊俊江.飞行器结构疲劳与寿命设计[M].北京:北京航空航天大学出版社,2004
    [11]姚卫星著.结构疲劳寿命分析[M].北京:国防工业出版,2003
    [12]李舜酩编著.机械疲劳与可靠性设计[M].北京:科学出版社,2006
    [13]张宝诚、李孝安编著,杨世杰主审.航空发动机可靠性和经济性[M].北京:国防工业出版社,1998
    [14]王术新.结构损伤识别的现状和发展[J].现代制造工程,2004(3): 86-88
    [15]姚忠伟,全强,刘立军.结构损伤识别理论的研究现状与进展[J].黑龙江交通科技,2005,28(9):200-203
    [16]休尔施著,王中光译.材料的疲劳(第二版)[M].北京:国防工业出版社,1999
    [17]陈启智,刘洪刚.液体火箭发动机智能故障诊断[J].火箭推进,2006,32(1):1-6
    [18]张育林.液体火箭发动机健康监控—故障分析与仿真[J].推进技术,1997,18(1):8-12
    [19] Jianjun W. Liquid-propellant Rocket Engine Health-monitoring- A Survey[C]. Acta Astronautic, 2005: 347-356
    [20]陈启智.液体火箭推进系统健康监控技术的演变[J].推进技术,1997,18(1):1-7
    [21]王仲生编著.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005
    [22]谢廷峰.液体火箭发动机分布式健康监控系统的分析与设计[D].长沙:国防科技大学研究生院工学硕士学位论文,2003
    [23]姚一平,李沛琼.可靠性及余度技术[M].北京:航空工业出版社,1991
    [24]王仲生.设备运行过程故障容错控制研究[J].航空学报,1993,14(11):662-665
    [25]王仲生编著.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005
    [26] Lorenzo C F, Merrill W C. An Intelligent Control System for Rocket Engines: Need,Vision,and Issues[J]. IEEE Control Systems, 1991: 42-46
    [27] Lorenzo C F, Merrill W C. Life Extending Control: A Concept Paper[R]. NASA TM-104391, 1991: 26-28
    [28] Ray A, Lorenzo C F, et al. Damage-Mitigating Control: An Interdisciplinary Thrust between Controls and Material Science[C]. Proceedings of the American Control Conference, 1994: 3449-3453
    [29] Holmes M, Ray A. Fuzzy Damage Mitigating Control of Mechanical Structure[C]. Proceedings of the 36th conference on Decision & Control , December, 1997: 2722-2727
    [30] Holmes M, Patankar R, et.al. Damage Mitigating Control of a Reusable Rocket Engine for Structural Durability[C]. Proceedings of the American Control Conference, 1998: 3317-3321
    [31] Holmes M, Ray A. Fuzzy Damage-mitigating Control of a Fossil-Fueled Power Plant[C]. Proceedings of the American Control Conference, 1998: 2289-2293
    [32] Zhang H, Ray A. et.al. Damage-Mitigating Control with Overload Injection: Experimental Validation of the Concept[C]. Proceedings of the American Control Conference, 1999: 1188-1192
    [33] Lorenzo C F, Holmes M S. Nonlinear Control of a Reusable Rocket Engine for Life Extension[C]. Proceedings of American Control Conference Philadephis, 1998: 2922-2926
    [34] Holmes M, Tangirala S, Ray A. Life-Extending Control of a Reusable Rocket Engine[C]. Proceedings of the American Control Conference, 1997: 2328-2332
    [35] Kallappa P, Ray A. Fuzzy Wide-Range Control of Fossil Power Plants for Life Extending and Robust Performance[C]. Proceedings of the American Control Conference, 1999
    [36] Zhang H, Ray A, et al. Hybrid Damage-Mitigating Control of Mechanical Structures[C]. Proceedings of the America Control Conference, 1998: 254-258
    [37]魏鹏飞,吴建军,刘洪刚,陈启智.基于多目标优化的液体火箭发动机减损与延寿控制研究[J].国防科技大学学报,2005,27(6):9-13
    [38] Xiaowen D, Ray A, et al. Life-Extending Control of a Reusable Rocket Engine[C]. Proceedings of the American Control Conference, 1995: 614-617
    [39] Ray A, Xiaowen D. Damage-Mitigating Control of a Reusable Rocket Engine for High Performance and Extended Life[R]. NASA Lewis Research Center under Grant Number: NAG3-1240, 1995
    [40] Xiaowen D, Ray A. Life Prediction of the Thrust Chamber Wall of a Reusable Rocket Engine[J]. AIAA Journal, 1995, 11(6): 1279-1287
    [41] Tangirala S, Holmes M, Ray A, et al. Life-extending Control of Mechanical Structures: Experimental Verification of the Concept[J]. Automatica, 1995, 34(1): 4106-4110
    [42] Tangirala S, Holmes M, Ray A, et al. Life-Extending Control of Mechanical Structures: A Feedforward/Feedback Approach[J]. Automatica, 1998, 34(1): 3-14
    [43] Ray A, Xiaowen D, et al. Damage-Mitigating Control of a Reusable Rocket Engine[J]. Journal of Propulsion and Power, 1994, 10(2): 225-234
    [44] Khatkhate A, Gupta S. et al. Life-Extending Control of Mechanical Systems Using Symbolic Time Series Analysis. Proceedings of the American Control Conference, 2006: 3765-3770
    [45] Zhang H, Ray A, et al. Hybrid Life extending Control of Mechanical Systems: Experimental Validation of the Concept[J]. Automatica,2000, 36(1): 23-36
    [46] Patankar R, Ray A. Damage Mitigating Controller Design for Structural Durability[J]. IEEE Transctions on Control Systems Technology, 1999, 7(5): 606-612
    [47] Holmes M, Tangirala S, Ray A. Life-Extending Control of Reusable Rocket Engines[J]. AIAA, 1997, 20(3): 2328-2332
    [48] Caplin J, Ray A. Life Extending Control of Gas Turbine Engines for Aircraft Propulsion[C]. 36th IEEE Conference on Decision and Control, 1997: 4700-4701
    [49] Wiseman M W, Ten-Huei G. An Investigation of Life-Extending Control Techniques for Gas Turbine Engines. Proceedings of the American Control Conference, 2001: 3706-3707
    [50] Tangirala S et al. Life Extending Control of Gas Turbine Engines[C]. Proceedings of the American Control Conference, 1999: 2642-2646
    [51] Current Research Projects of Professor Asok Ray. http://www.me.psu.edu /ray/current_research.html
    [52] Kallappa P, Ray A. Fuzzy Wide-range Control of Fossil Power Plants for Life Extension and Robust Performance[J]. Automatica, 2000, 36: 69-82
    [53] Kallappa P, Ray A, et al. Life-Extending Control of Fossil Fuel Power Plants[J]. Automatica, 1997, 33(6): 1101-1118
    [54] Donglin L, Tongwen C et al. Damage-Mitigating and Life-Extending Control of a Boiler Turbine System. Proceedings of the American Control conference,2003: 2317-2322
    [55] Li D, Marquez H J, et al. Optimal Life-Extending Control of a Boiler System. IEE Proc Control Theory Appl, 2006, 153(3): 364-370
    [56] Holmes M, Ray A. Fuzzy Damage-Mitigating Control of a Fossil Power Plant[J]. IEEE Transactions on Control Systems Technology, 2001, (9): 140-147
    [57] Zhang H, Ray A, et al. Hybrid Life Extending Control of Mechanical Structures[C]. Proceedings of the 38th Conference on Decision & Control, 1999: 1357-1362
    [58] Vidyasagar M. Nonlinear System Analysis[J]. Automatica, 1994, 30(10): 1631-1632
    [59] Ten-huei G. A Roadmap for Aircraft Engine Life Extending Control[C]. Proceedings of the American Control Conference, 2001: 3702-3705
    [60] Ray A, Caplin J, et al. Robust Damage-Mitigating Control of Aircraft Structures[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, 2000: 14-17
    [61] Ten-Huei G, Philip C, Link J. Intelligent Life-Extending Control for Aircraft Engines. AIAA, 2004-6468
    [62] Baptista M, Kumar A, et al. Model-Based Life-Extending Control for Aircraft Engines. AIAA, 2004-6465
    [63] Sastry V V S, Ray A. Online Monitoring of Fatigue Crack Damage for Life-Extending Control of Aircraft structures. Proceeding of the American Control Conference, 2001: 2363-2364
    [64] Caplin J, Ray A. Damage-Mitigating Control of Aircraft for Enhanced Structural Durability. IEEE Transactions on Aerospace Electronic Systems, 2001, 37(3): 849-862
    [65] Wiseman M W, Ten-huei G. An Investigation of Life Extending Control Techniques for Gas Turbine Engines[C]. Proceedings of the American Control Conference, 2001: 3706-3707
    [66] Jaw L, et al. Design of an Intelligent Life-extending Control for Turbine Engines[C]. Proceedings of the American Control Conference, 2001: 1005-1015
    [67]魏鹏飞,吴建军,刘洪刚,陈启智.液体火箭发动机一种通用模块化仿真方法研究[J].推进技术,2005,26(2):147-150
    [68]魏鹏飞,吴建军,陈启智.液体火箭发动机涡轮叶片结构特性的有限元分析[J].国防科技大学学报,2005,27(2):29-31
    [69] Jianjun W, Yuqiang C, Pengfei W, Honggang L, et al. An Intelligent Damage-Mitigating Control Method For Liquid-Propellant Rocket Engine[C]. 58th IAC-07-C4.3.09, 2007: 1-13
    [70] Jianjun W, Pengfei W, Honggang L, Yuqiang C, Qizhi C. Classical Methods Based Damage-Mitigating Control Law Analysis and Synthesis for Liquid-Propellant Rocket Engines[C]. 58th IAC-07-C4.1.07, 2007: 1-10
    [71] Jianjun W, Yuqiang C, Pengfei W, Honggang L, Qizhi C. An Investigation of Damage-Mitigating and Life-Extending Control Techniques for Liquid-Propellant Rochet Engine[C]. International Symposium on Space Propulsion, 2007: 519-532
    [72] Ray A, Xiaowen D. Damage-Mitigating Control of a Reusable Rocket Engine for High Performance and Extended Life[R]. NASA-CR-4640, 1995
    [73] Xiaowen D, Ray A. Damage-Mitigating Control of a Reusable Rocket Engine: Part I-Life Prediction of the Main Thrust Chamber Wall[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118(3): 401-408
    [74] Lorenzo C F, et al. Life Extending Control for Rocket Engines[R]. NASA TM 105789, 1992
    [75] In-Kyung S, Anderson W. A Subscale-Based Rocket Combustor Life Prediction Methodology[C]. AIAA 2005-3570: 10-13
    [76] Xiaowen D, Ray A. Damage-Mitigating Control of a Reusable Rocket Engine: Part II-Formulation of an Optimal Policy[J]. ASME Journal of Dynamic Systems, Measrement, and Control, Vol.118, 1996: 409-415
    [77] Lorenzo C F, Holmes M S. Design of Life Extending Controls Using Nonlinear Parameter Optimization[R]. NASA Technical Paper3700, 1998
    [78] Ray A, Min-kuang W. Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life[R]. NASA-CR-194470, 1994
    [79] Ray A, Min-Kuang W, et al. Damage-Mitigating Control of Mechanical System: Part I-Conceptual Development and Model Formulation[J]. ASME Journal of Dynamic Systems, Measurement, and Control. 1994, 116(3): 437-447
    [80] Ray A, Min-Kuang W, et al. Damage-Mitigating Control of Mechanical System: Part II-Formulaiton of an Optimal Policy and Simulation[J]. ASME Journal of Dynamic Systems, Measurement, and Control. 1994, 116(3): 448-455
    [81] Ray A, Min-Kuang W, et al. Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life[C]. AIAA 93-2080. AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, 1993
    [82]魏鹏飞.可重复使用液体火箭发动机智能减损控制方法研究[D].长沙:国防科技大学研究生院工学博士学位论文,2005
    [83]吴建军,魏鹏飞.液体火箭发动机智能减损与延寿控制技术[J].推进技术,2003,24(6):484-487
    [84] Porowski J S, O’Donnell W J, Badlani M L, et al. Simplified Design and Life Prediction of Rocket Thrust Chambers[J]. AIAA Journal, 1985(12): 181-187
    [85] Ricciu J R, Haidn O J, Zametaev E B.. Influence of Time Dependent Effects onthe Estimated Life Time of Liquid Rocket Combustion Chamber Walls[C]. AIAA 2004-3670
    [86] Xiaowen D, Ray A. Life Prediction of the Thrust Chamber Wall of a Reusable Rocket Engine[J]. Journal of Propulsion and power, 1995, 11 (6): 1279-1287
    [87] Zhang H, Ray A. Damage-Mitigating Control With Overload Injection: Experimental Validation of the Concept[C]. Proceedings of the American Control Conference, 1999: 1188-1192
    [88] Ray A, Tangirala S. Stochastic Modeling of Fatigue Crack Dynamics for On line Failure Prognostics[J]. IEEE Transactions on Control Systems Technology, 1996, 4(4): 443-451
    [89] Ray A, Tangirala S. Stochastic Modeling of Fatigue Crack Propagation[C]. Applied Mathematical Modeling 22, 1998: 197-204,
    [90] Ray A, Patankar R. Fatigue Crack Growth Under Variable-Amplitude Loading: Part I-Model Formulation in State-Space Setting[C]. Applied Mathematical Modeling 25, 2001: 979-994
    [91] Ray A, Patankar R. Fatigue Crack Growth Under Variable-Amplitude Loading: Part II-Code Development and Model Validation[C]. Applied Mathematical Modelling 25, 2001: 995-1013
    [92]陶玉静.液体火箭发动机响应特性研究及稳定性的非线性分析[D].长沙:国防科学技术大学研究生院工学博士学位论文,2006
    [93] Binder M P. An RL10A-3-3A Rocket Engine Model Using the Rocket Engine Transient Simulateor (ROCKETS) Software[R]. NASA Contractor Report 190786, 1993
    [94]刘昆.分级燃烧循环液氧/液氢发动机系统分布参数模型与通用仿真研究[D].长沙:国防科学技术大学研究生院工学博士学位论文,1999
    [95]刘昆,张育林.分布参数管道的一种改进的小分段数有限元模型[J].国防科学技术大学学报,1998,20(4):5-8
    [96]刘红军.补燃循环发动机静态特性与动态特性响应特性研究[D].西安:航天工业总公司第十一研究所工学博士学位论文,1998
    [97]БеляевЕН,ЧвановВК,ЧерваковВВ.Математическоемоделированиерабочгопроцессажидкостныхракетныхдвигателей.М:МАИ, 1999
    [98]魏鹏飞.双组元液体火箭发动机延寿控制研究[D].长沙:国防科技大学研究生院工学硕士学位论文,2001
    [99] In-Kyung S, Anderson W. A Subscale-Based Rocket Combustor Life Prediction Methodology[C]. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005: 10-13
    [100]陈启智编著.液体火箭发动机控制与动态特性理论[M].长沙:国防科技大学出版社出版,1993
    [101]格列克曼著,顾明初、郁明桂、邱明煜译.液体火箭发动机自动调节[M].北京:宇航出版社,1995
    [102]黄敏超,刘昆,张育林.分级燃烧循环发动机启动过程的变结构控制[J].上海航天,2002,19(6):7-9
    [103]黄敏超,刘昆,张育林,王楠.分级燃烧循环火箭发动机的动态特性研究[J].航空动力学报,2002,17(4):500-504
    [104]张贵田著.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005
    [105]张育林、刘昆、程谋森著.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005
    [106]段小龙.补燃循环液体火箭发动机起动特性分析[D].西安:航天科技集团公司第十一研究所工学硕士学位论文,2001
    [107]徐浩海.液氧/煤油补燃发动机起动过程研究[D].西安:航天科技集团公司第十一研究所工学硕士学位论文,2003
    [108]休泽尔等著,朱宁昌等译.液体火箭发动机现代工程设计[M].北京:中国宇航出版社,2003
    [109]张立涛.液氧/煤油游动发动机动态调节特性分析[D].西安:航天科技集团公司第十一研究所工学硕士学位论文,2003
    [110]程卫国、冯峰、王雪梅、刘艺编. MATLAB5.3精要、编程及高级应用[M].北京:机械工业出版社,2004
    [111]飞思科技产品研发中心编著. MATLAB7辅助控制系统设计与仿真[M].北京:电子工业出版社,2005
    [112] Quentmeyer R J. Experimental Fatigue Life Investigation of Cylindrical Thrust Chambers[C]. AIAA Thirteenth Propulsion Conference, 1977: 11-13
    [113] Jankovsky R S, Arya V K, et al. Sturcturally Compliant Rocket Engine Combustion Chamber-Experimental and Analytical Validation[R]. NASA TP 3431, 1994
    [114] Kasper H J. Thrust Chamber Life Prediction[R]. NASA CP-2372, 1984: 36-43
    [115]荆建平、夏松波、孙毅、冯国泰.高温蠕变分析的非线性连续损伤力学模型[J].推进技术,2004: 22(2)
    [116]饶寿期.航空发动机的高温蠕变分析[J].航空发动机,2004,30(1):10-13
    [117]王勖成.高温结构蠕变损伤有限元分析方法[J].机械强度,1995(3):21-26
    [118] Jorgen K, Bengt W. Viscoplastic Parameter Estimation by High Strain-rate Experiments and Inverse Modelling-speckle Measurements and High-speed Photography[J]. International Journal of Solids and Structures 44(2007): 145-164
    [119] Mucke R, Bernhardi O. On Temperature Rate Terms for ViscoplasticConstitutive Models with Applications to High Temperature Materials[J]. Computer Methods Appl. Mech. Engrg, 2006: 2411-2431
    [120]杨彬、熊先仁.火电厂高温构件热弹塑性结构分析方法[J].江西科学,2002,20(1):7-10
    [121]钞晨、杨振国.在役高温构件蠕变寿命评定的理论模型与新技术[J].华东电力,2002,30(4):1-4
    [122]李海燕,聂景旭.粘塑性损伤统一本构模型中材料常数的一种确定方法[J].航空动力学报,2003,18(3):388-393
    [123]曹泰岳.火箭发动机动力学[M].长沙:国防科技大学出版社,2004
    [124] Saeed Moaveni著,欧阳宇,王崧等译.有限元分析—ANSYS理论与应用[M].北京:电子工业出版社,2003
    [125]张国智,胡仁喜,陈继刚. ANSYS10.0热力学有限元分析实例指导教程[M].机械工业出版社
    [126]张远君等.液体火箭发动机涡轮泵设计[M].北京:北京航空航天大学出版社. 1995
    [127]奥夫相尼科夫(苏)等著,任汉芬等译.液体火箭发动机涡轮泵装置原理与计算[M].北京:航天工业总公司第十一研究所. 1999
    [128]吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科设计优化[J].航空动力学报,2005,20(5):795-801
    [129]张东明,柳恩杰.航空发动机涡轮叶片高温振动疲劳试验的新方法[J].航空发动机,2005,31(1):18-21
    [130]李伟,史海秋.航空发动机涡轮叶片疲劳-蠕变寿命试验技术研究[J].航空动力学报,2001,16(4):323-326
    [131]王延荣,宋兆泓,侯贵仓.涡轮叶片高温低循环疲劳/蠕变寿命试验评定[J].航空动力学报,2002,17(4):407-411
    [132]陈立杰,江铁强,谢里阳.涡轮叶片蠕变-疲劳交互作用下寿命预测方法综述[J].航空制造技术,2004(12):61-64
    [133]李明达主编,许棠、陈士煊、高德平编.有限单元法在燃气涡轮发动机零件强度计算中的应用[M].北京:国防工业出版社,1987
    [134]宋兆泓主编,熊昌炳、郑光华编.航空燃气涡轮发动机强度设计[M].北京:北京航空学院出版社,1988
    [135] S. Suresh著,王中光等译.材料的疲劳[M].北京:国防工业出版社,1993
    [136]陈国良,王煦法,庄镇泉,王东生编著.遗传算法及其应用[M].北京:人民邮电出版社,2001
    [137]王浩,曹一家,陆金桂,李谦编著.遗传算法原理及其工程应用[M].中国矿业大学出版社,1997
    [138]李人厚编著.智能控制理论和方法[M].西安:西安电子科技大学出版社. 1999
    [139]高尚,杨静宇著.群智能算法及其应用[M].北京:中国水利水电出版社,2006
    [140]刘宇,覃征,史哲文.简约粒子群优化算法[J].西安交通大学学报,2006,40(8):883-887
    [141]崔长彩,李兵,张认成.粒子群优化算法[J].华侨大学学报,2006,27(4):343-347
    [142]张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):57-58
    [143]陈永刚,杨凤杰,孙吉贵.新的粒子群优化算法[J].吉林大学学报,2006,24(2):181-184
    [144]董元,王勇,易克初.粒子群优化算法发展综述[J].商洛学院学报,2006,20(4):28-33
    [145]张利彪,周春光,刘小华,马铭.粒子群算法在求解优化问题中的应用[J].吉林大学学报,2005,23(4):385-389
    [146] David E, Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Addison-Wesley Publishing, 1989
    [147] Cartwright H M, Mott G F. Looking Around: Using Clues from the Data Space to Guide Genetic Algorithm Searches[C]. Proceedings of ICGA, 1991
    [148]张乾.多目标遗传算法及其在发动机控制系统设计中的应用[D].南京:南京航空航天大学硕士学位论文,2005
    [149] Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[D]. Ph. D. thesis, Vanderbilt University. Unpublished. 1984
    [150] Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]. Proceedings of an International Conference on Genetic Algorithms and Their Applications, 1985: 93-100
    [151] Fonseca C M, Fleming P J. Multio-Objective Optimization and Multiple Constraint Handling with Evolutionary Algorithms Part I: A Unified Formulation[C]. IEEE Transactions on System, Man, and Cybernetics, Part A: Systems and Humans, 1998: 26-37
    [152] Fonseca C M, Fleming P J. Multio-Objective Optimization and Multiple Constraint Handling with Evolutionary Algorithms Part II: Application Example[C]. IEEE Transactions on System, Man, and Cybernetics, Part A: Systems and Humans, 1998: 38-55
    [153] Horn J, Nafpliotis N. Multiobjective Optimization Using the Niched Pareto Genetic Algorithm[R]. IlliGAL Report 93005, Illinois Genetic Algorithms Laboratory, University of Illinois, 1993
    [154] Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization[C]. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation, 1994(1): 82-87
    [155] Deb K, Agrawal S, Pratap A, Meyarivan T. A Fast Elistist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II[C]. Proceedings of the Parallel Problem Solving from Nature VI conference,2000: 849-858
    [156] Zitzler E, Laumanns M, Thiele L. SPEA 2: Improving the Strength Pareto Evolutionary Algorithm[R]. Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology(ETH), Zurich, Gloriastrasse 35, CH-8092 Zurich, 2001: 1-21
    [157] Zitzler E, Laumanns M, Bleuler S. A Tutorial on Evolutionary Multi-Objective Optimization[R]. Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology(ETH), Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2002: 21-40
    [158] Zitzler E. Evolutionary Algorithms for Multi-Objective Optimization[R]. Computer Engineering and Communication Networks Lab(TIK), Swiss Federal Institute of Technology(ETH), Zurich, Switzerland, 2002
    [159] Suganthan P N. Particle Swarm Optimizer with Neighbourhood Operator [C]. Proc of the Congress on Evolutionary Computation, 1999: 1958-1962
    [160] Kennedy J, Eberhart R C. Particle Swarm Optimization [J]. Institute of Electronics Engineers, 1995 (11): 1942-1948
    [161] Eberhart R C, Kennedy J. A New Optimizaer Using Particle Swarm Theory [J]. Institute of Electrical and Electronics Engineers, 1995 (10):39-43
    [162] Rania H, Babak C. Olivier W. A Comparison of Particle Swarm Optimization and The Genetic Algorithm. AIAA 2005-1897
    [163]董劲.航空发动机智能控制[D].南京:南京航空航天大学硕士学位论文,2003
    [164]郭庆祝,孟维明等.模糊控制技术发展现状及研究热点[J].自动化博览,2005,22(4):68-70
    [165]蔚东晓,贾霞彦.模糊控制的现状与发展[J].自动化与仪器仪表,2006(6):4-7
    [166]陈杰,薛彬.模糊控制的研究现状与展望[J].自动化与仪器仪表,2006(6):1-3
    [167]史纪晓.航空发动机模糊控制方法研究[D].西安:西北工业大学硕士学位论文,2003
    [168]孙增圻等编著.智能控制理论与技术[M].北京:清华大学出版社, 1997
    [169]王耀南著.智能控制系统[M].长沙:湖南大学出版社,1995
    [170]王立新著、王迎军译.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700