故障树分析的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
故障树分析(Fault Tree Analysis, FTA)技术是可靠性分析及故障诊断的有效工具,它在分析系统故障模式、寻找薄弱环节、指导故障维修等工作中具有重要的参考价值。
     本文主要研究故障树分析理论中的若干关键问题及其实现。研究关键问题的目的在于:一方面,拓展故障树分析的工具,优化故障树结构,以提高故障树分析的效率;另一方面,拓展底事件的分析途径,寻找新的估计方法和评判策略,以改进底事件的分析手段。论文围绕下列线索展开:故障树分析→故障树优化→获取底事件的失效分布。就研究方式而言,主要涉及理论分析、算法实现和验证。就研究内容而言,主要包括:故障树的模块化分解;分析和拓展二元决策图(Binary Decision Diagram, BDD)的核心技术;获取非单调关联故障树的质蕴含集(Prime Implicant Set, PIS)及最小形“最小割集(Minimal Cut Set, MCS)”;改进底事件的失效分布判断及参数估计;基于模糊理论的底事件失效分析。
     针对直接分析大型故障树存在效率低的弊端,研究了故障树的模块化分解技术。模块化的关键技术在于:用深度优先搜索(Depth-First Searching, DFS)技术获取所有节点的搜索步数,重点区分中间节点(逻辑门)和底事件的搜索方式。获取节点的搜索步数是模块形成的重要基础,因为只需判断任意节点(公共祖先)的时间区间是否包含其子节点中的最大时间区间,则可得到判断结果。
     针对传统故障树分析方法存在繁杂、费时的缺点,研究了BDD技术用于故障树分析的原理和方法,其主要内容是:用递归方法实现子BDD间的连接规则;提出用“继承”技术实现不交化割集(关键技术在于:所有节点都直接“继承”其父节点所继承的信息,而以不同的方式“继承”父节点的信息);在分析最优指标顺序原理的基础上,实现了理论最优BDD结构的核心技术(基于指标代价恒定原理的最小节点代价的指标排序),阐明了存储目标节点所对应的真值表存在浪费时间和空间的缺点,分析了原方法只能获得唯一最优解的弊端,进而对最优指标顺序的实现加以改进(即:删除存储目标节点的真值表,改变获取最优解的设置,使算法能够获得所有最优解);作为最优BDD技术的一个不可分割的部分,研究了形式最优BDD结构的实现方法,主要任务是删除两个子节点等价情况下的父节点,其关键技术是:用深度优先的递归方法搜索BDD结构,通过判断BDD结构中的三个元素的状态(主要获取第二个元素和第三个元素的长度,判断这两个元素的值是否相等)来确定是否分支搜索、删除和重构BDD;为了提高故障树分析的效率,在分析最简割集BDD原理的基础上,研究了最优路径BDD结构的实现方法(实现冗余路径的“去除”操作),阐明了最优(节点数最少)BDD技术和最简割集(路径数最少)BDD技术的本质区别。
     获取最小形“MCS”是获取非单调关联故障树的PIS的前提。在分析降阶递归结构函数方法的基础上,阐明了“非正规”BDD结构可能存在掩盖“非单调”底事件作用的弊端(在路径搜索中,不能区分某底事件到底是“单调”正常而不必考虑为故障模式的成员,还是“非单调”而必须考虑为故障模式的成员)。提出统一编码所有底事件的策略(即:将对立事件也考虑成单调状态),进而用“正规”BDD技术来获取非单调关联故障树的最小形“MCS”。
     在底事件失效分布的判断上,直觉判断树叶图方法存在粗略的弊端。提出用相关系数方法来改进树叶图的直觉判断,使底事件失效分布的判断有了量的依据。其核心技术是:对原始实验数据进行小波变换,以提取低频轮廓,从而强化样本的真实分布和其它分布之间的差异(使真实分布对应的相关系数明显大于其余分布所对应的相关系数),有利于提高判断的准确性。单纯图估计或线性回归估计方法都存在着参数估计粗略的弊端(前者主观随意性强,后者具有“平均”成分),提出用智能优化算法来实现Weibull分布参数的线性回归——极大似然估计(Maximum Likelihood Estimation, MLE)。参数估计的关键技术在于:用粒子群优化(Particle Swarm Optimization, PSO)算法作为工具,联合估计分布参数(线性回归估计为PSO算法提供初始解,PSO算法则获取MLE的数字解)。
     基于专家判断的模糊数能够在一定程度上克服底事件无失效数据的困难。为了量化专家判断的可信度,采用层次分析(Analytical Hierarchy Process, AHP)法确定专家的权重,从而代替专家判断的等权策略。在模糊判断的合成中,采用的关键技术是:以多元扩展原理为基础,用α-截集区间合成模糊数。
Fault Tree Analysis (FTA) has become an effective tool in field of reliability analysis and fault diagnosis, and it has important reference value in course of analyzing failure modes, looking for weaknesses and guiding failure repairing.
     In this dissertation, several key problems and their implementations of FTA theory have been researched. The purposes of researching key details include two sides: One is expanding FTA tool and optimizing fault tree structure to improve analysis efficiency, and the other is expanding ways of analyzing bottom event and looking for new estimation methods and evaluation strategies to improve means of analyzing bottom event. Dissertation expands around the following clues: to make FTA→to research fault tree optimization→to research how to get failure distribution of bottom event. For research methodology, it mainly involves theoretical analysis, algorithm implementation and verification. For research content, it mainly relates to making modular decomposition to fault tree, analyzing and expanding key technologies of Binary Decision Diagram (BDD), making Prime Implicant Set (PIS) and“Minimal Cut Set”(“MCS”) from Non-Coherent Fault Tree (NCFT), improving determining method about failure distribution of bottom event and making parameter estimation, making failure analysis of bottom event based on fuzzy theory.
     Aiming at the disadvantages of low efficiency to directly analyze large-scale fault tree, the modular decomposition technology applied to fault tree has been researched. Taken as a key technology, the method of Depth-First Searching (DFS) has been used to search steps of all nodes, and the key point is distinguishing searching mode to intermediate nodes (logic gates) and bottom events. Getting node steps is an important foundation for forming modules, for, any node whether a module or not can be determined only by means of judging inclusion relations between time interval of common ancestor and maximum time interval of its child nodes.
     Due to inherent drawbacks of complexity and time-consuming character in method of traditional FTA, the principle and method of BDD technology used for FTA have been researched. The main contents are shown as follow: Connection rules and their recursive implementation between two sub-BDDs have been researched; A sort of technique called“inheritance”to make non-intersection cut set has been put forward (The key technology is that all nodes directly“inherit”node’s information his father-node has inherited, but“inherit”its father-node’s information with different ways); On the basis of analyzing principle of the best index order, the core technology to form theory optimal BDD structure has been achieved (to get index order of nodes with minimum cost based on principle of constant index cost), and at the same time, the disadvantage that storing truth table of target node will waste time and space has been stated, and the drawback that original method can only get one optimal solution has been analyzed too. The implementation of optimal index order has been improved (i.e. the truth table used for storing target node’s Boolean value has been deleted, and the setting of getting optimal solution of original method has been changed to obtain all the optimal solutions); As an integral part of optimal BDD, the implementation method of formal optimal BDD has been researched. Its main task is to remove father-node whose two child-nodes are equivalent, and the recursive method with DFS technology has been used for searching BDD structure. In this key technology, the states of three elements in BDD structure have been judged (mainly to get the length of the second and third element respectively, and to judge whether the values of the two elements are equal or not) to determine whether making branch searching, deleting and restructuring BDD or not; In order to improve the efficiency of FTA, the implementation of optimal path BDD has been researched, which is based on analyzing the principle of the simplest cut set BDD, and the essential differences between the optimal BDD (the least number of nodes) and the simplest cut set BDD (the least number of paths) have been illustrated.
     Getting“MCS”is the premise to obtain PIS of NCFT. On the basis of analyzing the method of recursive structure function, the drawback that“irregular”BDD structure may cover up the function of“non-monotonic”bottom event has been analyzed (Searching can not distinguish whether one bottom event is“monotonous”and need not consider it a member of failure mode or is“non-monotonous”and must be considered as a member of failure mode). A strategy by means of coding all bottom events with unified method has been proposed, and then the“regular”BDD technology has been used to obtain“MCS”of NCFT.
     Because intuitively judging leaf-figure has drawback with roughness in determining failure distribution of bottom event, a method of correlation coefficient has been put forward to improve the intuitive judgment, which make determining failure distribution has basis of amount. Taken as a core technology, wavelet transform is applied to original experimental data to extract low frequency contour, so that the difference between true distribution and other distributions is strengthened (i.e. to make correlation coefficient correspond to true distribution be significantly larger than others), which can increase the correctness of judgment. Because the figure estimation or linear regression estimation has drawback with roughness (The former has subjective and arbitrary factor, and the latter has“average”component), the Weibull distribution parameters have been estimated with the method of linear regression-Maximum Likelihood Estimation (MLE) by means of intelligent optimization algorithm. In this method, the Particle Swarm Optimization (PSO) algorithm is taken as a key tool to jointly estimate parameters (The linear regression estimation offers initial solution for PSO algorithm, and the PSO algorithm is used for getting digital solutions of MLE).
     The Fuzzy numbers based on expert judgments may overcome the difficulties that the bottom events have no failure data. To quantify the experts’credibility, the method of Analytical Hierarchy Process (AHP) has been used to determine experts’weights to replace strategy of average weight. In course of pooling fuzzy judgments, theα-cut set has been used to form Fuzzy numbers, which is based on multiple extension principle.
引文
[1]梅启智,廖炯生,孙慧中.系统可靠性工程基础(第1版).北京:科学出版社, 1992. 389-391
    [2]中华人民共和国国家标准局. GB/T 7829-1987.故障树分析程序.北京:中国标准出版社, 1987-06-03
    [3]周广涛.计算机辅助可靠性工程.北京:宇航出版社, 1990. 212-213
    [4] Fussell J B, Vesely W E, A new methodology for obtaining cut sets. Transactions of the American Nuclear Society, 1972, Vol.15, No.1: 262-263
    [5]周海京,遇今.故障模式影响及危害性分析与故障树分析.北京:航空工业出版社, 2003. 96-97
    [6]陈玉毅. FTA故障树分析研究:[硕士学位论文].北京:北方交通大学, 2005
    [7] Semanderes S N. A computer program for the efficient logic reduction analysis of fault trees. IEEE Transactions on Nuclear Science, 1971, Vol.18, No.1: 481-487
    [8] Lin P M, Alderson G E. Symbolic network functions by a single path-finding algorithm. Proceedings of the 7th Annual Allerton Conference on Circuit and System Theory, 1969, 196-205
    [9] K Kobayashi, H Yamamoto. A new algorithm in enumerating all minimal paths in a spares network. Reliability Engineering and System Safety, 1999, Vol.65, No.1: 11-15
    [10] M Fotuhi-Firuzabad, R Billinton, T S Munian, et al. A Novel Approach to Determine Minimal Tie-Sets of Complex Network. IEEE Transactions on Reliability, 2004, Vol.53, No.1: 61-70
    [11]曹晋华,程侃.可靠性数学引论(第2版).北京:高等教育出版社, 2006. 38-182
    [12]金星,武江涛,洪延姬.直接不交化故障树定量分析中的应用.中国空间科学技术, 2001, Vol.3: 60-64
    [13]刘永宾,陈金水,谢学武.割集矩阵在早期不交化FTA中的应用.天津大学学报, 2000, Vol.3, No.33: 318-323
    [14] Rauzy A. New algorithm for fault tree analysis. Reliability Engineering and System Safety, 1993, Vol.40, No.2: 203-211
    [15] Kohda T, Henley E J, Inoue K. Finding Modules in Fault Trees. IEEE Transactions on Reliability, 1989, Vol.38, No.2: 167-172
    [16] Sinnamon R M, Andrews J D. New approaches to evaluating fault trees. Quality and ReliabilityEngineering International, 1997, Vol.58, No.2: 89-96
    [17] Bartlett L M, Andrews J D. An ordering heuristic to develop the binary decision diagram based on structural importance. Reliability Engineering and System Safety, 2001, Vol.72, No.1: 31-38
    [18] Rudell R. Dynamic variable ordering for ordered binary decision diagrams. IEEE ICCAD’93. Santa Clara: IEEE Inc., 1993, 42-47
    [19] Ishiura N, Sawada H, Yajuma S. Minimization of Binary Decision Diagrams Based on Exchanges of Variables. IEEE ICCAD’91. Santa Clara: IEEE Inc., 1991, 472-475
    [20]李翔宇,等.二元决策图变量排序新方法.电子科技大学报, 1999, Vol.28, No.2: 153-155
    [21] Bartlett L M, Andrews J D. Choosing a heuristic for the“fault tree to binary decision diagram”conversion, using neural networks. IEEE Transactions on Reliability 2002, Vol.51, No.3: 344-349
    [22] Bartlett L M, Du S. New progressive variable ordering for binary decision diagram analysis of fault trees. Quality and Reliability Engineering International, 2005, Vol.21, No.4: 413-425
    [23] DU Su-guo, SUN Yan. A Novel Ordering Method of Binary Decision Diagram. ICMSE 2007. Harbin: IEEE Inc., 2007, 299-304
    [24]周苏明.两状态非单调关联系统可靠度研究.电子产品可靠性与环境试验, 1995, Vol.4: 2-7
    [25]周经伦,刘波,孙权.非单调关联故障树顶事件失效概率的新算法.国防科技大学学报, 1999, Vol.21, No.2: 105-107
    [26]刘洪刚,卢世荣,刘伟强,等.一种非单调关联故障树的分析方法.系统工程与电子技术, 2001, Vol.23, No.1: 24-26
    [27] Gonzalez Luis, Garcia Diego, Galvan Blas. An Intrinsic Order Criterion to Evaluate Large, Complex Fault Trees. IEEE Transactions on Reliability, 2004, Vol.53, No.3: 297-305
    [28] Remenyte R, Andrews J D. A Simple Component Connection Approach for Fault Tree Conversion to Binary Decision Diagram. The First International Conference on Availability, Reliability and Security. Vienna: IEEE Inc., 2006, 449-457
    [29]周经伦,孙权,冯静.非单调关联系统可靠性技术.长沙:国防科技大学出版社, 2008. 54-64
    [30]贺国芳,许海宝.可靠性数据的分析与收集.北京:国防工业出版社, 1995. 170
    [31] Hideo T, Fan L T, Lai F S. Fault tree analysis by fuzzy probability. IEEE Transactions on Reliability, 1983, Vol.32, No.5: 453-457
    [32] Singer D. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets and Systems,1990, Vol.34, No.2: 145-155
    [33] Suresh P V, Babar A K, Venkat Raj V. Uncertainty in fault tree analysis: a fuzzy approach. Fuzzy Sets and Systems, 1996, Vol.83: 135-141
    [34] Antonio CFG, Nelson FFE. Fuzzy FTA: a fuzzy fault tree system for uncertainty analysis. Annals of Nuclear Energy, 1999, Vol.26, No.6: 523-532
    [35] Tsujimura Y, Gen M. Fuzzy fault tree and its importance analysis. Proceeding of the 16th ICC&IE. Ashikaga: Computers and Industrial Engineering, 1994, 301-304
    [36] Singer D. Fault tree analysis based on fuzzy logic. Computers and Chemical Engineering, 1990, Vol.14, No.3: 259-266
    [37] Sawyer J P. Fault Tree Analysis of Mechanical System. Microelectron and Reliability, 1994, Vol.54, No.4: 653-667
    [38]黄洪钟.机械系统故障树分析的一种新的模糊方法.机械科学与技术, 1994, Vol.1: 1-7
    [39]黄洪钟.对常规可靠性理论的批判性评述—间论模糊可靠性理论的产生、发展及应用前景.机械设计, 1994, Vol.11, No.3: 1-5
    [40] Huang Hongzhong. Fuzzy fault tree analysis of mechanical transmission system. Journal of Southwest Jiaotong University, 1993, Vol.1, No.2: 165-170
    [41]华小洋,胡宗武,范祖尧.模糊故障树分析方法.机械强度, 1998, Vol.20, No.1: 35-40
    [42]赵德孜,王厚铿.基于模糊集的故障树分析在燃气轮机中的应用.燃气轮机技术, 2003, Vol.16, No.2: 55-58
    [43]许丽佳.电子系统的故障预测与健康管理技术研究:[博士学位论文].成都:电子科技大学, 2009
    [44]金星,洪延姬.系统可靠性评定方法.北京:国防工业出版社, 2005. 167-209
    [45]张超.基于BDD的动态故障树优化研究:[硕士学位论文].西安:西北工业大学, 2004
    [46]王少萍.工程可靠性.北京:北京航空航天大学出版社, 2000. 102-122
    [47]孙红梅,高齐圣,朴营国.关于故障树分析中几种典型重要度的研究.电子产品可靠性与环境试验, 2007, Vol.25, No.2: 39-41
    [48]苏金明,刘宏,刘波. MATLAB高级编程.北京:电子工业出版社, 2005. 55-68
    [49] Chatterjee P. Modularization of fault trees: A method to reduce the cost of analysis. SIAM Journal of Reliability and Fault Tree Analysis, 1975, 101-137
    [50] Birnbaum Z W, Esary J P. Modules of coherent binary systems. SIAM Journal of Applied Mathematics, 1965, Vol.13: 442-462
    [51] Rosenthal A. Decomposition Methods for Fault Tree Analysis. IEEE Transactions onReliability, 1980, Vol.R-29, No.2: 136-138
    [52] Wilson J M. Modularizing and Minimizing Fault Trees. IEEE Transactons on Reliability, 1985, Vol.R-34, No.4: 320-322
    [53] Tarjan R E. Depth First Search and Linear Graph Algorithm. Computer, 1972, Vol.1, No.4: 104-160
    [54] Dutuit Y, Rauzy A. A Linear Time Algorithm to Find Modules of Fault Trees. IEEE Transactions on Reliability, 1996, Vol.45, No.3: 422-425
    [55]阎建平.一种故障树模块的划分方法.北方交通大学学报, 2000, Vol.24, No.5: 63-66
    [56] Akers S B. Binary Decision Diagrams. IEEE Transactions on Computer, 1978, Vol.27, No.6: 509-516
    [57] Bryant R E. Graph-Based Algorithm for Boolean Function Manipulation. IEEE Transactions on Computers, 1986, Vol.35, No.8: 677-691
    [58]卢世荣,方逵,周经纶. BDD表示下的部件重要度的计算.系统工程与电子技术, 1999, Vol.21, No.3: 70
    [59] Rauzy A. New algorithm for fault tree analysis. Reliability Engineering and System Safety, 1993, Vol.40, No.2: 203-211
    [60]李翔宇,等.二元判决图的实现及改进方法.电子科技大学学报, 1999, Vol.28, No.3: 516-519
    [61]袁静,胡昌华,徐瑞,等.基于改进BDD算法的导弹安控系统故障树仿真分析.系统仿真学报, 2007, Vol.19, No.1: 10-11
    [62] Friedman S J, Supowit K J. Finding the Optimal Variable Ordering for Binary Decision Diagram. IEEE Transactions on Computers, 1990, Vol.39, No.5: 710-713
    [63]周经伦,孙权,冯静.非单调关联系统可靠性技术.长沙:国防科技大学出版社, 2008. 6-7
    [64]廖炯生.自旋卫星转速控制系统的多状态非单调关联故障树定性分析.中国空间科学技术, 1986, Vol.2: 25-28
    [65] Kumamoto, Hiromitsu Henley, Ernest J. Top-down Algorithm for Obtaining Prime Implicant Sets of Non-Coherent Fault Trees. IEEE Transactions on Reliability, 1978, Vol.R-27, No.4: 242-249
    [66]徐晓光.数字逻辑与数字电路.北京:机械工业出版社, 2008. 43-46
    [67]周经伦,孙权,冯静.非单调关联系统可靠性技术.长沙:国防科技大学出版社, 2008. 30.
    [68]汪有涛,沙基昌,董萍.一种基于BDD求解PIS的新方法.系统工程与电子技术, 2000, Vol.27, No.11: 66-67
    [69]周经伦,孙权,冯静.非单调关联系统可靠性技术.长沙:国防科技大学出版社, 2008. 70-71
    [70]周经伦,孙权,冯静.非单调关联系统可靠性技术.长沙:国防科技大学出版社, 2008. 97-103
    [71]罗航,黄建国,龙兵,等.基于相关系数方法的样本失效分布研究.系统工程与电子技术, 2009, Vol.31, No.7: 1776-1781
    [72]郑诚,蔡庆生.一种多尺度的时间序列相似模式匹配算法.小型微型计算机系统, 2003, Vol.24, No.3: 546-549
    [73]张海勤,蔡庆生.基于小波变换的时间序列相似模式匹配.计算机学报. 2003, Vol.26, No.3: 373-377
    [74]李秋丹,迟盅先,孙瑞超.一种时间序列相似匹配新算法.控制与决策, 2004, Vol.19, No.8: 915-919
    [75]吕科,耿国华,周明全.基于哈希方法的空间曲线匹配.电子学报, 2003, Vol.31, No.2: 294-296
    [76] Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence database. Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithm. New York: Springer-Verlag, 1993, 69-84
    [77] Chan K-P, Fu A W-C. Efficient time series matching by wavelets. Proceedings of the 15th International Conference on Data Engineering. Sydney: IEEE Inc., 1999, 126-133
    [78] Hang Luo, Hou-Jun Wang, Bing Long, et al. Searching failure distribution of sample based on slope-mode distance. IEEE Circuits and Systems International Conference on Testing and Diagnosis. Chengdu: IEEE Inc., 2009, 1-5
    [79]童裕孙.泛函分析教程.上海:复旦大学出版, 2003. 14-16
    [80]张贤达.现代信号处理(第2版).北京:清华大学出版社, 2003. 413-416
    [81]芮延年,傅戈雁.现代可靠性设计.北京:国防工业出版社, 2007. 68-69
    [82]周源泉,翁朝曦.对数正态分布环境因子的统计推断.系统工程与电子技术, 1996, Vol.10: 73-81
    [83] Prabhakar Murthy D N, Bulmer M, Eccleston John A. Weibull Model Selection for Reliability Modeling. Reliability Engineering and System Safety, 2004, Vol.86, No.3: 257-267
    [84] Xie M, Goh T, Tang Y. On Changing Points of Mean Residual Life and Failure Rate Functionfor Some Generalized Weibull Distributions. Reliability Engineering and System Safety, 2004, Vol.84, No.3: 293-299
    [85] Nadarajah S. On the Moments of the Modified Weibull Distribution. Reliability Engineering and System Safety, 2005, Vol.90, No.1: 114-117
    [86] Ng HKT. Parameter Estimation for a Modified Weibull Distribution for Progressively Type-II Censored Samples. IEEE Transactions on Reliability, 2005, Vol.54, No.3: 374-380
    [87] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the 6th International Symposium on Micromachine and Human Science. Nagoya: IEEE Inc., 1995, 39-43
    [88]罗航,龙兵,黄建国,等.一种搜索威布尔MLE形状参数的PSO联合方法.系统工程与电子技术, 2009, Vol.31, No.4: 988-993
    [89]罗航,王厚军,黄建国,等.基于PSO的三参数威布尔分布的联合估计.仪器仪表学报, 2009, Vol.30, No.8: 1604-1612
    [90]刘明治.可靠性试验.北京:电子工业出版社, 2004. 60-73
    [91]严晓东,马翔,郑荣跃,等.三参数威布尔分布参数估计方法比较.宁波大学学报(自然科学版), 2005, Vol.18, No.3: 302-303
    [92] Wang Xiao-fei. Quasi-Newton Algorithm with Non-monotonic Trust Region Methods for Nonlinear Equations. Journal of Shanghai Normal University (Natural Science), 2003, Vol.32, No.2: 16-22
    [93] Holland J. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975
    [94]张利彪,周春光,刘小华,等.粒子群算法在求解优化问题中的应用.吉林大学学报(信息科学版), 2005, Vol.23, No.4: 385-389
    [95]陈长忆,叶永春.基于粒子群算法的非线性方程组求解.计算机应用软件, 2006, Vol.23, No.5: 137-139
    [96] Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. The 1998 IEEE International Conference on Evolutionary Computation Proceedings. Anchorage: IEEE Inc., 1998, 69-73.
    [97] Shi Y, Eberhart R. Parameter selection in particle swarm optimization. Proceedings of the 7th Annual Conference on Evolutionary Programming. New York: Springer-Verlag, 1998, 591-600
    [98] Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. Proceedings of the 1999 Congress on Evolutionary Computation. Washington, D.C.: IEEE Inc., 1999, 1951-1957
    [99] The Jin Ai, Kachitvichyanukul, Voratas. Dispersion and Velocity Indices for Observing Dynamic Behavior of Particle Swarm Optimization. IEEE Congress on Evolutionary Computation. Singapore: IEEE Inc., 2007, 3264-3271
    [100]王锡清,张皓,杨广斌.恒定及步进应力加速寿命试验在电容器中的应用.杭州电子工业学院学报, 2001, Vol.21, No.1: 7-11
    [101]方华元,胡昌华,曹小平,等.含约束条件遗传算法在三参数威布尔分布参数估计中的应用.战术导弹技术, 2006, Vol.6: 32-35
    [102]贺国芳,许海宝.可靠性数据的收集与分析.北京:国防工业出版社, 1995. 114-116
    [103]杨谋存,聂宏.三参数Weibull分布参数的极大似然估计数值解法.南京航空航天大学学报, 2007, Vol.39, No.1: 22-25
    [104]邓建,古德生,李夕兵.确定可靠性分析Weibull分布参数的概率加权矩法.计算力学学报, 2004, Vol.21, No.5: 609-613
    [105] Zhang L F, Xie M, Tang L C. A study of two estimation approaches for parameters of Weibull distribution based on WPP. Reliability Engineering and System Safety, 2007, Vol.92, No.3: 360-368
    [106] Song H, Zhang H Y. Fault diagnosis based on fuzzy observer for uncertain nonlinear systems. Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes. Washington, D.C.: IEEE Inc., 2003, 759-764
    [107] Saaty T L. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980
    [108] Greiner M A, Fowler J W, Shunk D L, et al. A Hybrid Approach Using the Analytic Hierarchy Process and Integer Programming to Screen Weapon Systems Projects. IEEE Transactions on Engineering Management, 2003, Vol.50, No.2: 192-203
    [109]胡宝清.模糊理论基础.武汉:武汉大学出版社, 2004. 74-75
    [110] Zadeh L A. Fuzzy sets. Information and Control, 1965, Vol.8, No.3: 338-353
    [111]李安贵,张志宏,孟艳,等.模糊数学及其应用.北京:冶金工业出版社, 2005. 4-5
    [112] HU Shengwu, WU Zongqing, WANG Hongtao. GIS Reliability Based on Triangle Fuzzy Number. GEOSPATIAL INFORMATION, 2007, Vol.5, No.1: 16-17
    [113]胡宝清.模糊理论基础.武汉:武汉大学出版社, 2004. 81-82
    [114] Pedrycz W. Why triangular membership functions? Fuzzy Sets and Systems, 1994, Vol.64, No.1: 21-30
    [115] Wang J, Yang J B, Sen P. Safety analysis and synthesis using fuzzy sets and evidential reasoning. Reliability Engineering and System Safety, 1995, Vol.47, No.2: 103-118
    [116]武庄,石柱,何新贵.基于模糊集合论的故障树分析方法及其应用.系统工程与电子技术, 2000, Vol.22, No.9: 72-75
    [117] Clemen R T, Winkler R L. Combing probability distribution from experts in risk analysis. Risk Analysis, 1999, Vol.19, No.3: 187-203
    [118]何淑静,周伟国,严铭卿.上海城市燃气输配管网失效模糊故障树分析法.同济大学学报(自然科学版). 2005, Vol.33, No.4: 507-511
    [119] Dong Yuhua, Yu Datao. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. Journal of Loss Prevention in the Process Industries, 2005, Vol.18: 83-88
    [120] Lin C T, Wang M J. Hybrid fault tree analysis using fuzzy sets. Reliability Engineering and System Safety, 1997, Vol.58, No.3: 205-213
    [121] Greiner M A, Fowler J W, Shunk D L, et al. A Hybrid Approach Using the Analytic Hierarchy Process and Integer Programming to Screen Weapon Systems Projects. IEEE Transactions on Engineering Management, 2003, Vol.50, No.2: 192-203
    [122] Kamal M Al-Subhi Al-Harbi. Application of the AHP in project management. International Journal of Project Management, 2001, Vol.19, No.1: 19-27
    [123] F Zahedi. The Analytic Hierarchy Process: A Survey of the Method and its Applications. Interfaces, 1986, Vol.16, No.4: 96-108
    [124] Chen S J, Hwang C L. Fuzzy multiple attribute decision making: methods and applications. New York: Springer-Verlag, 1992
    [125] Onisawa T. An approach to human reliability in man machine systems using error possibility. Fuzzy Sets and Systems, 1988, Vol.27, No.2: 87-103
    [126]郑新,李文辉,潘厚忠.雷达发射机技术.北京:电子工业出版社, 2006. 408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700