铝合金表面原位生长陶瓷膜及摩擦磨损与耐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对铝合金耐磨、耐蚀性差等问题,利用双相脉冲微弧氧化电源在铝合金表面原位生长陶瓷膜,研究了不同铝合金基体氧化铝陶瓷膜组成、结构及性能;系统研究了LY12铝合金微弧氧化黑色氧化铝和氧化锆复合陶瓷膜的组成,结构及性能,探讨了合金成分对微弧氧化陶瓷膜结构、性能和颜色的影响及不同电解液体系下的氧化锆陶瓷膜的成膜机制;建立陶瓷膜抗热弹性形变应力模型,分析热冲击循环过程热应力的变化;运用加速电化学腐蚀的方法评价了三种电解液体系陶瓷膜的耐腐蚀性;研究了三种电解液体系陶瓷膜的摩擦行为。
     利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子探针(EPMA)、能谱(EDS)和X射线光电子能谱仪(XPS)研究膜层的相组成、形貌、元素分布和元素价态变化;利用加速的电化学方法评价膜层的耐腐蚀性;利用显微硬度仪研究膜层硬度的变化特点;利用球盘式滑动干摩擦仪(Si3N4球为摩擦副),研究铝合金和陶瓷膜的磨损率和摩擦系数。
     纯Al和LC9微弧氧化膜分别由α-Al_2O_3和γ-Al_2O_3组成,LY12膜层由大量γ-Al_2O_3和少量α-Al_2O_3组成。膜层抗热震性按LC9、LY12、Al依次增强;耐腐蚀性能和与基体结合强度按Al、LC9、LY12依次增强;纯Al、LY12和LC9膜层的硬度最大值分别为33.4GPpa、22.15GPa和16.8GPa。在Na5P3O10-CrO3溶液中,LY12铝合金微弧氧化可制得黑色陶瓷膜层,膜层的Cr氧化数为0、+3价、+6,并且以非晶态存在,CrO3能促进γ-Al_2O_3向α-Al_2O_3转化、提高成膜速率、硬度、致密性及耐蚀性。
     在K_2ZrF_6-NaH_2PO_2溶液中,LY12铝合金微弧氧化陶瓷膜主要由m-ZrO2、t-ZrO2和γ-Al_2O_3组成。负相电流密度增加导致电解液体系状态发生改变,使得膜层增厚及消除KZr_2(PO_4)_3相;膜层的最大努普硬度可达16.75GPa,与基体结合强度大于17.5MPa;增加NaH_2PO_2浓度均可提高膜层的耐点腐蚀性能。在NaAlO2-K_2ZrF_6电解液中,陶瓷膜主要由γ-Al_2O_3、α-Al_2O_3和少量的c-ZrO2;少量的K_2ZrF_6能加速膜层生长、致密性提高、促进γ-Al_2O_3向α-Al_2O_3转化及硬度的增大,改善了膜层的耐腐蚀性能;膜层的最大努普硬度达23.41GPa。
     微弧氧化陶瓷膜一个热冲击循环经历升温、保温和降温3个阶段。K_2ZrF_6-NaH_2PO_2电解液体系陶瓷膜加热过程应力由0迅速达到575Mpa,然后缓慢变为780MPa,冲击循环38次以上出现起皮脱落;NaAlO2-K_2ZrF_6电解液体系陶瓷膜加热过程应力由0迅速达到558Mpa,然后缓慢变为994 MPa ,降温过程为升温过程的逆过程热,热冲击循环次数29次以上出现起皮剥落。
     微弧氧化陶瓷膜的耐磨性同LY12铝合金相比较显著提高。K_2ZrF_6-NaH_2PO_2体系制备的膜层(载荷150g)最小磨损率为1.61×10-6g/min、摩擦系数在0.35-0.367之间变化,磨损过程由开始阶段的粘着磨损逐步过渡至脆性断裂。NaAlO2-K_2ZrF_6体系制备的膜层(载荷300g )磨损率为4.33×10-6g/min、摩擦系数最小为0.214;磨损过程由磨料磨损逐步过渡至磨料磨损和裂疲劳磨损,该体系陶瓷膜耐磨减磨效果最好。Na5P3O10-CrO3体系制备的膜层(载荷100g)磨损率为2.1×10-5g/min、摩擦系数0.306;摩擦过程表现为一定程度的塑性变形导致的光滑磨损和脆性断裂。
In order to solve the poor wear and corrosion properties, the oxide ceramic coatings were formed in-situ on aluminium alloys using the bi-pulsed micro-arc oxidation (MAO) power. The composition, structure and performance of the oxide coatings formed on different aluminium alloys were studied. The study was also conducted on the composition, structure and mechanical performance of black ceramic coating consisting of alumina and zirconia, respectively. The effect of alloy components on the structure, color and properties was discussed. The in-situ growth mechanism of oxide ceramic coatings was discussed in different electrolytes. The model of ceramic coatings’resistance to heat shock was established and used to analyze the variation of heat stress during the cycles of heat shock. The corrosion resistance, the friction behavior and wear mechanism of three kinds of coatings were estimated and discussed.
     The X-ray diffraction (XRD), scanning electron microscope (SEM), electrode probe microscope analysis (EPMA), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscope (XPS) were used to study the composition, morphology, the element distribution and variation of element valence. The corrosion resistance was studied by electrochemical methods. The coating hardness was measured by micro-hardness instrument. The wear lost and friction coefficient of aluminium alloys and ceramic coatings were studied by a ball-on-disk tester under the dry sliding conditions.
     It was shown that the MAO coating formed on pure aluminium and LC9 consisted ofα-Al_2O_3 andγ-Al_2O_3, respectively. The coating formed on LY12 was composed of large numbers ofγ-Al_2O_3 and littleα-Al_2O_3. The heat shock resistance was increased by the followed orders: LC9﹤LY12﹤Al, and the corrosion resistance was increased by the subsequence of Al, LC9 and LY12. Coatings’maximal hardness of Al, LY12 and LC9 were 33.4 MPa, 22.15 MPa and 16.8 MPa, respectively. The black Al_2O_3 ceramic coating was prepared on LY12 aluminium alloys in solution of Na5P3O10-CrO3. The chromium was not crystal and had the valence of 0, +3, +6. CrO3 benefited to the transformation ofγ-Al_2O_3 toα-Al_2O_3 and increased the growth, hardness, thickness and corrosion resistance, and improved the compactness.
     The coating consisting of m-ZrO2、t-ZrO2、γ-Al_2O_3 was prepared on LY12 in K_2ZrF_6-NaH_2PO_2. The proper increase of negative current density was in favor of the thickness increase of the coating and eliminated KZr2(PO3)3. The maximum of Knoop hardness could reach 16.75Gpa. The adherent strength of coating to substrate was beyond 17.5Mpa. Increasing the concentration of NaH_2PO_2 could improve the dot-corrosion resistance of the coating. The coating was mainly composed ofγ-Al_2O_3、α-Al_2O_3 and a little c-ZrO2. A small quantity of K_2ZrF_6 accelerated the coating growth and increased the compactness, promoted the transformation fromγ-Al_2O_3 toα-Al_2O_3 and consequently improved the corrosion resistance. The maximum Knoop hardness could reach 23.41Gpa.
     The heat shock cycle experiment includes three stages: heat uprising, heat preservation and heat decreasing. During the heat shock process, the stress prepared in K_2ZrF_6-NaH_2PO_2 was increased quickly to 575Mpa, and then up to 780 MPa slowly, and there was no strip peered off after 38 cycles of heat shock. The heat stress of coating prepared in NaAlO2-K_2ZrF_6 was quickly increased to 558Mpa, and then up to 994 MPa slowly, and there was no strip peered off after 29 cycles of heat shock. The heat shock resistance of coating prepared in K_2ZrF_6-NaH_2PO_2 was better.
     The LY12 aluminium alloys had the most rate of wear and tear and grinding abrasion occurred against Si3N4 ball on ball-on-disk tester with the rate of 1000 r/min under dry friction conditions. However, the wear resistance of the ceramic coatings was enhanced remarkably. The ceramic coating prepared in the solution of K_2ZrF_6-NaH_2PO_2 had the friction coefficient between 0.35 and 1.367 and minimum wear rate was 1.61×10-6g/min under a 150g load. The wear mechanism gradually converted from abrasion wear and adhesive abrasion to fatigue wear. The ceramic coating prepared in the NaAlO2-K_2ZrF_6 solution had the minimum friction coefficient of 0.214 and wear rate of 4.33×10-6g/min under a 300g load. The wear mechanism changed from abrasion wear to fatigue wear and abrasion wear. The high-wear-resistance friction pairs Si3N4 were badly worn, and Si from friction pairs was found in the wear scar on the ceramic coating. The ceramic coating prepared in the solution of Na5P3O10-CrO3had the friction coefficient of 0.306 and wear rate of 2.1×10-5g/min under a 100g load. Plastic deformation occurred to some extent, which induced smooth abrasion and brittle rupture of the coating.
引文
1 王祝堂. 铝材及其表面处理手册. 江苏科学技术出版社(第一版),1992:1
    2 王竑, 陈昌明, 吴宪. 铝在现代汽车轻量化中的应用.2004,(12):32~34
    3 冯美斌. 汽车轻量化技术中新材料的发展及应用. 汽车工程. 2006, 28(3) :213~220
    4 赵勇, 李敬勇, 严铿. 铝合金在舰船建造中的应用与发展. 技术与工艺. 2005, (2):28~30
    5 J. R. Rogacki. Materials for air and space. Adv Mater Proc, 2000, (9):63
    6 R. J. Bucci, C. J. Warren, et al. Need for new materials in aging aircraft structures. J Aircraft. 2000, 37(1):122
    7 J. A. Schey, P. C. Nautiyal. Effect of surface roughness on friction and metal transfer in lubricated sliding of aluminum alloys against steel surface. Wear. 1991, 146:37~51
    8 陈建敏. 铝质材料的摩擦学表面改性. 摩擦学学报. 1994, 14(7):259~269
    9 胡海明. ZA27 的研究发展.材料导报, 1998, 12(3):17~20
    10 舒震. 新型高强度铸造锌合金 ZA27. 铸造. 1987, 36(1):2~5
    11 S. Wilson, A. T. Alpas. Thermal effects on mild wear transitions in dry sliding of an aluminum alloy. W ear. 1999, 225-229:440~449.
    12 S. C. Lim, M. F. Ashby. Wear mechanism map s. Acta Metallurgy. 1987, 35 (1):1~24.
    13 R. Antoniou, C. Subramanian.Wear mechanism map for Aluminium alloys. Scripta Metallurgica. 1988, 22(6) :809~813.
    14 Cao Z. Y, L u Y, Sun D. R, et al. Method and progress of study on wear maps. Tribo logy.1997,17(2):185~191.
    15 Y. B. Liu, R. Asthana, R. Rohatgi. A map for wear mechanism in aluminium alloys. J Mater Sci. 1991, 26:99~102.
    16 张爱民, 陈建敏, 吕晋军, 阎逢元. 2024 铝合金在干摩擦往复运动条件下的磨损图研究. 摩擦学学报. 2002, 22(2):94~98
    17 中国腐蚀与防护学会, 金属腐蚀手册. 上海科学出版社(1987):40~42
    18 崔 昌 军 , 彭 乔 . 铝 及 铝 合 金 的 阳 极 氧 化 研 究 综 述 . 全 面 腐 蚀 控 制 .2002,16(6):12~17
    19 M.K. Cavanaugh, N. Birbilis, R.G. Buchheit, F. Bovard. Investigating localized corrosion susceptibility arising from Sc containing intermetallic Al3Sc in high strength Al-alloys. Scripta Materialia, 2007, 56(11): 995~998
    20 陶斌武,李松梅,刘建华. LY6 铝合金的局部腐蚀行为研究.腐蚀与防护. 2004, 37(11):15~19
    21 M. Torkar, D. Mandrino, M. Lamut. Investigation of spots on the surface of Al-castings. Engineering Failure Analysis, 2006, 13(8): 1268~1274
    22 周江, 杨志强. 铝合金汽车热交换器腐蚀性能. 轻金属. 1998, (1):51~54
    23 赵月红, 林乐耘, 崔大为, 孟跃辉. 盐湖水中包铝对超硬铝合金基材的保护作用. 中国腐蚀与防护学报, 2006, 26(5): 286~294
    24 韩薇, 王振尧, 于国才. 两种包铝的高强铝合金受力状态下的大气腐蚀行. 腐蚀科学与防护技术. 2003, 15(4):254~258
    25 陈卓元, 林志坚, 宋文桑. 包铝层对铝合金腐蚀行为的影响. 腐蚀与防护. 2001, 22(2):192~195
    26 赵月红, 林乐耘, 崔大为, 孟跃辉. 盐湖水中包铝对超硬铝合金基材的保护作用. 中国腐蚀与防护学报. 2006,26(5):286~291
    27 AzkiAhmad, B. J. Abdul Aleem. Degradation of aluminium metal matrix composite in salt water and its control. Materials and Design. 2002, 23:173~180
    28 W. J. Lee, S. P. yun. Effects of sulphate additives on the pitting corrosion of pure aluminium in 0.01mol/L NaCl solution. Electrochimica Acta, 2000, 45:333-339
    29 李斌, 陶春虎, 李荻. 橡胶软油箱材料对铝合金腐蚀的影响研究. 航空材料学报. 2004, 24(1):47~52
    30 李斌, 陶春虎, 李荻, 吴学仁, 陆峰, 蔡健平. 铝合金与橡胶软油箱抗老化涂层接触腐蚀机理研究. 航空材料学报. 2006, 26(4):74~79
    31 H. G. Hedrick. Reviews microbiologically influenced corrosion. Materials Protection. 1970, 9(1):27~30
    32 李松梅, 刘建华, 梁馨, 贾小丽. 硫酸盐还原菌对 LY6 腐蚀电化学行为的影响. 北京航空航天大学学报. 2004, 30(10):1013~1016
    33 曹楚南. 中国材料的自然环境腐蚀. 化学工业出版社, 2005:117~122
    34 赵乃勤, 姚家鑫, 杨贤金等. 稀土对 6063 铝合金组织性能的影响. 天津大学学报. 1995, 28(3):375~379
    35 齐鑫哲, 魏琪栗, 卓新. 铝合金及铝化物涂层发展现状. 机械工程材料. 2005, 29(6):4~7
    36 戴兰芳, 张春华, 代孔林, 谢刚朝. 含硅铝合金轴瓦的磨损特性研究. 矿冶工程. 2000, 20(1):67~69
    37 耿 浩 然 , 马 家 翼 . ZLP 耐 磨 铝 合 金 . 兵 器 材 料 科 学 与 工 程 . 1993, 16(1):17~23
    38 刘贵立, 李荣德. 稀土及杂质元素对 ZA27 合金晶间腐蚀的影响. 化学物理学报. 2004, 17(5):649~651
    39 S. Tomida, K. Nakata, Improvement in wear resistance of hyper eutectic Al-Si cactalloy by laser surface remelting. Surface Coatings Technology. 2003, 169~170: 468~471
    40 P. H. Chong. Microstructure and wear properties of laser surface-cladded Mo–WC MMC on AA6061 aluminum alloy. Surface and Coatings Technology. 2001, 145:51~59
    41 王华明, A. Shaban. Si/6061Al 复合材料激光表面熔化及合金化显微组织与耐蚀性. 应用激光. 1999, 19(5):232~234
    42 E. Carpene. Laser nitriding of iron and aluminum. Applied Surface Science.2002,186:100~104
    43 F. Fariaut. Excimer laser induced plasma for aluminum alloys surface carburizing. Applied Surface Science,2002,186:105~110
    44 赵鹏辉, 左禹, 赵景茂. 几种 Al 合金阳极氧化膜的孔蚀行为. 腐蚀科学与防护技术, 2003, 15(2):82~85
    45 刘道新, 唐宾. 钛合金表面硬化与固体润滑处理层的电化学腐蚀行为研究. 稀有金属. 2005, 29(1):39~42
    46 J. S. Wu, L.T. Zhang, F. Wang, et al. The Individual Effects of Niobium and ilicon on the Oxidation Behaviour of Ti3Al Based Alloys. Intermetallics.2000, 8:19~28
    47 彭成允, 孙智富, 张春艳, 陈康, 田平. 铝合金表面自润滑涂层研究.武汉理工大学学报. 2005, 21(1):16~19
    48 王天旭, 蒙继龙, 胡永俊. 铝合金化学镀Ni-W-P合金耐磨性研究. 表面技术. 2005, 34(3): 27~29
    49 Y Z Zang, Y Y Wu, M Yao. Characterization of electroless nickel with low phosphorus. Journal of Materials Science Letters, 1998,7 (1):37~40
    50 K. G. Keong, W. Sha. Crystallisation and phase transformation behaviour of electroless nickel 2phosphorus deposits and their engineering properties. Surface Engineering. 2002,18 (5): 329~343
    51 罗守福, 胡文彬. 铝、镁合金的化学镀镍. 轻合金加工技术. 1997, 25(2):28~29
    52 Y. Z. Zang, Y. Y. Wu, M. Yao. Characterization of electroless nickel with low phosphorus.Journal of Materials Science Letters. 1998 ,17 (1) :37~40
    53 王天旭, 蒙继龙, 胡永俊. 铝合金化学镀 Ni2W2P 合金耐磨性研究. 表面技术. 2005, 34(3):27~29
    54 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol.1999,122:73~93
    55 Enders, S. kraub, K. Baba, G. K. wolf. Ion-beam-assisted Deposition of Aluminium and Aluminium Alloy Coatings for Corrosion Protection. Surface and Coatings Technology. 1995, (74~75):959~965
    56 刘洪喜, 王浪平, 王小峰, 汤宝寅. LY12CZ 铝合金表面等离子浸没离子注入氮层的摩擦磨损性能研究. 摩擦学学报. 2006, 26(5):417~451
    57 H. STURE, H. PER. Tribology characterization of thin, hard coatings. Proceedings of The 6th Nordic Symposium on Tribology,1994: 735~747
    58 王海军, 潘荣辰, 韩志海.超音速等离子喷涂 Mo 及 Mo+30%(NiCrBSi)涂层的耐磨性能研究. 金属热处理. 2000, 30(5):16~19
    59 傅瑞峰, 徐滨士, 马世宁, 刘谦 时小军, 刘贵民. 稀土元素对 AlAl 合金线材电弧喷涂层耐腐蚀性能实验. 表面工程. 1997, (4):36~38
    60 薛文斌, 邓志威, 来永春. 有色金属表面微弧氧化技术评述. 金属热处理. 2000, (1):1~3
    61 K. N. Dittrich, et al. Structure and Properties of ANOF layers. Crystal and Technol.1984,19(1):93~99
    62 李新梅,李银锁,憨勇.钛表面阴极微弧电沉积制备氧化铝涂层.无机材料学报,2005,20(6):1493~1499
    63 韩伟, 何业东, 薛润东. 等离子体电解阴极沉积 Y2O3 陶瓷涂层. 材料热处理学报, 2005, 26(4):83~86
    64 何继全. 钢铁表面微弧氧化技术的研究. 哈尔滨工业大学硕士学位论文, 2006 年 6 月
    65 L. Yerokhin, X. Nie, A. Leyland, A. Matthews. Plasma electrolysis for surface engineering. Surface and Coatings Technology.1999,122:73~93
    66 G. H. Lv, W. C. Gu, H. A. Chen, et al. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Appl. Surf.Sci. 2006, 253(5):2947~2952
    67 P. Kern, O. Zinger. Purified titanium oxide with novel morphologies upon spark anodization of Ti alloys in mixed H2SO4/H3PO4 electrolytes.J. Biomed. Mater.Res. 2007, 80A (2):283~296
    68 S. Ilonopisov. Theory of Ectrical Breakdown during Formation of Barrier Anodic Films. Electrochem. Acta.1977,22(10):1077~1082
    69 J. de Wit, Ch. Wijenbery C. Crevecoeur. The Dielectric Breakdown of Anodic Aluminum Oxide.J.Electrochemi.Soc.1976,123(10):1479~1486
    70 旷亚非, 侯朝辉, 刘建平. 阳极氧化过程中电击穿理论的研究进展. 电镀与涂饰. 2000, 19(3):38~45
    71 薛文斌, 邓志威, 张通和. 铸造镁合金微弧氧化机理. 稀有金属材料与工程. 1999, 28(6):353
    72 T. B. Van, S. D. Brown, G. P. Wirtz.Mechanism of Anodic Spark Deposition.Am.Ceram. Soc.Bull.1977,56(5):563~566
    73 W. Rrysmann, P. Kurze,et al.Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge(ANOF).Crystal Res and Technol.1984,19(7):973~979
    74 薛文斌, 邓志威, 来永春. 有色金属表面微弧氧化技术评述. 金属热处 理. 2000,(1):1~3
    75 Albella, I.Montero, J.M. Martinez-dvart. Scintillation in Anodic Ta2O5 Film. Thin Solid Film.1979, 58 (2): 307~311
    76 Burger, J.C.Wu.Dielectric Breadown in Electrolytic Capacitors. J. Electrochem. Soc.1971,118(12):2039~2042
    77 И.В.Лукиянчук, В.С.Руднев, Н.А.Анденко, Т.А.Кайдалова, Е.С.Панин, П.С.Гордиенко. Анодно-искровое Оксидирование Сплава Алюминия в Вольфраматных Электролитах. Журнал Прикладной Химии. 2002, 75(4): 587~591
    78 辛世刚. LY12 铝合金表面微等离子体氧化陶瓷膜的结构和性能.(博士论文). 哈尔滨工业大学, 2003 年 4 月
    79 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf. Coat. Technol. 1999, 122: 73~93
    80 刘建平, 旷亚非. 微弧氧化技术及其发展. 材料导报. 1998, 12(5):27~29
    81 GUN,BETZ H.Neue untersuchungen per die elektrolytische ventilwirkung.Z Physik.1932,78:196~202
    82 GUN,BETZ H. Elektronenstromung in isolatoren bei extremen feldstarken.Z Physic .1934,91:70~96
    83 T. B. VAN, S. D. BROWEN, G. P. WIRTZ.Mechanism of anodic spark deposition.Am Ceram Soc Bull.1977,56(6):563~566
    84 Susann Meyer, Roger Gorges, Gunter Kreisel. Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition. Thin Solid Films. 2004,450:276~281
    85 A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surface and Coatings Technology. 2004,177~178:779~783
    86 T.H. Teh, A. Berkania, S. Mato, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu. Initial stages of plasma electrolytic oxidation of titanium. Corrosion Science.2003, 45:2757~2768
    87 S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, et al. Composition and adhesion of protection coatings on aluminum. Surface and Coatings Technology. 2001,145:146~151
    88 Xiaolong Zhu, Kyo-Han Kim, Yongsoo Jeong. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials. 2001 (22)
    89 Long-Hao Lia, Young-Min Konga, Hae-Won Kima et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004, 25:2867~2875
    90 G. Sundararajan, L. Rama Krishna. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surface and Coatings Technology. 2003,167:269~277
    91 И.В.Суминов,А.В.Эпельфельд,В.Б.Людин,А.М.Борисов,Б.Л.Крит.Микродуговое оксидирование (обзор).Приборы.2001,(9)С: 13~23
    92 И.В.Суминов,А.В.Эпельфельд,Б.Л.Крит,А.М.Борисов,O.H.Дунькин.Модификация поверхностей авиационных изделий в плазме.Авиационная промышленность. 2002.(2)С:54~57
    93 А.В.Эпельфельд.Технология и оборудование микродугового оксидирования .Квалификация и качество. 2002,(4)С:33~37
    94 张文华, 胡正前, 马晋. 俄罗斯微弧氧化技术的研究进展. 世界有色金属. 2004,(1):43~46
    95 Wenbin Xue, Chao Wang, Ruyi Chen. Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution. Materials Letters.2002, 435~441
    96 Yang Guangliang, Lu Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsun. The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating. Journal of Alloys and Compounds.2002,345:196~200
    97 薛文斌, 邓志威, 来永春, 陈如意, 张通和. 铝微弧氧化电流效率的测定. 电镀与精饰,1998, 20(3):1~4
    98 T. B. Wei, F. Y. Yan, J. Tian. Characterization and wear-and corrosion-resistance of micro arc oxidation ceramic coatings on aluminum alloy. Journal of Alloys and Compounds. 2005,389:169~176
    99 S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, et al. Composition and adhesion of protective coatings on aluminum.Surfaceand Coatings Technology.2001,145: 146~151.
    100 L. R. Krishma, K. R. C. Somaraju, G. Sundararajan. The tribological performance of ultra2hard ceramic composite coatings obtained through microarc oxidation. Surface and Coatings Technology.2003,163~164: 484~490
    101 G. Sundararajan, L. R. Krishna. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology.Surface and Coatings Technology.2003,167: 269~277.
    102 W. B. Xue, C. Wang, Y. L. Li, et al. Effect of microarc discharge surface treatment on the tensile properties of Al2Cu2Mg alloy. Materials Letters. 2002,56: 737~743
    103 P. I. Butyagin, Y. V. Khokhryakov, A. I. Mamaev. Microp lasma systems for creating coatings on aluminium alloys. Materials Letters.2003,57: 1748~1751
    104 L. Rama Krishna, K.R.C. Somaraju, G. Sundararajan. The tribological performance of ultra-hard ceramic composite coatings obtained through micro arc oxidation. Surface and Coatings Technology. 2003,163~164:484~490
    105 C.B. Wei , X.B. Tian , S.Q. Yang, X.B. Wang, Ricky K.Y. Fu, Paul K.Chu. Anode current effects in plasma electrolytic oxidation. Surface & Coatings Technology.2007,201:5021~5024
    106 魏同波, 郭宝刚, 梁军, 阎逢元, 田军. 铝合金微弧氧化陶瓷膜的性能研究材. 料科学与工程学报. 2004, 22(4):564~567
    107 李金富, 方克明, 熊仁章, 王永康. 铝合金微弧氧化陶瓷层的耐磨性. 北京科技大学学报, 2003, 25(6):542~544
    108 蒋百灵, 赵仁兵, 梁戈, 李均明, 袁芳. Na2WO4 对铝合金微弧氧化陶瓷层形成过程及耐磨性的影响. 材料导报, 2006, 20(9):155~157
    109 薛文斌, 杜建成, 吴晓玲, 邓志威, 来永春. 张通和. LY12 合金表面微弧 放 电 沉 积 陶 瓷 膜 的 抗 磨 损 性 . 北 京 师 范 大 学 学 报 ( 自 然 科 学版).2005,41(4):380~382
    110 王继东,NaOH 体系中添加石墨对铝合金微弧氧化层生长及磨损性能的影响.材料开发与应用,2004,19(3):8~11
    111 高殿奎, 姜桂荣, 王玉林. 微弧氧化减摩陶瓷层的生成及其影响因素, 中国有色金属学报. 2001, 11(2):199~202
    112 沈德久, 王玉林, 卢立红, 田新华, 杨万和. 铝合金表面微弧氧化自润滑陶瓷覆层. 材料保护, 2000,33(5):51~52
    113 Fanya Jin, K. Paul. Chu, Honghui Tong, Jun Zhao. Improvement of surface porosity and properties of alumina films by incorporation of Fe micro grains in micro-arc oxidation. Applied Surface Science. 2006,253:863~868
    114 Weichao Gu, Dejiu Shen, Yulin Wang,Guangliang Chen, Wenran Feng, Guling Zhang,Songhua Fan, Chizi Liu, Size Yang. Deposition of duplex Al2O3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation. Applied Surface Science.2006,252:2927~2932
    115 吴汉华, 汪剑波, 龙北玉, 吕宪义, 龙北红. 金曾孙, 白亦真, 毕冬梅. 电流密度对铝合金微弧氧化膜物理化学特性的影响. 物理学报. 2005, 54(12):5743~5748
    116 崔世海, 韩建民, 李卫京, 徐向阳, 刘原富. 高强度铸造铝合金 ZL205 微弧氧化陶瓷膜的耐腐蚀性研究. 航空材料学报. 2006, 26(2):20~22
    117 张荣军, 郝建民. 铝合金微弧氧化陶瓷层的一种磨损失效形式 .轻合金加工技术. 2006, 34(1):40~42
    118 Wenbin Xue, Xiaoling Wu, Xijin Li, Hua Tian. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte.Journal of Alloys and Compounds. 2006,425:302~306
    119 Shigang Xin, Lixin Song, Ronggen Zhao, Xingfan Hu. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminum alloy prepared by micro-arc oxidation process. Thin Solid Films. 2006, 515: 326 ~332
    120 梁戈, 赵仁兵, 蒋百灵. 电解液参数对铝合金微弧氧化黑色陶瓷膜性能的影响. 材料热处理学报. 2006, 27(5):91~95
    121 杜克勤, 寇 瑾, 严川伟. 黑色微弧氧化陶瓷膜的制备及其性能研究. 材料保护. 2003, 6(6):27~29
    122 Tongbo Wei, Fengyuan Yan, Jun Tian. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. Journal of Alloys and Compounds. 2005,389:169~176
    123 X Nie,E I Meletis,J C Jiang,A Leyland , A L Yerokhin,A Matthews. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology,2002,149:245~251
    124 王静, 曾令可, 吴建青. 陶瓷材料表面改性技术研究的现状及展望. 材料保护. 2000, 33(11):44~46
    125 L. N. Satapathy. A study on the mechanical, abrasion and microstructural properties of zirconia-flyash material. Ceramics International, 2000, 26(1):39-45
    126 来永春 , 邓志威 , 宋红卫 . 耐磨性微弧氧化膜的特性 . 摩擦学 . 2000, 20(4):304~306
    127 辛世刚, 姜兆华, 赵荣根. 微等离子体氧化 α-Al2O3 陶瓷膜的组织结构与形成过程. 无机化学学报. 2004,(6):671~674
    128 Xue W, Wang Deng Z,Lai Y, et al. AnaLysis of phase distrbution for ceramic coatings formed by microarc oxidation on aluminum alloy.J Am Ceram Soc.1998,81(5):1365~1368
    129 X Nie, A Leyland, H W Song, et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surf Coat Technol.1999, 116~119:1055
    130 尹衍升, 张景德. 氧化铝陶瓷及其复合材料. 化学工业出版社(第一版), 2001:105
    131 Mc Pherson R. Formation of Metastable Phases in Flame and Plasma prepared Alumina. Journal of Materials Science.1973, 8:851~858.
    132 A. L. Yerokhin,X. Nie,A. Leyland, et al.Surf Coat Technol. 2000,130(2~3):195~206
    133 崔世海, 韩建民, 李卫京, 徐向阳, 刘元富. 高强度铸造铝合金 ZL205 微弧氧化陶瓷膜的耐腐蚀性能研究. 航空材料学报. 2006, 26(2):20~22
    134 朱宁. 氧化锆、氧化铝陶瓷的耐腐蚀特. 陶瓷科学与艺术. 2005,2:30~33
    135 胡融刚, 林昌. 健电化学改性不锈钢钝化膜的 XPS/SERS研究. 中国腐蚀与防护学报. 2000, 20(3):149~153
    136 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews. Characterization of Oxide Films Produced by Plasma Electrolytic Oxidation of a Ti-6Al-4V Alloy. Surf. Coat. Technol.2000,130:195~206
    137 A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering. Surf.Coat.Technol.1999, 122:73~93
    138 周玉. 陶瓷材料学. 哈尔滨工业大学出版社 1995:223
    139 孙学通, 姜兆华, 李延平, 辛世刚, 姚忠平.钛合金表面原位生长含α-Al2O3相高硬度陶瓷膜的研究. 无机材料学报. 2004,19(4):881~886
    140 尹衍升, 李嘉.氧化锆陶瓷及其复合材料.化学工业出版社(第一版)2004:6
    141 D. M. Zhu, R. A. Miller. Determination of creep behavior of thermal barrier coatings under imposed high thermal and stress gradient conditions .J Mater Res.1999,14(1):146~161
    142 毛卫国, 戴翠英, 周益春. 在制备热障涂层过程中系统内残余应力场预测. 湘潭大学自然科学学报. 2005,27(4):46~50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700