纯钛与钛合金及其氮离子注入层的扭动微动行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭动微动是在法向交变载荷下接触副间发生的往复微幅相对扭动,在工业、医疗等领域普遍存在。表面改性技术具有低成本、易实现和性能优异等优点,能够有效减缓微动损伤、提高材料的抗磨损性能。本研究以典型生物合金材料为研究对象,考察基体材料及其氮离子注入层在扭动微动中的损伤机理和机制,能丰富摩擦学研究。
     本研究选用常用医学材料:纯钛TA2、Ti6A17Nb和Ti6A14V钛合金三种基材以及三种基材经过不同剂量氮离子高能离子注入后的改性样品。扭动实验采用球-平面接触,在配有低速高精度往复转动台和六维传感器(X、Y、Z方向的力和扭矩)的UMT摩擦磨损试验机上进行。三种基体材料及其改性层为平面试样,对磨副ZrO:陶瓷球,润滑环境采用模拟体液小牛血清溶液介质下进行。采用显微硬度仪、光学显微镜(OM)、扫描电子显微镜(SEM)、电子能谱仪(EDX)、X射线衍射仪(XRD)、拉曼光谱(Raman)和表面形貌仪等微观分析手段,结合微动磨损动力学特性分析,系统研究了纯钛、钛合金及其离子注入改性层的微动运行行为和损伤机理。获得的主要结论如下:
     1.纯钛与钛合金金经离子注入后,在材料的表面形成了新相氮化钛,改性层表面呈脉络状突起,表面的粗糙度显著增大。随着氮离子注入剂量的增加,改性层的硬度和粗糙度逐渐变大。
     2.扭动微动实验表明,氮离子注入很好的提高了纯钛与钛合金的抗扭动微动磨损性能。在小角位移θ=0.5°时,纯钛与钛合金的T-θ曲线呈现椭圆形,扭动微动处于混合区。离子改性层的T-θ曲线开始向直线型转变,说明氮离子使得改性层延缓了滑移区的到来;θ=5°和15°时,纯钛与钛合金基材与改性层的T-θ曲线都呈平行四边形,扭动微动磨损运行于滑移区。因此,氮离子注入改性并没有改变材料在大角位移下的扭动微动运行区域;扭矩循环曲线一般呈现三个阶段:跑合阶段,上升阶段以及平稳阶段,在小角位移下,基材与改性层的扭矩循环曲线平稳且数值较低。在大角位移下,相比较于改性层,基体进入稳定的摩擦扭矩阶段所需要的循环次数更少。
     3.研究发现:在部分滑移区,纯钛与钛合金基体为轻微的磨粒磨损,氮离子改性层几乎未见损伤;在混合区,纯钛与钛合金基体表面有大量的磨屑堆积、片状脱落和剥层,其损伤机制为磨粒磨损;在滑移区,基体材料磨痕中心有片状剥落、外缘则有大量磨屑,其损伤机制为剥落和氧化磨损,氮离子改性层的损伤机制为磨粒磨损。
Torsional fretting can be defined as a relative angular motion which is induced by reciprocating torsion in an oscillatory vibratory environment. It is very common in industrial, medical, and other fields. Surface modification has advantages of low cost, easy implementation and excellent performance ect. Besides, it can effectively palliate fretting damage and improve the wear resistance of materials. Currently, there are a few researches on technology of surface engineering in resistance of torsional fretting abrasion. This research selects the typical biological alloy as the research object, and inspects the damage mechanism and the mechanism of ion implanted layer in torsional fretting to enrich tribology research.
     In this paper, the substrate and the ion implanted layer of pure titanium (TA2), titanium alloy Ti6Al7Nb and Ti6A14V were selected as the objects of study. The torsional fretting experiment is based on a rotary device with low speed and high precision and a six dimensional sensor (forces and torques of x, y and z directions), under a contact of ball-on-flat in the serum solution. Adopt micro-analytical tools such as micro hardness tester, optical microscopy (OM), scanning electron microscopy (SEM), electron spectrometer (EDX), X-ray diffraction (XRD), Raman spectroscopy (Raman) and surface topography instrument, combined with micro wear dynamics analysis, inspects the damage mechanism and the mechanism of pure titanium, ion implantation modified layer systematically. The main conclusions obtained are as follows:
     1. The pure titanium and its alloys after nitrogen ion implanted, a new phase of titanium nitride is formed on the surface of the materials. The surface roughness has a significant increase. With the increase of the nitrogen ion implantation dose, the hardness and roughness of the modified layer gradually becomes larger.
     2. Torsional fretting experiments showed that nitrogen ion implantation can well improve the torsional fretting wear properties of pure titanium and titanium alloys. Under the small angular displacement(θ=0.5°), T-θ curves of the substrates of pure titanium and titanium alloys are elliptical, combining with OM morphology analyses of wear scars, the torsional fretting run in the mixed fretting regime(MFR); The T-θ curves of ion-modified layer change to linear, indicating the nitrogen ion implantation delayed the arrival of the slip regime(SR); Under the angular displacement(θ=5°and15°), T-θ curves of the substrate and the modified layer of titanium and titanium alloys are parallelogram, and the torsional fretting wear run in the slip regime(SR). So the nitrogen ion implantation modified does not change the running area of the torsional fretting of the material; The torque values accompanying with the variation of cycle numbers could be divided into three stages as running-in, increasing and relatively stable stages; Under small angular displacement, the torque values of substrate and the modified layer of titanium and titanium alloys are smooth and low. Under large angular displacement, the torque values of ion-modified layers run in the stable stage faster comparing to the substrates.
     3. In the PSR:the damage mechanisms of the substrates of pure titanium and titanium alloys in the serum solution were slight abrasive wear, but the nitrogen ion modified layer was mainly no damage; In the MFR:the surface of the substrate has a large number of debris, flaking and delamination, the damage mechanism was abrasive wear. In the SR:the wear occurred at the whole contact zone, same to the MFR the wear mechanisms of the substrates of pure titanium and titanium alloys mainly the flaking of the center of wear scar, and the large number of debris of outer edge, and delamiantion, the nitrogen ion modified layer was mainly abrasive wear.
引文
[1]温诗铸,黄平.摩擦学原理.第三版.清华大学出版社,2008.
    [2]Lubrication (Tribology) Education and Research-A Report on the Present Position and Industry's Needs. Her Majesty's Stationery Office, London:1966.
    [3]谢友柏,张嗣伟.摩擦学学科学及工程应用现状与发展战略研究.高等教育出版社,2009.
    [4]Dowson, History of Tribology, Professional Engineering Publishing Lit, London, UK 1998.
    [5]刘维民,薛群基.摩擦学研究及发展趋势.中国机械工程.2000,11(Z1):77-80.
    [6]周仲荣.关于我国生物摩擦学研究的思考.机械工程学报.2004,40(5):7-10.
    [7]方建华,陈波水,董凌,王九.生物摩擦学的研究现状和展望.合成润滑材料.2004,31(02):12-16.
    [8]葛世荣,王成焘.人体生物摩擦学的研究现状与展望.摩擦学学报.2005,25(2):186-191.
    [9]周仲荣,L.Vincent.微动磨损[M].北京:科学出版社,2002.
    [10]R.B. Waterhourse. Fretting corrosion[M]. Pergamon Press, Oxford,1972.
    [11]周仲荣,朱旻昊.复合微动磨损[M].上海:上海交通大学出版社,2004.
    [12]周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状与趋势.摩擦学学报,17(3),1997:272-280.
    [13]M. H. Zhu, Z. R. Zhou. Dual-motion fretting wear behavior of 7075 aluminum alloy. Wear.2003,255(1-6):269-275.
    [14]Z. B. Cai, M. H. Zhu, Z. R. Zhou. An experimental study of torsional fretting behavior of LZ50 steel. Tribology International.2010,43():361-369.
    [15]Z. B. Cai, M. H. Zhu, X. Z. Lin. Friction and wear of 7075 aluminum alloy induced by torsional fretting. Transactions of Nonferrous Metals Society of China.2010,20(3): 371-376.
    [16]蔡振兵,朱旻昊,俞佳,周仲荣.扭动微动的模拟及其试验研究.摩擦学学报.2008,28(1):18-21.
    [17]李伟.货车心盘存在的问题及改进建议.机械管理开发.2004(5)63-64.
    [18]戴淑红.货车心盘损坏的原因与改进建议,铁道机车车辆工人2003(1)1:16-17.
    [19]http://image.jike.com/so?q=%E7%AE%A1%E9%81%93%E7%90%83%E9%98%80% E7%90%83%E4%BD%93&fm=QH360.
    [20]http://www.eternalrollerz.com/TechArticles/Reinforcement.htm.
    [21]蔡振兵.扭动微动磨损机理研究[D].成都:西南交通大学博士学位论文,2009.
    [22]黎红,黄楠,周仲荣.生物摩擦学及表面工程的研究现状和进展.中国表面工程,No.1,2000:247~251.
    [23]易敬华Ti6A14V与CoCrMo合金在血清溶液中的扭动微动腐蚀行为研究.成都:西南交通大学硕士学位论文,2012.
    [24]A. Chateauminois, B. J. Briscoe. Nano-rheological properties of polymeric third bodies generated within fretting contacts [J]. Surface and Coatings Technology,2003, 163-164(30):435-443.
    [25]B. J. Briscoe, A. Chateauminois. Measurements of friction-induced surface strains in a steel/polymer contact[J]. Tribology International,2002,35(4):245-254.
    [26]B. J. Briscoe, A. Chateauminois, T.C. Lindley, D. Parsonage. Fretting wear behavior of polymethyl- methacrylate under linear motions and torsional contact conditions[J]. Tribology International,1998,31(11):701-711.
    [27]Z. B. Cai, M. H. Zhu, J. F. Zheng, X. S. Jin, Z. R. Zhou. Torsional fretting behaviors of LZ50steel in ambient air and nitrogen. Tribology International.2009,42:1676-1683.
    [28]Z. B. Cai, M. H. Zhu, H. M. Shen, Z. R. Zhou, X. S. Jin. Torsional fretting wear behaviors of 7075 aluminum alloy in various relative humidity environment. Wear.2009,267:330-339
    [29]J. Yu, Z. B. Cai, M. H. Zhu, S. X. Qu, Z. R. Zhou. Study on torsional fretting behavior of UHMPE. Applied surface science.2008,225:616-618.
    [30]俞佳.超高分子量聚乙烯的扭动微动磨损机理研究.西南交通大学硕士论文.2008.
    [31]杨皎PMMA转动微动的研究.西南交通大学硕士论文.2010.
    [32]杨莎,振兵,明学,新标,继良,旻昊PMMA扭动微动磨损的实时观测与摩擦振动分析.械工程学报.
    [33]林修洲.钛合金扭动微动腐蚀行为研究[D].成都:西南交通大学博士学位论文, 2010.
    [34]王茗,史庆南,陈勇军.离子注入材料表面改性的研究进展.[J]云南冶金.2003,32(2):54-56.
    [35]Li Man yuan, Knystautas E J, et al. [J]. Surface &Coatings Technology,2001, 138:220-228.
    [36]Ozt.rk O, T.rkan U, Eroglu A E. [J]. Surface & Coatings Technology,2006, 200:5687-5697.
    [37]Wang S Y, Chu P K, Tang B Y, et al. [J]. Thin Solid Films.1997,311:190-195.
    [38]李时俊.金属材料改性的离子注入技术[J].微细加工技术,1995,(4):66-70.
    [39]刘洪喜,王浪平,王小峰,等.LY12CZ铝合金表面等离子浸没离子注入氮层的摩擦磨损性能研究[J].摩擦学学报,2006,26:417-421.
    [40]刘彦章.反应堆用钦合金表面的离子注人及其耐蚀性和抗磨损机理研究[D]成都:电子科技大学博士学位论文,2007.
    [41]R.B. Waterhouse. Role of adhesion and delamination in the fretting wear of metallic materials[J]. Wear,1977,45:355-364.
    [42]M. Godet. Third-bodies in tribology[J]. Wear,1990,136:29-45.
    [43]Dowson D,Wright V. Biotribology. In:Davenport TC. Therheology of lubricants [C]. London:Institue of Petroleum,1973.
    [44]Ge S R,Wang C T. State-of-the-art and prospect of biotribology in human body[J]. Tribology,2005,25 (2):186-191(in Chinese)[葛世荣,王成焘.人体生物摩擦学的研究现状与展望[J].摩擦学学报,2005,25(2):186-191].
    [45]王茗,史庆南,陈勇军.离子注入材料表面改性的研究进展.[J]云南冶金.2003,32(2)54-56.
    [46]张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程学杂志,2000,17(2):206.
    [47]Jones FH. Teeth and bones:applications of surface science todental materials and related biomaterials[J]. Surface Sci Reports,2001,42:75-205.
    [48]Yoshinari M, Watanabe Y, Ohtsuka Y, et al. Solubility control of thin calcium-phosphate coatings with rapid heating[J]. J Dent Res,1997,76(8):1485-1494.
    [49]Lee J, Sieweke JH, Rodriguez NA, et al. Evaluation of nano-technology-modified zirconia oral implants:a study in rabbits[J]. JClin Periodontol,2009,36:610-617.
    [50]郑美华,阮毅,潘朝斌,等.酸蚀面螺纹状种植体骨界面的组织学研究[J].中山大学学报(医学科学版),2006,27(4S):34-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700