脂肪族聚碳酸酯涂层支架的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮冠状动脉介入治疗(PCI)在三十余年时间里,历经了单纯的球囊扩张、金属裸支架(BMS)到药物洗脱支架(DES)三次飞跃。DES可以将一定负荷剂量的药物直接带到病变血管部位,使再狭窄率降低到10%以下。DES是在金属支架表面覆有一层或两层稳定聚合物涂层,以完成带药和释药的目的,聚合物和支架一样永久留存在血管中。DES的永久聚合物涂层可能是导致血管延迟愈合和(极)晚期支架内血栓的重要原因,因此发展对血管壁低毒的新型支架是当前研究热点。可降解聚合物涂层DES是研究趋势之一。
     可降解聚合物作为DES的药物载体,在完成其任务后,逐渐降解为小分子,避免了永久聚合物对血管壁的长期刺激。本文实验选择表面溶蚀降解方式的脂肪族聚碳酸酯(APC)作为支架的可降解聚合物涂层材料,将其和雷帕霉素的溶液直接涂覆到316L不锈钢支架上制备DES。论文的主要内容和结果包括:
     1.研究了316L不锈钢支架表面处理和DES喷涂工艺,确定了合适的工艺参数;然后讨论了手动浸涂和自动喷涂两种涂层方法对涂层性能的影响,并从理论上分析了产生不同影响的原因。
     2.研究了脂肪族聚碳酸酯在PBS模拟体液中的质量丢失率和吸水率,根据实验结果优选聚碳酸亚乙酯(PEC)和聚碳酸亚丙亚乙酯(PPEC)作为支架涂层材料;然后从细胞毒性试验、溶血试验和部分凝血激活酶时间试验初步证明,PEC和PPEC具有优良的生物相容性。
     3.用戊二酸锌催化合成了PPEC,并深入研究了PEC和PPEC作为冠脉支架涂层材料的可行性,实验结果证明,脂肪族聚碳酸酯载药涂层支架具有广阔的应用前景。
     4.详细考察了屏蔽层、药物梯度、载体种类、载体和药物的比例以及释放介质对DES药物释放的影响,明确了涂层药物释放模式及其控制因素,优化了可降解药物载体和DES的设计。
Percutaneous coronary intervention (PCI) has experienced angioplasty balloon, bare metal stents (BMS) and drug-eluting stent (DES) for more than30years. DES can delivery drugs directly to the targeted lesion site and decreases coronary restenosis rate to less than10%. DES is prepared with a layer or two layers of durable polymer coating on the metal stent surface in order to complete the purpose of medicine and drug delivery. The polymer and BMS will permanently retain in the blood vessel. The durable polymer may lead to vascular delay healing and (very) late stent thrombosis. Therefore, the motivation behind the development of newer devices has been the attainment of optimal antirestenotic efficacy at a minimum of arterial wall toxicity. Biodegradable polymer DES is one of the research trends.
     Biodegradable polymer DES offer controlled elution of active drug from the stent backbone by means of a biocompatible polymer coating, which after completion of its useful function, slowly degrades to inert organic monomers, thereby dissipating the risk associated with the long-term presence of durable polymer in the coronary vessel wall. Aliphatic polycarbonate (APC) has been shown to have good biodegradability and biocompatibility in vivo. In this paper, APC is reported as stent coating material and is directly coated on the surface of316L stainless steel stent. The paper includes the following contents:
     1. The surface treatment of316L stainless steel stent and spray-coating procedure of DES are investigated, and the appropriate process parameters are gained. And then effects of preparation methods on property and drug release kinetics of sirolimus-loading DES are discussed, finally the reasons for different effects are theoretically analyzed in detail.
     2. Mass loss and water intake rate of APC are studied in phosphate buffered saline (PBS). Poly(ethylene carbonate)(PEC) and poly(propylene ethylene carbonate)(PPEC) are preferably chosen as stent coating materials according to the experimental results. Then the excellent biocompatibilities of PEC and PPEC are preliminarily demonstrated by in vitro cytotoxicity test (MTT assay), hemolysis test and partial thromboplastin time test (PTT).
     3. PPEC is synthesized by ethylene oxide (EO), propylene oxide (PO) and carbon dioxide (CO2) and catalyzed by glutaric zinc (ZnGA). Then in vitro feasibility studies of the utility of PEC and PPEC as coating materials for drug-eluting stent are reported. All the experimental results demonstrate that drug-loading APC coating stents have broad application prospects.
     4. Factors to affect drug release of DES are researched in vitro. The factors include drug free polymer, drug gradient layer, the mass ratio of carrier and drug, different drug carriers and drug release medium. The results can optimize the design of biodegradable drug carrier and DES.
引文
[1]Ross R A. Therosclerosis. An inflammatory disease. N Engl J Med,1999,340: 115-126.
    [2]http://attach.haodf.com/000/245/310_12508441820208.jpg.
    [3]Beatt J W, Faxon P W, Hugenholtz P G, et al. Restenosis after coronary angioplasty:new standards for clinical studies. J Am Coll Cardiol,1990,15: 491-498.
    [4]Suwaidi J A, Berger P B, Holmes D R. Coronary artery stents. JAMA,2000,284 (14):1828-1836.
    [5]Williams D O, Holubkov R, Yeh W, et al. Percutaneous coronary intervention in the current era compared with 1985-1986:the national heart, lung, and blood institute registries. Circulation,2000,102 (24):2945-2951.
    [6]Fattori R, Piva T. Drug-eluting stent in vascular intervention. Lancet,2003,361: 247-249.
    [7]Bhargava B, Karthikeyan G, Abizaid A S, et al. New approaches to preventing restenosis. BMJ,2003,327 (7409):274-279.
    [8]Byrne R A, Sarafoff N, Kastrati A, et al. Drug-eluting stents in percutaneous coronary intervention:a benefit-risk assessment. Drug Saf,2009,32 (9): 749-770.
    [9]Finn A V, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol,2007,27: 1500-1510.
    [10]Byrne R A, Joner M, Kastrati A. Polymer coatings and delayed arterial healing following drug-eluting stent implantation. Minerva Cardioangiol,2009,57: 567-584.
    [11]Wessely R. New drug-eluting stent concepts. Nat Rev Cardiol,2010,7:194-203.
    [12]Han Yaling, Jing Quanmin, Li Yi, et al. Sustained clinical safety and efficacy of a biodegradable-polymer coated sirolimus-eluting stent in "real-world" practice: three-year outcomes of the CREATE (multi-center registry of EXCEL biodegradable polymer drug eluting stents) study. Cathet Cardiovasc Interv,2012, 79 (2):211-216.
    [13]高润霖.经皮冠状动脉腔内成形术.中国循环杂志,1991,6(4):258-259.
    [14]安贞医院,介入治疗. http://az-15bf.cnkme.com/lectures4/show/28746, 2010-03-18.
    [15]Dotter C T. Transluminally-placed coilspring endarterial tube grafts. Long-term patency in canine popliteal artery. Invest Radiol,1969,4 (5):329-332.
    [16]Maass D, Kropf L, Egloff L, et al. Transluminal implantation of intravascular "double helix" spiral prostheses:technical, biological considerations. Proc Eur SocArtif Organs,1982,9:252-257.
    [17]Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med,1987,316 (12): 701-706.
    [18]Moravej M, Purnama A, Fiset M, et al. Electroformed pure iron as a new biomaterial for degradable stents:in vitro degradation and preliminary cell viability studies. Acta Biomaterialia,2010,6 (5):1843-1851.
    [19]Lewis A L, Furze J D, Small S, et al. Long-term stability of a coronary stent coating post-implantation. J Biomed Mater Res,2002,63:699-705.
    [20]甄珍,奚廷斐,郑玉峰.全降解冠脉支架研究进展.生物医用材料,2011,8:8-12.
    [21]高润霖.关于“药物洗脱支架”和“涂层支架”的名词解释.中华心血管病杂志.2003,31(11):805.
    [22]Muller D W M, Topol E J. Implantable devices in the coronary artery:from metal to genes. Trends Cardiovasc Med,1991,1:225-232.
    [23]Wilensky R L, March K L, Gradus-Pizlo I, et al. Methods and devices for local drug delivery in coronary and peripheral arteries. Trends Cardiovasc Med,1993, 3:163-170.
    [24]Moses J W, Leon M B, Popma J J, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med,2003, 349 (14):1315-1323.
    [25]Stone G W, Ellis S G, Cox D A, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med,2004,350 (3):221-231.
    [26]郭新贵,许文亮,王旭,等.经皮冠脉成形术和冠脉内支架治疗冠心病233例临床分析.山东医药,41(5):24-26.
    [27]Sutton J M, Ellis S G, Roubin G S, et al. Major clinical events after coronary stenting. The multicenter registry of acute and elective Gianturco-Roubin stent placement. Circulation,1994,89:1126-1137.
    [28]高润林,陈纪林,杨跃进,等.冠状动脉内支架置入术1000例-单中心经验
    分析.中国循环杂志,1999,14:1-3.
    [29]朱国英.药物涂层支架的应用.心肺血管病杂志,2005,24(1):51-53.
    [30]Mauri L, Hsieh W-h, MassaroJ M, et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med,2007,356:1020-1029.
    [31]Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drug-eluting and bare-metal stents:a collaborative network meta-analysis. Lancet,2007,370: 937-948.
    [32]Finn A V, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis:strut coverage as a marker of endothelialization. Circulation,2007,115:2435-2441.
    [33]Lagerqvist B, James S K, Stenestrand U, et al. The SCAAR study group Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med,2007,356:1009-1019.
    [34]Bavry A A, Kumbhani D J, Helton T J, et al. Late thrombosis of drug-eluting stents:a meta-analysis of randomized clinical trials. Am J Med,2006,119: 1056-1061.
    [35]林运,宋现涛,孟康,等.药物洗脱支架术后血栓致急性冠状动脉综合征病因分析及处理评价.心肺血管病杂志,2008,27(3):144-147.
    [36]Mishkel G J, Moore A L, Markwell S, et al. Long-term outcomes after management of restenosis or thrombosis of drug-eluting stents. J Am Coll Cardiol,2007,49:181-184.
    [37]Luscher T F, Steffel J, Eberli F R, et al. Drug-eluting stent and coronary thrombosis:biological mechanisms and clinical implications. Circulation,2007, 115:1051-1058.
    [38]Kuehulakanti P K, Chu W W, Torguson R, et al. Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus-and paclitaxel-eluting stents. Circulation,2006,113:1108-1113.
    [39]Part D W, Park S W, Park K H, et al. Frequency of and risk factors for stent thrombosis after drug-eluting stent implantation during long-term follow-up. Am J Cardiol,2006,98:352-356.
    [40]Giessen W J, Lincoff A M, Sehwartz R S, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation,1996,94:1690-1697.
    [41]Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent:should we be cautious?. Circulation,2004,109:701-705.
    [42]Nebeker J R, Virmani R, Bemiett C L, et al. Hypersensitivity cases associated with drug-eluting coronary stents:a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) Project. J Am Coll Cardiol,2006, 47:175-181.
    [43]Korkmaz M, Tayfun E, Muderrisoglu H, et al. Carbon coating of stents has no effect on inflammatory response to primary stent deployment. Angiology,2002, 53 (5):563-568.
    [44]Steffel J, Latini R A, Akhmedov A, et al. Rapamycin, but not FK-506, increases endothelial tissue factor expression:implications for drug-eluting stent design. Circulation,2005,112:2002-2011.
    [45]Imanishi T, Kobayashi K, Kuki S, et al. Sirolimus accelerates senescence of endothelial progenitor cells through telomerase inactivation. Atherosclerosis, 2006,189:288-296.
    [46]Muldowney Ⅲ J A S, Stringham J R, Levy S E, et al. Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression:a potential prothrombotic mechanism of drug-eluting stents. Arterioscler Thromb Vase Biol, 2007,27:400-406.
    [47]Hofma S H, van der Giessen W J, van Dalen B M, et al. Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart, 2006,27:166-170.
    [48]Stahli B E, Camici G G, Steffel J, et al. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circ Res,2006,99:149-155.
    [49]Okabe T, Mintz G S, Bueh A N, et al. Intravascular ultrasound parameters associated with stent thrombosis after drug-eluting stent deployment. Am J Cardiol,2007,100:615-620.
    [50]Win H K, Caldera A E, Maresh K, et al. For the EVENT registry investigators clinical outcomes and stent thrombosis following off-label use of drug-eluting stents. JAMA,2007,297:2001-2009.
    [51]Commandeur S, van Beusekom H M, van der Giessen W J. Polymers, drug release, and drug-eluting stents. J Interv Cardiol,2006,19 (6):500-506.
    [52]Virmani R, Liistro F, Stankovic G, et al. Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation,2002,106 (21):2649-2651.
    [53]Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol,2004,17 (6):391-395.
    [54]Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting:degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits. Heart,2001,86: 563-569.
    [55]张春怀,许鑫华,朱天兵,等.冠状动脉支架材料的研究进展.材料导报,2007,21(2):120-124.
    [56]Poncin P, Proft J. Stent tubing:understanding the desired attributes. Medical Device Materials-Proceedings of the Materials and Processes for Medical Devices Conference,2003,253.
    [57]Haudrechy P, Foussereau J, Mantout B, et al. Nickel release from 304 and 316 stainless steels in synthetic sweat. Comparison with nickel and nickel-plated metals. Consequences on allergic contact dermatitis. Corros Sci,1993,35 (1-4): 329-336.
    [58]Koster R, Sommerauer M, Kahler J, et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet,2000,356 (9245): 1895-1897.
    [59]Tepe G, Schmehl J, Wendel H P, et al. Reduced thrombo-genicity of nitinol stents-In vitro evaluation of different surface modifications and coatings. Biomaterials,2006,27:643-650.
    [60]Leng Y X, Chen J Y, Huang N, et al. The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition. Nucl Instrand Meth in Phys Res B,2006,242 (1-2):30-32.
    [61]Hagspiel K D, Leung D A, Nandalur K R, et al. Contrast-enhanced MR angiography at 1.5 T after implantation of platinum stents:in vitro and in vivo comparison with conventional stent designs. Am J Roentgenol,2005,184 (1): 288-294.
    [62]Mario C D, Grube E, Nisanci Y, et al. Moonlight:a controlled registry of an iridium oxide-coated stent with angiographic follow-up. Int J Cardiol,2004,95: 329-331.
    [63]Waksman R. Promise and challenges of bioabsorbable stents. Catheter Cardio Inte,2007,70 (3):407-414.
    [64]Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results of biodegradable poly-L-lactic coronary stents in humans. Circulation,2000,102:399-404.
    [65]Erne P, Schier M, Resink T J. The road to bioabsorbable stents:reaching clinical reality?. Cardiovasc Intervent Radiol,2006,29:11-16.
    [66]Lincoff A M, Furst J G, Ellis S G, et al. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol,1997,29:808-816.
    [67]Venkatraman S, Poh T L, Vinalia T, et al. Collapse pressures of biodegradable stents. Biomaterials,2003,24 (12):2105-2111.
    [68]Venkat raman S S, Tan L P, Joso J F D, et al. Biodegradable stents with elastic memory. Biomaterials,2006,27 (8):1573-1578.
    [69]Nguyen K T, Zilberman M, Tang L, et al. Bioresorbable polymeric stents: current status and future promise. Journal of Biomaterials Science, Polymer Edition,2003,14 (4):299-312.
    [70]Wakaman R. Update on bioabsorbable stents:from bench to clinical. J Interv Cardiol,2006,19 (5):414-421.
    [71]Onuma Y, Garg S, Okamura T, et al. Ten-year follow-up of the IGAKI-TAMAI stent, a post-humous tribute to the scientific work of Dr. Hideo Tamai. Euro Intervention,2009,5 (Suppl F):109-111.
    [72]Serruys P, Ormiston J, Onuma Y, et al. Absorb trial first-in-man evaluation of a bioabsorbable everolimus-eluting coronary stent system:two-year outcomes and results from multiple imaging modalities. Lancet,2009,373:897-910.
    [73]Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology?. Heart,2003,89 (6): 651.
    [74]Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents:a prospective, non-randomised multicentre trial. Lancet,2007,369 (9576):1869-1875.
    [75]Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardio Inte,2005,66 (4):590-594.
    [76]Eggebrecht H, Rodermarm J, Hunold P, et al. Novel magnetic esonance-compatible coronary stent the absorbable magnesium-alloy stent. Circulation,2005,112:303-304.
    [77]Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials,2006,27 (28): 4955-4962.
    [78]Waksman R, Pakala R, Baffour R, et al. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol,2008,21 (1):15-20.
    [79]郜俊清,赵德强,刘宗军.新型药物支架.心血管病学进展,2009,30(4):662-665.
    [80]Lifshirz Y. Diamond-like carbon-present status. Diamond and Related Materials, 1999,8:1659-1676.
    [81]Prunotto M, Isaia C, Gatti M A, et al. Nitinol carbofilm coated stents for peripheral applications:study in the porcine model. J Mater Sci-Mater Med,2005, 16(12):1231-1238.
    [82]Unverdorben M, Sippel B, Degenhardt R, et al. Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings:the Tenax versus Nir Stent Study's long-term outcome. Am Heart J,2003,145 (4):E17.
    [83]Sotirovska N, Birtles J, Colley K, et al. Sol-gel silica, polymer free, bioabsorbable coating for delivery of paclitaxel from stent. Cardiovascular Revascularization Medicine,2009,10 (4):259-276.
    [84]Ayon A A, Cantu M, Chava K, et al. Drug loading of nanoporous TiO2 films. Biomed Mater,2006,1 (4):L11-L15.
    [85]肖帆,袁俊,王小祥.表面氧化对TiNi形状记忆合金耐腐蚀性能的影响.材料科学与工程,2000,8(1):40-42.
    [86]Zitter H, Plenk H J. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J Biomed Mater Res,1987,21:881-896.
    [87]Steinemann S G. Metal implants and surface reactions. Injury,1996,27 (Suppl 3): 16-22.
    [88]Alt E, Schomig A. Handbook of Coronary Stents. London, UK, Martin Dunirz, 1998,265-273.
    [89]Tanigawa N, Sawada S, Kobayashi M. Reaction of the aortic wall to six metallic stent materials. Aead Radio,1995,2:379-384.
    [90]Windecker S, Simon R, Lins M, et al. Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization-The TiNOx trial. Circulation,2005,111 (20):2617-2622.
    [91]Kollum M, Farb A, Hehrlein C, et al. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis. Catheter Cardiovasc Interv,2005,64 (1):85-90.
    [92]Mrowietz C, Franke R P, Seyfert U T, et al. Haemocompatibility of polymer-coated stainless steel stents as compared to uncoated stents.Clin Hemorheol Microcirc,2005,32 (2):89-103.
    [93]Chen M C, Liang H F, Sung H W, et al. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release,2005,108 (1): 178-189.
    [94]Buszman P, Trznadel S, Milewski K, et al. Novel paclitaxel-eluting, biodegradable polymer coated stent in the treatment of de novo coronary lesions:a prospective multicenter registry. Catheter Cardiovasc Interv, 2008,71 (1):51-57.
    [95]黄震华.西罗莫司和紫杉醇药物洗脱支架的比较.中国新药与临床杂志,2008,27(7):516-519.
    [96]于繁荣,吕安林,李军杰.雷帕霉素-替罗非斑复合药物涂层支架预防支架内血栓和再狭窄的实验研究.心脏杂志,2007,19(4):384-387.
    [97]罗启剑,刘宗军,李中东.雷帕霉素/雌二醇复合洗脱支架体外释放度及体内对猪冠状动脉内膜增殖的抑制效应.中国组织工程研究与临床康复,2007,11(4):8673-8677.
    [98]厉其昀,陈忠,顾兴中.一种新型聚合物携带雷帕霉素洗脱血管支架抑制内膜增生的效应.中国组织工程研究与临床康复,2009,13(4):626-630.
    [99]Braun-Dullaeus R C, Mann M J, Sedding D G, et al. Cell cycle-dependent regulation of smooth muscle cell activation. Arterioscler Thromb Vase Biol. 2004,24 (5):845-50.
    [100]Abal M, Andreu J M, Barasoain I. Taxanes:microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets, 2003,3 (3):193-203.
    [101]Wessely R, Schomig A, KastratiA, et al. Sirolimus and paclitaxel on polymer-based drug-eluting stents:similar but different. J Am Coll Cardiol, 2006,47 (4):708-714.
    [102]Fajadet J, Wijns W, Laarman G J, et al. Randomized, double-blind, multicenter study of the endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions:clinical and angiographic results of the ENDEAVOR II trial. Circulation,2006,114 (8):798-806.
    [103]Meredith I T, Ormiston J, Whitbourn R, et al. Four-year clinical follow-up after implantation of the endeavor zotarolimus-eluting stent:ENDEAVOR I, the first-in-human study. Am J Cardiol,2007,100 (8B):56M-61M.
    [104]Kyriakides Z S, Lymberopoulos E, Papalois A, et al. Estrogen decreases neointimal hyperplasia and improves re-endothelialization in pigs. Int J Cardiol, 2007,118(1):116-117.
    [105]Han Y, Liang M, Kang J, et al. Estrogen-eluting stent implantation inhibits neointimal formation and extracellular signal-regulated kinase activation. Catheter Cardiovasc Interv,2007,70 (5):647-653.
    [106]Ong A T, Aoki J, Kutryk M J, et al. How to accelerate the endothelialization of stents. Arch Mal Coeur Vaiss,2005,98 (2):123-126.
    [107]Aoki J, Serruys P W, van Beusekom H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34:the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) registry. J Am Coll Cardiol,2005,45:1574-1579.
    [108]Co M, Tay E, Lee C H, et al. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction:intermediate-to long-term clinical follow-up. Am Heart J,2008,155 (1):128-132.
    [109]Rotmans J I, Heyligers J M, Verhagen H J, et al. In vivo cell seeding with antiCD34 antibodies successfully accelerates endothelialization but stimulates inti-malhyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation,2005,112 (1):12-18.
    [110]Finkelstein A, McClean D, Kar S, et al. Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation,2003,107 (5): 777-784.
    [111]Tepe G, Schmehl J, Wendel H P, et al. Reduced thrombogenicity of nitinol stents-in vitro evaluation of different surface modifications and coatings. Biomaterials,2006,27 (4):643-650.
    [112]Wieneke H, Dirsch O, Sawitowski T, et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter Cardiovasc Interv,2003,60 (3):399-407.
    [113]Trigwell S, De S, Sharma R, et al. Structural evaluation of radially expandable cardiovascular stents encased in a polyurethane film. J Biomed Mater Res B: Appl Biomater,2006,76 (2):241-250.
    [114]倪中华,顾兴中,易红,等.中国专利,200510040936.8,2005.
    [115]马晓意,李正阳,马丽娟.WO Pat,2006058479-A1,2006.
    [116]Witkowski A, Chmielak Z, Kruk M, et al. Determinants of model of renarrowing after beta radiation for in-stent restenosis. Int J Cardiol,2006,107 (2):247-253.
    [117]Cervinka P, Stasek J, Costa MA, et al. Intravascular ultrasound study of the effect of beta-emitting ((55)Co) stents on vascular remodeling and intimal proliferation. Catheter Cardiovasc Interv,2004,61 (3):320-325.
    [118]Ferko A, Paral J, Raupach J, et al. Autologous vein stent-graft:feasibility study. J Vasc Interv Radiol,2000,11 (1):111-114.
    [119]Stefanadis C, Toutouzas K, Tsiamis E, et al. Stents covered by autologous venous grafts:feasibility and immediate and long-term results. Am Heart J, 2000,139 (3):437-445.
    [120]Nabel E G, Plautz G, Boyce F M, et al. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science,1989,244 (4910): 1342-1344.
    [121]Garcia-Tejada J, Gutierrez H, Albarran A, et al. Janus tacrolimus-eluting carbostent. Immediate and medium-term clinical results. Rev Esp Cardiol, 2007,60 (2):197-200.
    [122]Mehilli J, Kastrati A, Wessely R, et al. Randomized trial of a nonpolymer-based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late lumen loss. Circulation,2006,113:273-279.
    [123]Ruef J, Strger H, Schwarz F, et al. Comparison of a polymer-free rapamycin-eluting stent (YUKON) with a polymer-based paclitaxel-eluting stent(TAXUS) in real-world coronary artery lesions. Catheter Cardiovasc Interv,2008,71 (3):333-339.
    [124]Kereiakes D J, Petersen J L, Batchelor W B, et al. Clinical and angiographic outcomes in diabetic patients following single or multivessel stenting in the COSTARII randomized trial. J Invasive Cardiol,2008,20 (7):335-341.
    [125]Krucoff M W, Kereiakes D J, Petersen J L, et al. A novel bioresorbable polymer paclitaxel-eluting stent for the treatment of single and multivessel coronary disease:primary results of the COSTAR (Cobalt Chromium Stent With Antiproliferative for Restenosis) II study. J Am Coll Cardiol,2008,51 (16): 1543-1552.
    [126]Zhu K J, Hendren R W, Jensen K, et al. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules,1991,24 (8):1736-1740.
    [127]Stoll G H, Nimmerfall F, Acemoglu M, et al. Poly(ethylene carbonate)s, part II: degradation mechanisms and parenteral delivery of bioactive agents. J Control Release,2001,76 (3):209-225.
    [128]Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol Chem,1969,130: 210-220.
    [129]Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. J Polym Sci,1969,7 (B):287-292.
    [130]Inoue S. Copolymerization of carbon dioxide and epoxide:functionality of the copolymer. J Macromol Sci Chem A,1979,13:651-664.
    [131]Sugimoto H, Inoue S. Copolymerization of carbon dioxide and epoxide. J Polym Sci, Part A:Polym Chem,2004,42:5561-5573.
    [132]Kawaguchi K, Takev K, Yasuhiko Y, et al. Examination of biodegradability of poly(thylene carbonate) and poly(propylene carbonate) in the peritonea cavity in rats. Chem Pharm Bull,1983,31 (4):1400-1403.
    [133]Dadsetan M, Christenson E M, Unger F, et al. In vivo biocompatibility and biodegradation of poly(ethylene carbonate). J Control Release, 2003, 93 (3): 259-270.
    [134]Collier T, Tan J, Shive M, et al. Biocompatibility of poly(etherurethane urea) containing dehydroepiandrosterone. J Biomed Mater Res, 1998, 41: 192-201.
    [135]Mathur A B, Collier T, Kao W J, et al. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res, 1997, 36: 246-257.
    [136]Kao W J, Hiltner A, Anderson J M, et al. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on strained poly(etherurethane urea) elastomers. J Biomed Mater Res, 1994, 28: 819-829.
    [137]Zhao Q, Anderson J M, Hiltner A, et al. Theoretical analysis of cell size distribution and kinetics of foreign body giant cell formation on strained polyurethane elastomers. J Biomed Mater Res, 1992, 26: 1019-1038.
    [138]Acemoglu M, Nimmerfall F, Bantle S, et al. Poly(ethylene carbonate)s: Part I. Synthesis and structural effects on biodegradation. J Control Release, 1997, 49: 263-276.
    [139]Acemoglu M. Chemistry of polymer biodegradation and implications on parenteral drug delivery. Int J Pharm, 2004, 277 (1-2): 133-139.
    [140]Unger F, Westedt U, Hanefeld P, et al. Poly(ethylene carbonate): a thermoelastic and biodegradable biomaterial for drug eluting stent coatings?. J Control Release, 2007, 117: 312-321.
    [141]Luinstr G A. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym Rev, 2008, 48: 192-219.
    [142]Pe'go A P, Grijpma D W, Feijen J. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer, 2003, 44: 6495-6504.
    [143]Pe'go A P, Poot A A, Grijpma D W, et al. Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers. J Mater Sci-Mater Med, 2003, 14 (9): 767-773.
    [144]Pe'go A P, Poot A A, Grijpma D W, et al. In vitro degradation of trimethylene carbonate based copolymers. Macromol Biosci, 2002, 2: 411-419.
    [145]方兴高,杨淑英,陈立班.聚碳酸亚丙亚乙酯的合成和生物降解.功能高分子学报,1994,7(2):143-147.
    [146]邹颖楠,王拴紧,肖敏,等.二氧化碳和环氧丙烷、环氧乙烷三元共聚物的合成与表征.高分子材料科学与工程,2007,23(2):120-123.
    [147]Shen Y Q, Chen X H. Gross R A. Aliphatic polycarbonates with controlled quantities of D-xylofuranose in the main chain. Macromolecules,1999,32 (12): 3891-3897.
    [148]Zhou M, Takayanagi M, Yoshida Y, et al. Enzyme-catalyzed degradation of aliphatic polycarbonates prepared from epoxides and carbon dioxide. Polym Bull,1999,42:419-424.
    [149]谢东,全志龙,王献红,等.稀土三元催化剂催化二氧化碳-环氧丙烷-环氧环己烷的三元共聚合研究.高等学校化学学报,2005,26(12):2360-2362.
    [150]闫涛.5-羟基三亚甲基碳酸酯与三亚甲基碳酸酯共聚物的合成、表征及其蛋白类药物控释系统的研究.硕士学位论文,中国协和医科大学,2007.
    [151]Cai J, Zhu K J. Preparation, characterization and biodegradable characteristics of poly(1,3-trimethylene carbonate-co-glycolide). Polym Inter,1996,41 (4): 369-375.
    [152]Cai J, Zhu K J. Preparation, characterization and biodegradable characteristics of poly(D,L-lactide-co-1,3-trimethylene carbonate). Polym Inter,1997,42 (4): 373-379.
    [153]Ruckenstein E, Yuan Y. Molten ring-open copolymerization of L-lactide and cyclic trimethylene carbonate. J Appl Polym Sci,1998,69 (7):1429-1434.
    [154]Hans R, Kricheldorf, Andrea S. Polylactones. A-B-A triblock copolyesters and random copolyesters of trimethylene carbonate and various lactones via macrocyclic polymerization. Macromol Chem Phys,1999,200 (7):1726-1733.
    [155]Liu S Q, Xiao H, Huang K L, et al. Terpolymerization of carbon dioxide with propylene oxide and s-caprolactone:synthesis, characterization and biodegradability. Polym Bull,2006,56:53-62.
    [156]刘艳飞,黄可龙,彭东明,等.二氧化碳-1,2环氧丁烷-ε-己内酯的三元共聚合和表征.高分子学报,2007,9:816-820.
    [157]卢凌彬,刘素琴,黄可龙,等.二氧化碳/环氧丙烷/γ-丁内酯三元共聚物微球降解性的研究.高分子学报,2005,4:621-624.
    [158]卢凌彬,黄可龙,黄路,等.二氧化碳/环氧丙烷/γ-丁内酯的三元共聚合和表征.高分子学报,2005(3):384-388.
    [159]Sharma R, Kohn J, Moghe P V. Poly(ethylene glycol) enhances cell motility on protein-based poly(ethylene glycol)-polycarbonate substrates:A mechanism for cell-guided ligand remodeling. J Biomed Mater Res Part A,2004,69 (1): 114-123.
    [160]Wang H, Dong J H, Qiu KY. Synthesis and characterization of ABA-type block copolymer of poly(trimethylene carbonate) with poly(ethylene glycol): bioerodible copolymer. J Polym Sci Part A:Polym Chem,1998,36 (5): 695-702.
    [161]Yu C, Kohn J. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials:Part I:synthesis and evaluation. Biomaterials,1999,20 (3): 253-264.
    [162]Yu C, Mielewczyk S S, Breslauer K J, et al. Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials:Part II:study of inverse temperature transitions. Biomaterials,1999,20 (3):265-272.
    [163]Tziampazis E, Kohn J, Moghe PV. PEG-variant biomaterials as selectively adhesive protein templates:model surfaces for controlled cell adhesion and migration. Biomaterials,2000,21 (5):511-520.
    [164]柯天一,卓仁禧.磷酸酯-碳酸酯共聚物的合成及其微球释药性能研究.高等学校化学学报,1998,19(8):1335-1338.
    [165]Wang H, Dong, J H, Qiu K Y. Synthesis of PDON-b-PEG-b-PDON block copolymers and drug delivery system thereof. J Appl Polym Sci,1998,68 (13): 2121-2128.
    [166]Wang H, Dong J H, Qiu K Y, et al. Synthesis of poly(1,4-dioxan-2-one-co-trimethylene carbonate) for application in drug delivery systems. J Polym Sci A:Polym Chem,1998,36:1301-1307
    [167]Edlund U, Albertsson A C. Copolymerization and polymer blending of trimethylene carbonate and adipic anhydride for tailored drug delivery. J Appl Polym Sci,1999,72 (2):227-239.
    [168]陈枫.稀土催化己二酸酐和碳酸亚乙酯开环聚合及其聚合物的降解和生物相容性研究.博士学位论文,浙江大学,2008.
    [169]萧聪明.可控降解与释药高分子聚碳酸酯酸酐的设计、合成及性能研究.博士学位论文,浙江大学,2001.
    [170]吴弘.生物降解性聚碳酸酯的制备及其性能研究.硕士学位论文,中南大学,2007.
    [171]黄可龙,吴弘,刘素琴,等.二氧化碳/环氧丙烷/马来酸酐的三元共聚反应.高分子材料科学与工程,2008,24(1):32-35.
    [172]邹新伟,杨淑英,陈立班,等.二氧化碳共聚物为基聚氨酯的生物降解性研究.化学通报,1998,10:55-57.
    [173]Kuran W, Sobezak M, Listos T, et al. New route to oligo-carbonate diols suitable for the synthesis of polyurethane elastomers. Polymer,2000,41 (24): 8531-8541.
    [174]赵美华.可释放一氧化氮型聚碳酸酯聚氨酯的性能研究.硕士学位论文,天津大学,2006.
    [175]Kuhling S, Keul H, Hocker H, et al. Synthesis of poly(2-ethyl-2-hydroxymethyl trimethylene carbonate). Makromol Chem,1991,192:1193-1205.
    [176]Chen X H, Mccarthy S P, Gross R A. Preparation and characterization of polycarbonates from 2,4,8,10-tetraoxaspiro[5,5]undecane-3-one(DOXTC) —trimethylene carbonate (TMC) ring-opening polymerizations. J Appl Polym Sci,1998,67:547-557.
    [177]Vabdenberg E J, Tian D. A new, crystalline high melting bis(hydroxymethyl) polycarbonate and its acetone ketal for biomaterial applications, macromolecules,1999,32:3613-3619.
    [178]刘芝兰,张健民,卓仁禧.功能聚碳酸酯的合成与表征.高等学校化学学报,2003,24(9):1730-1732.
    [179]Wang X L, Zhuo R X. Synthesis and characterization of novel aliphatic polycarbonates. J Polym Sci Part A:Polym Chem,2002,40 (1):70-75.
    [180]Ray W C, Grinstaff M W. Polycarbonate and poly(carbonate-ester)s synthesized from biocompatible building blocks of glycerol and lactic acid. Macromolecules,2003,36 (10):3557-3562.
    [181]汪连生.新型生物可降解聚碳酸酯及其共聚物的合成与性能研究.博士学位论文,武汉大学,2004.
    [182]Sanda F, Kamatani J, Endo T. Synthesis and anionic ring-opening polymerization behavior of amino-derived cyclic carbonates. Macromolecules, 2001,34 (6):1564-1569.
    [183]Cater K R, Richter R, Kricheldorf H R, et al. Synthesis of amine-terminated aliphatic polycarbonates via Al(Et)2(OR)-initiated polymerization. Macromolecules,1997,30 (20):6074-6076.
    [184]Al-Azemi T F, Bisht K S. Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one. Macromolecules,1999,32: 6536-6540.
    [185]Lee R S, Yang J M, Lin T F. Novel biodegradable, functional poly(ester-carbonate)s by copolymerization of trans-4-hydroxy-L-proline with cyclic carbonate bearing a pendent carboxylic group. J Polym Sci Part A: Polym Chem,2004,42:2303-2312.
    [186]Yu F Q, Zhuo R X. Synthesis, characterization and degradation behaviors of end-group functionalized poly(trimethylene carbonate)s. Polym J,2003,35 (8): 671-676.
    [187]Shen Y Q, Chen X H, Gross R A. Polycarbonates from sugars:ring-opening polymerization of 1,2-o-isopropylidene-d-xylofuranose-3,5-cyclic carbonate (IPXTC). Macromolecules,1999,32:2799-2802.
    [188]万涛.含胆固醇、胆酸结构生物可降解聚碳酸酯的研究.硕士学位论文,武汉大学,2005.
    [189]黄霞,郑元锁,高积强,等.一种新的可生物降解聚碳酸酯的合成与表征.合成树脂及塑料,2007,24(4):36-39,45.
    [190]Takanashi M, Nomura Y, Yoshida Y, et al. Functional polycarbonate by copolymerization of carbon dioxide and epoxide:synthesis and hydrolysis. Makromol Chem,1982,183:2085-2092.
    [191]Chen X H, McCarthy S P, Gross R A. Synthesis, characterization and epoxidation of an aliphatic polycarbonate from 2,2-[4,4-cyclohexene-1]-trimethylene carbonate (HTC) ring-opening polymerization. Macromolecules, 1997,30:3470-3476.
    [192]Mullen B D, Tang C N, Storey R F. New aliphatic poly(ester-carbonates) based on 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one. J Polym Sci Part A:Polym Chem,2003,41 (13):1978-1991.
    [193]Gabriel O S, George P S. Polymer Blends and Alloys, New York:Marcel Dekker Inc,1999.
    [194]李爱英.聚碳酸酯与高支化聚苯乙烯共混改性的研究.博士学位论文,南京理工大学,2006.
    [195]庞浩,廖兵,黄玉惠,等.聚1,2-亚丙基碳酸酯/天然橡胶共混弹性体工艺配方设计.高分子材料科学与工程,2002,18(2):71-73.
    [196]宋默,黄玉惠,赵树录,等.聚环氧乙烷/脂肪族聚碳酸酯共混研究.功能高分子学报,1993,6(1):51-55.
    [197]Peng S W, An Y X, Chen C, et al. Miscibiliry and crystallization behavior of poly(3-hydroxyvalerate-co-3-hydroxyvalerate)/poly(propylene carbonate) blends. J Appl Polym Sci,2003,90:4054-4060.
    [198]Li J, Lai M F, Liu J J. Control and development of crystallinity and morphology in poly(hydroxybutyrate-co-hydroxyvalerate)/poly(propylene carbonate) blends. J Appl Polym Sci,2005,98:1427-1436.
    [199]Ma X F, Yu J G, Wang N. Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci:Part B:Polym Phys, 2006,44:94-101.
    [200]庞买只.聚甲基乙撑碳酸酯的精制与共混改性研究.硕士学位论文,中山大学,2007.
    [201]张亚男.聚碳酸亚丙酯共混改性及分子模拟.硕士学位论文,海南大学,2008.
    [202]James K, Kohn J. New biomaterials for tisseue engineering. MRS Bull,1996, 21 (11):22-26.
    [203]吴远,王家龙,叶红军,等.丝裂霉素聚碳酸酯磁性微球的缓释功能及对移植性肝癌的靶向治疗作用.中华消化杂志,2001,21(11):691-693.
    [204]Pe'go A P, poot A A, Grijpma M, et al. Copolymers of trimethylene carbonate and ε-caprolactone for porous nerve guides:synthesis and properties. Biomat Sci Polym Ed,2001,12:35-53.
    [205]Douglas J S. Role of adjunct pharmacologic therapy in the era of drug-eluting stents. Atherosclerosis Supp,2005,6 (4):47-52.
    [206]Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus eluting and paclitaxel-eluting stents in routine clinical practice:data from a large two-institutional cohort study. Lancet,2007,369: 667-678.
    [207]Pinto Slottow T L, Steinberg D H, Roy P K, et al. Observations and outcomes of definite and probable drug-eluting stent thrombosis seen at a single hospital in a four-year period. Am J Cardiol,2008,102:298-303.
    [208]Vaknin-Assa H, Assali A, Ukabi S, et al. Stent thrombosis following drug-eluting stent implantation:a single-center experience. Cardiovasc Revasc Med,2007,8:243-247.
    [209]Byrne R A, Kastrati A, Massberg S, et al. Biodegradable polymer versus permanent polymer drug-eluting stents and everolimus-versus sirolimus-eluting stents in patients with coronary artery disease. J Am Coll Cardiol,2011,58:1325-1331.
    [210]刘洪泽,齐民,吴云峰,等.制备方法对高分子载药涂层结构和体外释放动力学的影响.功能材料,2007,10(3):1727-1730.
    [211]刘强,程晓农,徐红星,等.316L不锈钢和NiTi合金微磁场表面粗糙度对血液相容性的影响.材料研究学报,2009,23(3):323-326.
    [212]Herminghaus S, Brinkmann M, Seemann R. Wetting and dewetting of complex surface geometries. Ann. Rev Mater Res,2008,38:101-121.
    [213]Quere D. Wetting and roughness. Ann Rev Mater Res,2008,38:71-99.
    [214]Ralston J, Popescu M, Sedev R. Dynamics of wetting from an experimental point of view. Ann Rev Mater Res,2008,38:23-43.
    [215]Marmur A. Solid-surface characterization by wetting. Ann Rev Mater Res,2009, 39:473-489.
    [216]王伟强,梁栋科,杨大智,等.冠脉支架系统瞬时膨胀过程的有限元分析及其优化设计.中国生物医学工程学报,2005,24(3):313-318,329.
    [217]谭丽丽,薛松,杨柯,等.冠脉支架表面载药涂层的制备和性能.材料研究学报,2004,18(4):380-384.
    [218]裴香玲,余四九,岳海宁.生物可降解聚合物聚乳酸-聚三亚甲基碳酸酯的体内外降解和释药试验研究.甘肃农业大学学报,2007,42(5):39-42.
    [219]Toutouzas K, Colombo A, Stefanadis C. Inflammation and restenosis after percutaneous coronary interventions. Eur Heart J,2004,25 (19):1679-1687.
    [220]俞耀庭.生物医用材料.天津:天津大学出版社,2000:144-155.
    [221]Harmand M F. In vitro study of biodegradation of Co-Cr alloy using a human cell culture mode. J Biomater Sci, Polym Ed,1995,6 (9):809.
    [222]李玉宝.生物医学材料.北京:化学工业出版社,2003:111-120.
    [223]崔福斋,冯庆玲.生物材料学.北京:清华大学出版社,2004:64-65.
    [224]中国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T14233.2-2005,医用输液、输血、注射器具检验方法,第2部分:生物学试验方法.北京:中国标准出版社,2005-11-17.
    [225]American Society for Testing and Materials. ASTM F2382-04, Standard test method for assessment of intravascular medical device materials on partial thromboplastin time (PTT). Pennsylvania, USA:ASTM International,2010.
    [226]国家质量监督检验检疫总局.GB/T 16886.5-2003,医疗器械生物学评价第5部分:体外细胞毒性试验.北京:中国标准出版社,2003-03-05.
    [227]Zobel H P, Stieneker F, Atmaca-Abdel Aziz S. Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part Ⅱ:. characterization of antisense oligonucleotides loaded copolymer nanoparticles. J Pharm Biopharm,1999,48:1.
    [228]郝和平.医疗器械生物学评价标准实施指南.北京:中国标准出版社,2000:114.
    [229]Jin H L, Ji Y O, Dong M K. MMA/MPEOMA copolymers coating materials for improved blood compatibility:Protein absorption study. J Mater Sci-Mater Med,1999,10:629-634.
    [230]Armitage D A, Parker T L, Grant D M. Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A, 2003,66(1):129-137.
    [231]袁暾,单晶,郑利萍,等.部分凝血激活酶时间试验及全血凝固时间试验方法用于评价心血管系统外部接入器械凝血性能的研究.生物医学工程学杂志,2009,26(4):811-814.
    [232]王献红,路宏伟,赵晓江,等.用于二氧化碳和环氧化物共聚合的负载稀
    土三元催化剂及制法.中国专利,200810051413,2008.[233] Antony P, Puskas J E, Kontopoulou M. Investigation nf the rheolo(?) mechanical properties of a polvstvrene-po1vionh(?) copolymer and its blends with polvstvrene. Polvm Eng Sci 2003,43(1). 243-253.
    [234]罗彤,高润霖,阮英茆,等.聚乳酸聚羟基乙酪共聚物涂层雷帕霉素洗脱
    支架对小型猪冠状动脉内膜增生的影响,中国循环杂志2008(?)459-462.[235] Pypen C M J M, Plenk H Jr, Ebel M F, et al. Characterization of microblasted and reactive (?)on etched surfaces on the commercially pure metals(?) tantalum and titanium. J Mater Sci-Mater Med, 1997, 8: 781-784.
    [236]Stettler C, Wandel S, Allemann S, et al. Outcomes associated with drue-eluting ana Dare-metal stents: a collaborative network meta-analvsis Lancet 2007 370 (9591): 937-948.
    [237]Zhong X, Dehghani F. Solvent free synthesis of organometallic catalvsts for the
    copolymerisation of carbon dioxide and propylene oxide. Appl Cata B: Environ, 2010, 98: 101-111.
    [238]Faryniarz J R, Ramirez J E. Anti-aging treatment using copper and zinc
    compositions. US Patent, 20070184017A1, 2007.
    [239]Poom M, Marx S O, Gallo R, et al. Rapmycin inhibits vascular smooth rrmsr.Ie
    cell migration. J Clin Ivest, 1996, 98: 2277-2283.
    [240]Hwang C W, Wu D, Edelman E R. Physiological transport forces govern drug
    distribution tor stent-based delivery. Circulation, 2002, 104: 600-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700