生物质催化气化定向制备合成气过程与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成气是以H2和CO为主要组分供化学合成用的一种原料气,它可以作为中间体用于石油化工行业或通过费托合成制备各种高品质液体燃料和化学品,如氢气、甲醇和二甲醚等。目前绝大多数合成气制备工艺仍是采用煤气化或天然气气化的方式,随着化石能源的日益枯竭和不断严重的环境问题,发展以可再生资源为原料的合成气生产工艺对缓解世界能源短缺和环境污染具有重要的意义。生物质是一种来源广泛、成本低廉、环境友好的可再生能源,通过热化学的方法将生物质转化为高品位、高附加值的化学品将成为未来研究的焦点。
     本文以生物质作为原料,采用水蒸汽催化气化技术制取合成气。对生物质催化气化合成气制备工艺展开了系统的研究,主要研究内容及成果如下:
     (1)选用常见的生物质——松木锯末作为气化原料。采用工业分析和元素分析对原料样品的理化特性及元素组成进行分析。结果表明:松木锯末含有很高的挥发分及少量的固定碳,而灰分极低;其元素组成主要为C和O,N和S的含量分别为0.41%和0.06%。样品的热重分析显示松木锯末的热裂解分为脱水、挥发分释放和缓慢热解三个阶段。使用等转化率法求解了松木锯末热解动力学参数,样品热解的表观活化能E值在200-258kJ/mol范围之间。松木锯末是一种具有代表性的生物质原料,在利用过程中会产生较少量的有害气体和固体残渣,是环境友好的生物质资源。
     (2)在自制的两段式生物质催化气化固定床反应装置上,开展了生物质水蒸汽催化气化制备合成气的小试研究。本装置导热性能良好、进料连续稳定、进出料质量平衡精度可靠。实验主要探讨了气化温度、固相停留时间、水蒸汽生物质质量比(S/B)以及催化温度对气化产物分布、气体成分及合成气组分的影响。结果表明:随着气化温度从750℃升高至900℃,气体产物的产量快速增长,气体中合成气组分(H2和CO)的含量从61.7%增加至65.96%,此外H2/CO比也逐渐从1.16增加到1.80;延长固相停留时间有助于气体产物的生成、合成气含量的提高以及H2/CO比的增长,然而当固相停留时间大于26s后气体成分的变化逐渐较小,固相停留时间的影响已不明显;对于制备合成气而言,最佳的S/B值为0.4-0.6,此时气体中H2+CO的含量为约70%,H2/CO比在2.0-2.5之间;催化剂能大大降低气体产物中焦油和CH4的含量,最优化的催化温度为650℃。
     (3)在小型管式固定床反应器上分别对不同温度下,生物质气化过程中挥发分释放及半焦气化两个阶段的气体产物释放行为进行了研究。结果表明:提高反应温度有利于两个阶段气体产物的释放及合成气组分(CO和H2)的生成,温度对半焦气化阶段气体产量的影响更大。高温条件下(>750℃),气体产物主要来自于半焦气化反应,同时,该反应是影响气体成分中H2/CO比的重要环节。热重分析表明:生物质在水蒸汽气氛下的失重过程表现出明显的“两段性”,第一阶段(221-351℃)为挥发分析出,受水蒸汽的影响较小;第二阶段(710-805℃)为半焦与水蒸汽发生气化反应的阶段。两个阶段可分别用二级动力学反应模型和缩核反应模型描述,计算得到的活化能分别为87.10kJ/mo1.(?)(?)80.45kJ/mol。
     (4)采用热重分析(TGA)、热重-质谱联用仪(TG-MS)和气相色谱-质谱联用仪(GC-MS)对生物质焦油的热解动力学特性及热解机制进行了研究。利用Flynn-Wall-Ozawa法(FWO)和Kissinger-Akahira-Sunose法(KAS)计算得到焦油热解活化能E值在53-73kJ/mol之间,通过主曲线法判断出焦油的热失重过程可用单一的机理函数描述,焦油热解反应动力学方程可以表示为:焦油热解气体中主要轻质组分的释放温度区间和焦油主要失重的温度区间相吻合,气体产物集中释放的温度在150℃以内,随着温度的升高大多数气体的释放速率逐渐降低,温度超过400℃之后,析出的组分主要为CO和CO2,以及少量的H2O和CH4。随热解时间的延长,焦油中化合物种类呈先增加后减少的趋势,其中单环芳烃和小分子含氧化合物的含量不断降低,而PAHs逐渐形成。反应120s后,焦油热解产物形成蜂窝状固体碳化物,主要成分为大于4环的PAHs及碳链在C20左右的长链脂肪烃。
     (5)开发了基于生物质微米燃料外加热的生物质催化气化制备合成气工艺,并进行了中试规模的研究。采用生物质微米燃料作为外部热源能够提供较高的气化反应温度,并且燃烧烟气中NOx和S02等有害气体的含量极低。在最佳的工况条件下,气体产量达到1.31Nm3/kg,其中合成气(H2+CO)含量达到70.1%,H2/CO比为2.07。对该中试气化装置的能量评估表明:其冷气效率、能源回收率和能耗比分别为48.57%、60.04%和2.40。生物质微米燃料外加热的生物质催化气化制备合成气工艺具有高效、低成本和低污染的优势。
Syngas consisting mainly of H2and CO is applied to chemical synthesis. It can find a wide range of applications including use as feedstock for chemical elements in the petrochemical industry and as liquid fuels based on the Fischer-Tropsch process to produce high grade chemicals such as hydrogen, methanol or dimethyl ether. Now, syngas production process is based on the gasification of coal or natural gas. With the fossil energy exhausting and serious environmental problems, the development syngas production from renewable biomass would be significant for solving the shortage of fossil and environmental pollution. Biomass is aboundant, low-cost, environmental friendly. Biomass converted to high grade and high value-added chemicals by thermochemical processes will become the focus of further study.
     In this study, catalytic gasification of biomass feedstock with steam was used for syngas production. The main results were as follows:
     (1) Pine sawdust was employed as biomass feedstock. The results of ultimate and proximate analyses showed that pine sawdust was rich in volatile matter and it contained fewer contents of fixed carbon and ash. The thermalgravitic analysis (TGA) indicated three stages (dehydration, volatile release and slow pyrolysis) during the decomposition. The activation energy of pine sawdust pyrolysis was calculated to be200-258kJ/mol using iso-conversion methods. Pine sawdust was beneficial for the environment, as a common biomass, because it would produce less hazardous gases and solid residues.
     (2) Catalytic gasification of biomass with steam for syngas production was performed in a two-stage fixed bed gasifier. The self-manufacture gasifier had well thermal conductivity, continuous feeding and high currency. The effects of gasification temperature, solid residence time (SRT), steam to biomass ratio (S/B) and catalytic temperature on catalytic gasification were investigated. The results showed that the gas yield and syngas concentration increased with the increasing gasification temperature from750℃to900℃. The value of H2/CO also increased from1.16to1.80. Furthermore, prolonging SRT resulted in the high gas yield, syngas concentration and H2/CO value. However, the changes in gas composition would be neglected when SRT was above26s. The optimum S/B was found to be0.4-0.6for syngas production. At the optimum value, the H2+CO concentrations in gas product reached about70%and the H2/CO value was from2.0to2.5. Moreover, the optimum catalytic temperature was650℃for tar cracking and CH4reforming.
     (3) Syngas production from in volatile release stage and char gasification stage were studied in a lab-scale fixed bed. The results showed that high temperature was in favour of gas and syngas (H2, CO) yields in the two stages. When the reactot temperature was above750"C, gas yield and H2/CO were depended on the char gasification reaction. The thermalgravitic analysis revealed the mass loss of the sample in steam atmosphere was divided into two stages (221~351℃and740-805℃). The two stages were respectively described by second reaction model and random nucleation model. The calculated activation energy values in two stages were87.10kJ/mol and80.45kJ/mol, respectively.
     (4) TGA, TG-MS and GC-MS were used to study kinetic and mechanism of tar decomposition. The activation energy of tar decomposition was determined to be53-73kJ/mol at different conversions using FWO and KAS methods. The decomposition of tar was described by single order of reaction function and the reaction kinetic equation estimated by master plots method. With the prolonging pyrolysis time, the contents of compounds in the tar decreased. The temperature range of light components in gas product from tar decomposition was corresponding to the temperature range of mass loss. Main gas product released within150℃. When the temperature was above400℃, released gas product included CO, CO2, H2O and CH4. Compounds in tar increased with the prolonging reaction temperature, and then decreased. The contents of monocyclic aromatic hydrocarbons and oxy-compounds decreased, while PAHs gradually formed. After120s, the tar was converted to porous solid carbide. The main composition was PAHs more than4-ring and aliphatic hydrocarbon about C20.
     (5) Allothermal catalytic gasfication of biomass for syngas production using biomass micron fuel (BMF) was developed, and studies on a pilot-scale gasification system were carried out. Combustion of BMF could provide the higher temperature for gasfication reactions and the flue gas from the combustor contained less NOX and SO2. Under the optimum conditions, the gas yield reached1.31Nm3/kg with H2+CO concentrations of70.1%and H2/CO value of2.07. The energy evaluation on the pilot-scale gasification system suggested that cold gas efficiency, energy recovery and energy consumption ratio were48.57%、60.04%and2.40, respectively. The gasification process was high efficiency, low-cost and low contamination emission.
引文
[1]郎宝.生物沼气催化重整制合成气新型催化剂制备及性能研究[D].北京工业大学,2009
    [2]姬涛.甲烷、二氧化碳和氧气催化氧化重整制合成气镍基催化剂的研究[D].华南理工大学,2001
    [3]马爱珠,李华隆,杨仲春.C1化学的发展与未来[J].西南工学院学报,1996,4:51-56
    [4]王兆祥.生物油重整制氢/富氢合成气以及费托液体燃料的合成[D].中国科学技术大学,2007
    [5]宋春财,王刚,胡浩权.生物质热化学液化技术研究进展[J].太阳能学报,2002,25(2):242-248
    [6]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80
    [7]Tahir S. N. A., Rafique M, Alaamer A. S. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan[J]. Environmental Pollution,2010,158(7):2490-2495
    [8]阴秀丽,吴创之,徐冰娠等.生物质气化对减少CO:排放的作用[J].太阳能学报,2000,21(1):40-44
    [9]欧阳朝斌,赵月红,郭占成.合成气制备工艺研究进展及其利用技术[J].现代化工,2004,24(6):1 0-1 3
    [10]周齐宏.基于合成气的联供一联产系统研究[D].清华大学,2005
    [11]涂军令,应浩,李琳娜.生物质制备合成气技术研究现状与展望[J].林产化学与工业,2011,31(6):112-118
    [12]马隆龙.秸杆气化技术[M].北京:中国环境科学出版社,2002:10
    [13]马林转,何屏,王华等.生物质热裂解实验研究[J].云南化工,2004,31(2):9-11
    [14]汪俊锋,常杰,阴秀丽等.生物质气催化合成甲醇的研究[J].燃料化学学报, 2005,33(1):58-61
    [15]冯杰,吴志斌,秦育红等.生物质空气-水蒸汽气化制取合成气热力学分析[J].燃料化学学报,2007,36(4):397-400
    [16]苏德仁,周肇秋,谢建军等.生物质流化床富氧-水蒸汽气化制备合成气研究[J].农业机械学报,2011,42(3):100-104
    [17]陈平.生物质流化床气化机理与工业应用研究[D].中国科学技术大学,2006
    [18]Xianjun Guo, Bo Xiao, Shiming Liu, et al. An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier[J]. International Journal of Hydrogen Energy,2009,34(3):1265-1269
    [19]Yan Cao, Yang Wang, John T. Riley, et al. A novel biomass air gasification process for producing tar-free higher heating value fuel gas[J]. Fuel Processing Technology, 2006,87(4):343-353
    [20]Jinsong Zhou, Qing Chen, Hui Zhao, et al. Biomass-oxygen gasification in a high-temperature entrained-flow gasifier[J]. Biotechnology Advances,2009,27(5): 606-611
    [21]Marono M., Sanchez J. M., Ruiz E. Hydrogen-rich gas production from oxygen pressurized gasification of biomass using a Fe-Cr Water Gas Shift catalyst[J]. International Journal of Hydrogen Energy,2010,35(1):37-45
    [22]Rapagna S., Jand N., Kiennemann A., et al. Steam-gasification of biomass in a fluidised-bed of olivine particles[J]. Biomass and Bioenergy,2000,19(3):187-197
    [23]Kentaro Umeki, Kouichi Yamamoto, Tomoaki Namioka, et al. High temperature steam-only gasification of woody biomass[J]. Applied Energy,2010,87(3):791-798
    [24]Ligang Wei, Shaoping Xu, Li Zhang, et al. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor[J]. International Journal of Hydrogen Energy, 2007,32(1):24-31
    [25]赵辉.生物质高温气流床气化制取合成气的机理试验研究[D].浙江大学博士学位论文,2007
    [26]P. Mondal, G. S. Dang, M. O. Garg. Syngas production through gasification and cleanup for downstream applications-Recent developments [J]. Fuel Processing Technology,2011,92(8):1395-1410
    [27]P. T. Rodulovic, M. U. Ghani, L. D. Smoot. An improved model for fixed bed coal combustion and gasification[J]. Fuel,1995,74(4):582-594
    [28]B. Gobel, U. Henriksen, T. K. Jensen, et al. The development of a computer model for a fixed bed gasifier and its use for optimization and control[J]. Bioresour. Technol,2007,98(10):2043-2052
    [29]R. Warnecke. Gasification of biomass:comparison of fixed bed and fluidized bed gasifier[J]. Biomass Bioenergy,2000,18(6):489-497
    [30]S. Pierucci, E. Ranzi. A general mathematical model for a moving bed Gasifier,18 th European Symposium on Computer Aided Process Engineering-ESCAPE 18, 2008
    [31]秦育红,冯杰,李文英等.生物质气化影响因素分析[J].节能技术,2004,22(4):3-5
    [32]刘国喜,庄新妹,李文等.生物质气化炉[J].农村能源,1999,88(6):17-19
    [33]郭庆杰,张锴,刘振宇等.生物质的流化床转化[J].煤炭转化,1998,21(3):33-37
    [34]吴创之.生物质气化工艺的设计与选用[J].可再生能源,2003,108(2):51-52
    [35]C. Chen, M. Horio, T. Kojima. Numerical simulation of entrained flow coal gasifiers. Part Ⅰ:modeling of coal gasification in an entrained flow gasifier[J]. Chem. Eng. Sci,2000,55(18):3861-3874
    [36]Y. Guangsuo, Z. Zhijie, Q. Qiang, et al. Experimental studying and stochastic modeling of residence time distribution in jet-entrained gasifier[J]. Chem. Eng. Process,2002,41(7):595-600
    [37]高宁博.高温过热水蒸汽的制备及生物质高温气化重整制氢特性研究[D].大连理工大学,2009
    [38]Dayton D. A review of the literature on catalytic biomass tar destruction. National Renewable Energy Laboratory. NREL/TP-510-32815; 2002
    [39]Donnot A., Reningovolo P., Magne P., et al. Flash pyrolysis of tar from the pyrolysis of pine bark[J]. J. Anal Appl Pyrolysis,1985,8(April):401-414
    [40]Donnot A., Magne P., Deglise X. Experimental approach to the catalyzed cracking reaction of tar from wood pyrolysis[J]. J Anal Appl Pyrolysis,1991,21(3):265-280
    [41]Simell P., Kurkela E., St hlberg P., et al. Catalytic hot gas cleaning of gasification gas[J]. Catal Today,1996,27(1-2):55-62
    [42]Simell P., Kurkela E., St hlberg P., et al. Development of catalytic gas cleaning in biomassgasification[J]. VTT Symp,1996,164:133-40
    [43]Simell P., Hirvensalo E., Smolander V. Steam reforming of gasification gas tar over dolomite with benzene as a model compound[J]. Ind Eng Chem Res,1999,38(4): 1250-1257
    [44]Rapagna S., Jand N., Foscolo P. U. Catalytic gasification of biomass to produce hydrogen rich gas[J]. Int J Hydrogen Energy,1998,23(7):551-557
    [45]Hu G, Xu S., Li S., et al. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts[J]. Fuel Process Technol,2006,87(5):375-382
    [46]Orio A., Corella J., Narvaez I. Performance of different dolomites on hot raw gas cleaning from biomass gasification with air[J]. Ind Eng Chem Res,1997,36(9): 3800-3808
    [47]Wang T. J., Chang J., Lv PM. Novel catalyst for cracking of biomass tar[J]. Energy Fuels,2005,19(1):22-27
    [48]Perez P., Aznar P. M., Ccaballero M. A., et al. Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidised bed gasifier operating with steam-oxygen mixtures[J]. Energy Fuels,1997,11(6):194-1203
    [49]Corella J., Orio A., Toledo J. M. Biomass gasification with air in a fluidized-bed: exhaustive tar elimination with commercial steam reforming catalysts[J]. Energy Fuels,1999,13(3):702-709
    [50]Devi L., Ptasinski K. J., Janssen F. J. Pretreated olivine as tar removal catalyst for biomass gasifiers:investigation using naphthalene as model biomass tar[J]. Fuel Process Technol,2005,86(6):707-730
    [51]Kuhn J. N., Zhao Z., Felix L. G., et al. Olivine catalysts for methane and tar steam reforming[J]. Appl Catal B:Environ,2008,81(1-2):12-26
    [52]Li L., Morishita K., Takarada T. Light fuel gas production from nascent coal volatiles using a natural limonite ore[J]. Fuel,2007,86(10-11):1570-1576
    [53]Matsumura A., Kondo T., Sato S., et al. Hydrocracking Brazilian Marlim vacuum residue with natural limonite. Part 1:catalytic activity of natural limonite[J]. Fuel, 2005,84(4):411-416
    [54]Nordgreen T., Liliedahl T., Sjostrom K. Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass[J]. Fuel,2006,85(5-6): 689-694
    [55]Fukuyama H., Terai S., Uchida M., et al. Active carbon catalyst for heavy oil upgrading[J]. Catal Today,2004,98(1-2):207-215
    [56]Xu C, Hamilton S., Ghosh M. Hydro-treatment of Athabasca vacuum tower bottoms in supercritical toluene with microporous activated carbons and metal-carbon composite[J]. Fuel,2009,88(11):2097-2105
    [57]Abu El-Rub Z., Bramer E. A., Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel,2008,87(10-11):2243-2252
    [58]Lu C. Y., Wey M. Y., Fu Y. H. The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process:the effect of precursors[J]. Appl Catal A:Gen,2008,344(1-2):36-44
    [59]Simell P. A., Bredenberg JB-son. Catalytic purification of tarry fuel gas[J]. Fuel, 1990,69(10):1219-1225
    [60]Sutton D., Kelleher B., Doyle A., et al. Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products[J]. Bioresour Technol, 2001,80(2):111-116
    [61]Swierczynski D., Libs S., Courson C, et al. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound[J]. Appl Catal B:Environ,2007,74(3-4):211-222
    [62]Kuhn J., Zhao Z., Senefeld-Naber A., et al. Ni-olivine catalysts prepared by thermal impregnation:structure, steam reforming activity, and stability[J]. Appl Catal A: Gen,2008,341(1-2):43-49
    [63]Sutton D., Kelleher B., Ross J. R. H. Catalytic conditioning of organic volatile products produced by peat pyrolysis[J]. Biomass Bioenergy,2002,23(3):209-216
    [64]吴家桦,沈来宏,肖军等.串行流化床生物质气化制取合成气试验研究[J].中国电机工程学报,2009,29(11):111-118
    [65]周劲松,赵辉,曹小伟等.生物质气流床气化制取合成气的试验研究[J].太阳 能学报,2008,29(11):1406-1412
    [66]李斌,陈汉平,杨海平等.基于ASPEN PLUS平台的生物质氧气气化制备合成气的模拟研究[J].燃烧科学与技术,2011,17(5):432-436
    [67]赵坤,何方,黄振.生物质化学链气化制取合成气模拟研究[J].煤炭转化,2011,34(4):87-92
    [68]Kristina Goransson, Ulf Soderlind, Jie He, et al. Review of syngas production via biomass DFBGs[J]. Renewable and Sustainable Energy Reviews,2011,15(1): 482-492
    [69]Asadullah Mohammad, Miyazawa Tomohisa, Ito Shinich, et al. Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency[J]. Applied CatalysisA:Genera,1,2004,267(1/2): 95-102
    [70]M. Siedlecki, W. de Jong. Biomass gasification as the first hot step in clean syngas production process-gas quality optimization and primary tar reduction measures in a 100 kW thermal input steam-oxygen blown CFB gasifier[J]. Biomass and Bioenergy, 2011,35(Supplement 1):S40-S62
    [71]李春江.炼化企业污泥焚烧技术研究[D].中国石油大学,2010
    [72]A. Friedl, E. Padouvas, H. Rotter, et al. Prediction of heating values of biomass fuel from elemental composition[J]. Analytica Chimica Acta,2005,544(1-2):191-198
    [73]Sebastian Werle, Ryszard K. Wilk. A review of methods for the thermal utilization of sewage sludge:The Polish perspective[J]. Renewable Energy,2010,35(9): 1914-1919
    [74]Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model[J]. Fuel,2008,87(3):414-421
    [75]Aguiar L., Marquez-Montesinos F., Gonzalo A., et al. Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues[J]. J. Anal. Appl. Pyrol,2008,83(1):124-130
    [76]Fisher T., Hajaligol M, Waymack B., et al. Pyrolysis behavior and kinetics of biomass derived materials[J]. J. Anal. Appl. Pyrol.,2003,62(2):331-349
    [77]Muller-Hagedorn M., Bockhorn H., Krebs L., et al. A comparative kinetic study on the pyrolysis of three different wood species[J]. J. Anal. Appl. Pyrol.,2003,68-69: 231-249
    [78]廖艳芬,王树荣,骆仲泱等.纤维素热裂解过程动力学的试验分析研究[J].浙江大学学报(工学版),2002,36(2):172-176
    [79]Kim S. S., Kim S. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor[J]. Chem. Eng. J.,2004,98(1-2):53-60
    [80]Hu S., Jess A., Xu M. H. Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models[J]. Fuel,2007,86(17-18):2778-2788
    [81]Li D. M., Chen L. M., Zhao J. S., et al. Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China[J]. Chem. Eng. Res. Des,2010,88(5-6):647-652
    [82]Biagini E., Fantei A., Tognotti L. Effect of the heating rate on the devolatilization of biomass residues[J]. Thermochim. Acta.,2008,472(1-2):55-63
    [83]Mario Lanzetta, Colomba Di Blasi. Pyrolysis kinetics of wheat and corn straw[J]. Journal of Analytical and Applied Pyrolysis,1998,44(2):181-192
    [84]R. Font J. Molto, A. Galvez, et al. Kinetic study of the pyrolysis and combustion of tomato plant[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 268-275
    [85]R. Font, J. A. Conesa, J. Molto, et al. Kinetics of pyrolysis and combustion of pine needles and cones[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 276-286
    [86]Atul Sharma, T. Rajeswara Rao. Kinetics of pyrolysis of rice husk[J]. Bioresource Technology,1999,67(1):53-59
    [87]李建芬.生物质催化热解和气化的应用基础研究[D].华中科技大学,2007
    [88]伊晓路,张晓东,郭东彦等.循环流化床螺旋给料器料封装置[J].可再生能源,2004,117(5):41-43
    [89]Gong Cheng, Qian Li, Fangjie Qi, et al. Allothermal gasification of biomass using micron size biomass as external heat source[J]. Bioresource Technology.2012, 107(68-69):471-475
    [90]李琳娜,应浩,涂军令等.木屑高温水蒸汽气化制备富氢燃气的特性研究[J]. 林产化学与二[业,2011,31(5):18-24
    [91]Franco C., Pinto F., Gulyurtlu I., et al. The study of reactions influencing the biomass steam gasification process[J]. Fuel,2003,82(7):835-842
    [92]罗思义.城市生活垃圾破碎机的研制及粒径对垃圾热解气化特性的影响研究[D].华中科技大学,2010
    [93]李雪瑶.紫茎泽兰茎干的热解气化研究[D].中国林业科学研究院,2009
    [94]朱廷钰.煤热解过程气体停留时间的影响[J].燃烧科学与技术,2001,7(3):307-311
    [95]Feng Yan, Leguan Zhang, Zhiquan Hu, et al. Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bed reactor:Influence of particle size and residence time on gas yield and syngas composition[J]. International Journal of Hydrogen Energy,2010,35(19): 10212-10217
    [96]赵先国,常杰,吕鹏梅等.生物质富氧-水蒸汽气化制氢特性研究[J].太阳能学报,2006,27(7):677-681
    [97]苏德仁,黄艳琴,周肇秋等.两段式固定床富氧-水蒸汽气化实验研究[J].燃料化学学报,2011,39(8):595-599
    [98]苏德仁,刘华财,周肇秋等.生物质流化床氧气-水蒸汽气化实验研究[J].燃料化学学报,2012,40(3):309-314
    [99]Xianbin Xiao, Jingpei Cao, Xianliang Meng, et al. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char[J]. Fuel, In Press
    [100]Dai X., Wu C., Li H. B., et al. The fast pyrolysis of biomass in CFB reactor[J]. Energy & Fuels,2000,14(3):552-557
    [101]Fisher T., Hajaligol M., Waymack B., et al. Pyrolysis behavior and kinetics of biomass derived materials[J]. Journal of Analytical and Applied Pyrolysis.2002, 62(2):331-349
    [102]C. R. Cardoso, M. R. Miranda, K. G. Santos, et al. Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse[J]. Journal of Analytical and Applied Pyrolysis,2011,92(2):392-400
    [103]Nasrin Aghamohammadi, Nik Meriam Nik Sulaiman, Mohamed Kheireddine Aroua. Combustion characteristics of biomass in SouthEast Asia[J]. Biomass and Bioenergy, 2011,35(9):3884-3890
    [104]Shinji Fujimoto, Takahiro Yoshida, Toshiaki Hanaoka, et al. A kinetic study of in situ CO2 removal gasification of woody biomass for hydrogen production[J]. Biomass and Bioenergy,2007,31(8):556-562
    [105]曹小伟.生物质气流床气化特性及半焦气化动力学研究[D].浙江大学,2007
    [106]肖军,沈来宏,邓霞等.生物质催化热解气化热重分析研究[J].太阳能学报,2009,30(9):1252-1257
    [107]杨帅,甘云华,杨泽亮.生物质成型燃料热解与燃烧特性研究[J].电站系统工程,2010,26(6):45-48
    [108]Osvalda Senneca. Kinetics of pyrolysis, combustion and gasification of three biomass fuels[J]. Fuel Processing Technology,2007,88(1):87-97
    [109]Changbo Lu, Wenli Song, Weigang Lin. Kinetics of biomass catalytic pyrolysis[J]. Biotechnology Advances,2009,27(5):583-587
    [110]Yi Chen, Jia Duan, Yong-hao Luo. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions[J]. Journal of Analytical and Applied Pyrolysis,2008,83(2):165-174
    [111]L. T. Vlaev, I. G. Markovska, L. A. Lyubchev. Non-isothermal kinetics of pyrolysis of rice husk[J]. Thermochimica Acta,2003,406(1-2):1-7
    [112]米铁,陈汉平,唐汝江等.生物质半焦气化的反应动力学[J].太阳能学报,2005,26(6):765-771
    [113]赵辉,周劲松,曹小伟等.生物质半焦高温水蒸汽气化反应动力学的研究[J].动力工程,2008,28(3):453-458
    [114]李晓翔,舒新前,李刚等.3种农林生物质的热解及动力学研究[J].可再生能源,2010,28(6):63-70
    [115]傅旭峰,仲兆平,肖刚等.不同生物质热解特性及动力学的对比研究[J].锅炉技术,2011,42(5):60-64
    [116]赵志铎.生物质气化过程焦油催化裂解脱除方法研究[D].华北电力大学,2010
    [117]贺鹏.热解温度对生物质焦油裂解率影响的实验研究[D].哈尔滨工业大学,2010
    [118]杨小芹.用于生物质焦油水蒸汽重整的橄榄石载镍催化剂的研究[D].大连理工大学,2009
    [119]孙海权.生物质焦油催化转化试验研究[D].山东理工大学,2009
    [120]降文萍.煤热解动力学及其挥发分析出规律的研究[D].太原理工大学,2004
    [121]Cardoso C. R., Miranda M. R., Santos K. G, et al. Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse[J]. Journal of Analytical and Applied Pyrolysis.2011,92(2):392-400
    [122]Golshan Mazloom, Fatola Farhadi, Farhad Khorasheh. Kinetic modeling of pyrolysis of scrap tires[J]. Journal of Analytical and Applied Pyrolysis.2009,84(2): 157-164
    [123]Juan F. Gonzalez, Jose M. Encinar, Jose L. Canito, et al. Pyrolysis of cherry stones: energy uses of the different fractions and kinetic study[J]. Journal of Analytical and Applied Pyrolysis.2003,67(1):165-190
    [124]Opfermann J. Kinetic analysis using multivariable non-linear regression[J]. J. Therm. Anal. Cal.2000,60(2):641-658
    [125]Ortega A. Some successes and failures of the methods based on several experiments[J].Thermochim.Acta.1996,284(2):379-387
    [126]Ortega A. The kinetics of solid-state reactions toward consensus-part 2:fitting kinetics data in dynamic conventional thermal analysis[J]. Int. J. Chem. Kinet.2002, 34(3):193-387
    [127]Vyazovkin S., Wight A. Isothermal and nonisothermal reaction kinetics in solid:In search of ways toward consensus[J]. J. Phys. Chem. A.1997,101(44):8279-8284
    [128]Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochim. Acta.1999, 340/341(14):53-68
    [129]唐万军.温度积分及固体分解反应的热分析动力学研究[D].武汉大学,2004
    [130]Taro Sonobe, Nakorn Worasuwannarak. Kinetic analyses of biomass pyrolysis using the distributed activation energy model[J]. Fuel,2008,87(3):414-421
    [131]Kenji Hashimoto, Isao Hasegawa, Junichi Hayashi, et al. Correlations of kinetic parameters in biomass pyrolysis with solid residue yield and lignin content[J]. Fuel, 2011,90(1):104-112
    [132]Yi Yang, Tan Li, Shiping Jin, et al. Catalytic pyrolysis of tobacco rob:Kinetic study and fuel gas produced[J]. Bioresource Technology,2011,102(23):11027-11033
    [133]郭晓亚,颜涌捷,李庭琛等.生物质油精制前后热稳定性和热分解动力学研究[J].华东理工大学学报,2004,30(3):270-274
    [134]汪丛伟,阴秀丽,吴创之等.生物油及其重质组分的热解动力学研究[J].工程热物理学报,2009,30(10):1783-1786
    [135]曾艳.生物质及其气化焦油的热解及动力学特性与机理[D].重庆大学,2008
    [136]闫云飞,张力,李丽仙.工业废水污泥的热解及升温速率对热解的影响[J].环境工程学报,2012,6(3):896-901
    [137]Kissinger H. E. Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957,29(11):1702-1706
    [138]Flynn J., Wall L. A. A quick direct method for the determination of activation energy from thermogravimetric data[J]. Polym. Lett.,1966,4(5):323-328
    [139]Ozawa T. A new method of analyzing thermogravimetric data[J]. Bull. Chem. Soc. Jpn.,1965,38(11):1881-1886
    [140]Duan Y., Li J., Yang X., et al. Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG-FTIR study of zinc acetate dihydrate[J]. J. Anal. Appl. Pyrol.,2008,83(1):1-6
    [141]Doyle C. D. Estimating isothermal life from thermogravimetric data[J]. J. Appl Polym. Sci.,1962,6(24):639-642
    [142]Vlaev L. T., Markovska I. G, Lyubchev L. A. Non-isothermal kinetics of pyrolysis of rice husk[J]. Thermochimica Acta,2003,406(1/2):1-7
    [143]邹树平,吴玉龙,杨明德等.微藻热解特性及其动力学分析[J].燃烧科学与技术,2007,13(4):330-334
    [144]陈娟娟,杨海真.热重分析(TG)与质谱分析(MS)联用技术在环境领域应用前景分析[J].环境科学与管理,2007,34(4):131-134
    [145]朱文辉,杨柳,杨红燕等.热重-质谱联用技术应用进展[J].云南化工,2009,36(5):56-59
    [146]赵巍,汪琦,刘海啸等.热分析-质谱联用分析生物垃圾热解机理[J].环境科学与技术,2010,33(5):55-58
    [147]耿中峰.纤维素热裂解机理的理论和实验研究[D].天津大学,2010
    [148]HaiPing Yang, RongYan, HanPing Chen. Characteristics of hemicellulose, cellulose and lignin Pyrolysis[J]. Fuel,2007,86(12):1781-1788
    [149]W. de Jon Ca, A. Pironea, M. A. Wbjtowiczb. Pyrolysis of Miscanthus Giganteus and wood Pellets:TG-FTIR analysis and reaction kinetics[J]. Fuel,2003,82(9): 1139-1147
    [150]鲁许鳌.生物质和煤共气化共燃的实验和机理研究[D].华北电力大学,2010
    [151]杨巧利.生物质焦油和热解油分析方法的建立[D].郑州大学,2007
    [152]秦育红.生物质气化过程中焦油形成的热化学模型[D].太原理工大学,2009
    [153]Siyi Luo, Bo Xiao, Zhiquan Hu, et al. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace[J]. Energy Conversion and Management,2010,51(11):2098-2102
    [154]Siyi Luo, Bo Xiao, Zhiquan Hu, et al. Experimental study on oxygen-enriched combustion of biomass micro fuel[J]. Energy,2009,34(11):1880-1884
    [155]管延文.生物质制燃气及其城镇供应系统的研究[D].华中科技大学,2010
    [156]郭献军,肖波.生物质微米燃料特性分析[J].烟台大学学报(自然科学与工程版),2008,21(4):295-298
    [157]肖波,郭勇,杨加宽等.生物质粉体燃烧技术的初步研究[J].能源技术,2004,25(5):197-199
    [158]Guo Xianjun, Xiao Bo, Hu Zhiquan, et a.1 Gasification characteristics of biomassmicron fuel (BMF):Study on steam gasification for hydrogen-rich gas products[J]. Fresenius environmental bulletin,2008,17(5):1431-1435
    [159]易仁金.城市生活垃圾催化热解的实验研究[D].华中科技大学,2007
    [160]李新禹.城市固体垃圾热解的设备与特性研究[D].天津大学,2006
    [161]罗思义,肖波,郭献军.生物质微米燃料旋风燃烧实验研究[J].锅炉技术,2010, 41(1):69-72
    [162]Campoy M., Gomez-Barea A., Vidal F. B., et al. Air-steam gasification of biomass in a fluidised bed:process optimisation by enriched air[J]. Fuel Process. Technol, 2009,90(5):677-685
    [163]Wang Y., Namioka T., Yoshikawa K. Research on gasification and power generation from waste paint dregs[J]. J. Environ. Eng.,2008,3(1):182-191
    [164]Sun S. Z., Zhao Y. J., Tian H. M., et al. Experimental study on cyclone air gasification of wood powder[J]. Bioresour. Technol,2009.100(17):4047-4049
    [165]马志刚,吴树志,白云峰.生物质与煤混合燃烧的技术评述[J].电站系统工程,2009,25(6):1-4
    [166]肖波,邹先枚,杨家宽等.生物质粉体燃烧特性的研究[J].可再生能源,2007,25(1):47-50
    [167]傅玉普,郝策,曹殿学.物理化学[M].大连:大连理工大学出版社,2000
    [168]曾丹荃,敖越,张新铭等.工程热力学[M].北京:高等教育出版社,2004
    [169]熊思江.污泥热解制取富氢燃气实验及机理研究[D].华中科技大学,2010
    [170]李海英.生物污泥热解资源化技术研究[D].天津大学博士学位论文,2006
    [171]Cohce M. K., Dincer I., Rosen M. A. Energy and exergy analyses of a biomass based hydrogen production system[J]. Bioresour. Technol,2011,102(18): 8466-8474
    [172]Cao Y, Wang Y, Riley J. T, et al. A novel biomass air gasification process for producing tar-free higher heating value fuel gas[J]. Fuel Process. Technol,2006, 87(4):343-353
    [173]吾瑜吉.生物质半焦气化技术的研究现状[J].广州化工,2010,38(9):52-53
    [174]马强,王勤辉,韩龙等.02/CO2气氛下生物质半焦加压燃烧特性的实验研究[J].新能源及工艺,2010,2:33-36
    [175]张永光.生物质及其半焦的混烧实验研究[D].华中科技大学,2012
    [176]Dinesh Mohan, Charles U. Pittman Jr, Mark Bricka, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid and Interface Science,2007,310(1):57-73
    [177]Sheng G. Y., Yang Y. N., Huang M. S., et al. Influence of pH on pesticide sorption by soil containing wheat residue-derived char[J]. Environmental Pollution,2005, 134(3):457-463
    [178]Jindarom C., Meeyoo V., Kitiyanan B., et al. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge[J]. Chemical Engineering Journal,2007,133(1-3):239-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700