大豆脂肪氧化酶基因RNAi表达载体的构建及表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究应用基因工程手段,克隆大豆脂肪氧化酶基因核心保守序列,构建高效的具有hpRNA和ihpRNA结构的大豆脂肪氧化酶基因RNAi表达载体。通过花粉管通道法将其导入大豆,抑制大豆脂肪氧化酶基因的表达,调控脂肪氧化酶的生物合成过程。以期通过基因工程手段,改变大豆脂肪氧化酶合成途径,降低大豆脂肪氧化酶含量,提高大豆油份含量,培育具有优良品质的大豆品种。取得如下结果:
     1.改造植物表达载体pCAMBIA1301,去除其臂内潮酶素基因,并在臂内按逆时针方向添加一个从质粒pBI121上酶切下来的35S启动子。
     2.以大豆品种“吉农18号”的基因组DNA为模板,选取大豆三种脂肪氧化酶同功酶基因同源性最高部分,通过PCR扩增得到大豆脂肪氧化酶基因片段,将其克隆到pMD18-Tvector载体上,测序结果表明:克隆片段大小为357bp。对比NCBI基因Bank,与已发表的基因一致。将大豆脂肪氧化酶基因片段按正向+反向的顺序插入到pCAMBIA1301 35S启动子下,构建大豆脂肪氧化酶基因hpRNA干扰表达载体pC1301LoxRi。通过花粉管通道法转化大豆品种“吉农18号”,获得T0代转化籽粒,萌发后以单棵植株叶片的总DNA为模板,以pCAMBIA1301臂内GUS基因设计一对引物进行PCR扩增,结果从6棵植株中扩增得到720bp的特异带,回收该条带连接于pMD18-Tvector载体并测序,结果显示其为要扩增的GUS基因片段。为进一步确定外源基因的整合情况,从PCR阳性植株中随机抽取2株进行Southern blot分析。结果表明,转化株均有杂交带出现,外源基因以单拷贝和双拷贝的形式插入,而未经转化的植株没有杂交信号出现,证明外源基因已整合到大豆基因组中。以转基因大豆籽粒的总RNA反转录成的cDNA为模板做RT-PCR,从电泳条带的亮度上看,转基因植株和非转基因植株的内标18SRNA含量相同,而内源脂肪氧化酶mRNA的含量明显降低。
     3.克隆了大豆“吉农18号”自身的一段内含子,片段长度230bp,将其插入到表达载体pC1301LoxRi的正义基因片段和反义基因片段中间,构建大豆脂肪氧化酶基因ihpRNA干扰表达载体pC1301LoxiRi。通过花粉管通道法转化大豆品种“吉农18号”,获得T0代转化籽粒,萌发后以单棵植株叶片的总DNA为模板,以pCAMBIA1301臂内T-DNA区GUS基因设计一对引物进行PCR扩增,结果从18棵植株中扩增得到720bp的特异带,回收该条带连接于pMD18-Tvector载体并测序,结果显示其为要扩增的GUS基因片段。为进一步确定外源基因的整合情况,从PCR阳性植株中随机抽取3株进行Southern blot分析。结果表明,转化株均有杂交带出现,外源基因以单拷贝和双拷贝的形式插入,而未经转化的植株没有杂交信号出现,证明外源基因已整合到大豆基因组中。以转基因大豆籽粒的总RNA反转录成的cDNA为模板做RT-PCR,从电泳条带的亮度上看,转基因植株和非转基因植株的内标18SRNA含量相同,而内源脂肪氧化酶mRNA的含量明显降低。
     4.以T1代转化的籽粒为材料,采用紫外分光光度法对脂肪氧化酶活性进行了测定,结果显示,转pC1301LoxRi质粒大豆的脂肪氧化酶活性分别为降低62%,转化pC1301LoxiRi质粒大豆的脂肪氧化酶活性减低74%。说明外源基因的导入有效地抑制了脂肪氧化酶基因的表达。
     5.以T1代转化的籽粒为材料,采用SDS-PAGE电泳,结果显示转化pC1301LoxRi质粒大豆的脂肪氧化酶含量比对照平均降低55%,转化pC1301LoxiRi质粒大豆的脂肪氧化酶含量比对照平均降低71%。
     6.以T1代转化的籽粒为材料,转基因植株蛋白质的凯氏定氮和索氏提取测定结果显示,转基因植株蛋白质含量均有所下降,脂肪含量均有所上升:其中转化pC1301LoxRi质粒植株蛋白质含量平均为36.06%,比非转基因对照降低0.95个百分点(非转基因蛋白质含量37.01%),最大降低1.28百分点达到35.73%,脂肪平均含量23.89%,比非转基因对照平均提高了0.74个百分点(非转基因脂肪含量23.15%),最大提高1.09个百分点,达到24.24%;转pC1301LoxiRi质粒植株蛋白质含量平均为35.63%,比非转基因植株对照降低了1.38个百分点(非转基因蛋白质含量37.01%),最大降低1.62百分点达到35.39%,脂肪平均含量24.33%,比非转基因对照平均提高了1.18个百分点(非转基因脂肪含量23.15%),最大提高1.61个百分点,达到24.76%。
     7.观察T1代转化植株的主要农艺形状,包括:株高、节数、结荚数、单株粒数、虫食粒、百粒重,发现转基因植株与非转基因对照无明显差别。
     8.对转基因植株T2代的PCR分析及PCR-Southern结果证明:外源基因在转基因后代中能遗传。其分离比基本符合孟德尔的遗传规律。
     9.探讨了应用重组PCR构建植物基因RNA干扰构件,初步证明其是一种简便、快捷、可行、适用范围广的方法。
     10.初步探讨了大豆花粉管通道法的室内转化条件,证明在我国北方地区采用花粉管通道法转化大豆可以在室内进行,每年可以加代一次。
     本项研究首次将RNA干扰技术应用于改良大豆脂肪氧化酶含量,取得了良好效果,获得了脂肪氧化酶含量明显降低,脂肪含量明显提高的转基因大豆植株,突破了传统育种方法在改良大豆品质方面易受种质资源限制和育种时间长的缺点,为应用RNA干扰技术改良大豆品质提高大豆油份含量探索了新的途径,实现了大豆品质改良育种和高油育种的方法创新,也为以后通过RNA干扰技术改良大豆其它营养抑制因子,提高大豆品质奠定了基础,具有重要的理论和实践意义。
The purpose of this research is to decrease the content of lipoxidase in soybean and increasethe content of soybean oil, hope to found some new species that have excellence grace. Withgenetic engineering method, the lipoxidase gene of core consensus sequence were cloned, ahighly efficient with hpRNA and ihpRNA of RNAi expression system were constructed. Thenthe gene constructs were introduced into soybean mediated by pollen tube passage method inorder to restrain the gene expression of lipoxidase and regulate the biological composing processof lipoxidase. The main results are as fellow:
     1. Transform the plant expression vector pCAMBIA1301, removal the hygromycin, and add35s promoter according to anti-clocwise from plasmid pBI121.
     2. Using the genomic DNA of soybean variety "JiNong 18" as template, to select the highesthomology from the three lipoxidase of isozyme. The lipoxidase was isolated by PCR and wascloned into pMD18-T Vector. The size of this promoter is 357bp. Sequencing analysis of thislipoxidase gene through NCBI GENE BANK showed that was the same to the enunciatedbefore. Using the fragment of soybean lipoxidase gene into pCAMBIA1301 35S promoter, thefragment is norientation and inversus, then, pC1301LoxRi, the hpRNAi expression vector ofsoybean lipoxidase gene was constructed. The To seeds of soybean variety "JiNong18" wasreapped by pollen tube passage method. After the seeds were germinated, using geromic DNA ofthe regenerated plants' leaves as template, PCR amplification was performed withpCAMBIA1301 gus gene primers. The 721bp PCR product was obtained respectively from the12 transgenic plants. Link the extraction of the product to pMD18-Tvector, sequencing analysisshowed the fragment amplified was the gus gene we need. Then, Southern blot analysis wasperformed to further identify the number of copies that of gene integrated into the geromic DNAof the transgenic plant, And the result indicates that hybrid signal occurred in both the transgenicplant lines with one or two copies, respectively. But there was no hybrid signals shown in plantsthat hadn't been transplanted. Using the cDNA from the transgene of soybean as template forRT-PCR, the content of the lipoxidase mRNA in transgene plants decreased obviously.
     3. Clon a piece of intervening sequence from soybean variety "JiNongl8", the size of thispromoter is 230 bp. The fragment of soybean lipoxidase gene into pC1301LoxRi expressionvector is between the the norientation and inversus. Then the hpRNAi expression vector ofsoybean lipoxidase gene pC1301LoxiRi was constructed. The T_0 seeds of soybean variety "JiNong18" was reapped by pollen tube passage method. After the seeds were germinated, usinggeromic DNA of the regenerated plants' leaves as template, PCR amplification was performedwith pCAMBIA1301 gus gene primers. The 721bp PCR product was obtained respectively fromthe 14 transgenic plants. Link the extraction of the product to pMD18-Tvector, sequencinganalysis showed the fragment amplified was the gus gene we need. Then, Southern blot analysiswas performed to further identify the number of copies that of gene integrated into the geromicDNA of the transgenic plant, And the result indicates that hybrid signal occurred in both thetransgenic plant lines with one or two copies, respectively. But there was no hybrid signalsshown in plants that hadn't been transplanted. Using the cDNA from the transgene of soybean astemplate for fRT-PCR, the content of the lipoxidase mRNA in transgene plants decreasedobviously.
     4. From the generation transgenic T_1 seeds, the activity of lipoxidase was assayed using theuntraviolet spectrophotometry method. The result indicates that the activity of soybeanlipoxidase which transformed by pC1301LoxRi plasmid decreased by 62%, and the activity ofsoybean lipoxidase which transformed by pC1301LoxiRi plasmid decreased 76%. And theactivity indicates that the insert of introduced has efficiently restrained the expression oflipoxidase.
     5.The content of lipoxidase also assayed from T_1 generation transgenic soybean usingSDS-PAGE method to test. The result indicate that compare to control, the content of lipoxidaseof transgenic soybean were decreased, among the total which transformed by pC1301LoxRiplasmid average decreased by 55%, and the activity of soybean lipoxidase by pC1301LoxiRiplasmid average decreased 71%.
     6. Use the transgenic T1 seeds, The protein and oil contents in the seeds of the transgenic soybeans weredetermined by the Kjeldahl method for protein content and the SoxMet method for oil content, respectively.The results showed that the content of protein of transgenic soybean were decreased, among the total,average content of protein which transformed by pC1301LoxRi plasmid were 36.06%,and thenon-transgenic decrease 0.95 persent, the maximum decrease 1.28 persent which to achieve35.73%; the average content of oil which transformed by pC1301LoxiRi plasmid were 23.89%,and the non-transgenic increase 0.74 percent, the maximum increase 1.09 percent which toachieve 24.24%; the average content of protein which transformed by pC1301LoxiRi plasmidwere 35.63%, and the non-transgenic decrease 1.38 percent, the maximum decrease 1.62 percentwhich to achieve 35.39%; the average content of oil which transformed by pC1301LoxiRiplasmid were 24.33%, and the non-transgenic increase 1.18 percent, the maximum increase1.61 percent which to achieve 24.76%.
     7. The result shows that the agronomy character of the transgenic T1 soybean has no obviousdifference with the control through plant laboratory observing which include plant height, thenode number, pod numbers, grain number of single plant, the seeds eaten, 100-grain weight.
     8. The transgenic T_2 seeds were determined by PCR and PCR-Southern blot, the result showsthat the foreign gene may be heridable over successive generations, the segregation ratio wasbasically corresponds with the Mendelian genetic law.
     9. Construct the RNA components of plant gene applied recombinant PCR was discussed, itpresents preliminary proof that it is a simple, rapid, feasible and wide application range method.
     10. Indoor conversion condition of pollen tube passage was discussed, it presents that it cancarry out convert soybean indoor by pollen tube passage in the northern part of the country,adding generation one time every year.
     The study has obtained the good effect and obtained the transgenic soybean whichlipoxidase content obviously decrease and the fat content obviously increase through applyingfor the RNA interference technology to the improvement soybean lipoxidase content at the firsttime, it broked through the shortcoming of the traditional breeding method in the improvementsoybean quality aspect easily the idioplasm resourced limit and the breeding time long, itexplored the new way for improvement soybean quality and enhanced the soybean oil contentusing the RNA inference technology, it has realized the innovation of the soybean qualityimprovement breeding and the high oil breeding method, also has the important theory and thepractice significance. For later through the RNA interference technology improvement soybeanother nutrition inhibiting factors, and lay the foundation for enhance the soybean quality.
引文
[1]麻浩,官春云,大豆科学1999年18卷1期62-65
    [2]丁安林,1995.大豆脂肪氧化酶研究进展·大豆科学·14(1)·67-79
    [3]Kato et al . 1992, Appearance of new lipoxygenase in soybean cotyledona afeter germination and evidence for expression of a major new lipoxygenase gene. Plant Physiol. 110, 287-299
    [4]Saravits, DM.et al.,1996. The differential expression of wound-inducible Lipoxygenase gene in soybean leaves. Plant Physiol, 110, 287-299
    [5]Hildebrand. D. et al.,1983, Lipoxygenase activities in developing and germinating soybean seeds with and without lipoxygenase-1, Bot Gax, 114, (2);212-216
    [6]Hildebrand. D. et al., 1991, Changea in lipoxygenase isozyme levela during soybean embryo development. Plant Science. 75;1-8
    [7]Veroany-Gerritaen, M. et al.,1983, Localization of lipoxygenase 1 and 2 in germination soybean seed by an indirect immunofluoreacence technique. Plant Physiol:73;262-267
    [8]Grimes, HD, et al.,1993, Expression and accumulation patterns of nitrogen-responsive lipoxygenase in soybeans. Plant Physiol. 103:457-466.
    [9]Hildebrand. DF. et al., 1999. Paroxidative rasponsas of leaves in two soybean genotypes injured by Twospotted Spider Mites. J. Economic Entomology:79:1459-1465
    [10]Trawsths. SE. 1995.-Soybean lipoxygenase mutgnts and seed longevity. Crop Sei. 35: 862-868
    [11]Mohri. S. et al,.1990, Physiological effect of soybean seed lipoxygenase on insects. Agric Biol Chern. 54:2265-2270
    [12]Shukle, RH. et al,.1983. Lipoxygenase, crysin inhibitor and lection from soybean:effects on larvsl growth of Manducs Sexts(Lepidoptera:Sphingdse),Environ Entonol, 12:787-791
    [13]Grimes. HD, et al.,1992. Expreasion, activity and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean.Plant Physiol:103:457-466
    [14]张太平等,大豆脂肪氧化酶缺失体的农艺和品质性状鉴定,2000,中国油料作物学报:22:27-30
    [15]Pfeiffer. Tw. et al . ,1992, Agronomie performsnce of soybean lipoxygenase isolione. Crop sci:32:357-362
    [16]Kitamura. K, et al. 1987, Performance of near-isogenic lines lacking seed lipoxygenase. Soybean Genetics Newsletter. 14:109-112
    [17]Hajika, M. et al. , 1991. Aline lacking all the seed lipoxygenase isoxymes in soybean induced by gammsrsy irradiation. Japan J. Breed:41:507-509
    [18]Hailka. M. et al. ,1992. Genetic relationships among the genea for lipoxygenase-1, -2 snd-3 isozymes inSoybean seed. Japan J. Breed. 42:787 -792
    [19]方允中等.1993.自由基生命科学进展,原子能出版社
    [20]徐文英等,1995.大豆脂肪氧化酶同功酶缺失体的苗期叶片超弱发光研究.大豆科学,14(3):289-278
    [21]Axelrod B, Cheesborough T M, Laasko S. Lipoxygenase from soybeans. Meth Enzymology, 1981, 71: 441-451.
    [22]石胜尧,张延坤,郭大发,等.大豆脂肪氧化酶活性的测定.营养学报,1996,18(3):354-357.
    [23]傅翠真,徐文英.B胡萝 素漂白实验测定大豆脂肪氧化酶活性的研究.中国粮油学报,1996,11(2):43-45
    [24]Kitamura. K.. Biochemical characterization of lipoxygenase lackingmutants, L-1-less, L-2-less and L-3-less soybeans. Agric BiolChem, 1984, 48(9): 2339-2346
    [25]Seizo Yabuuchi, Richard M Lister, Bernard Axelrod, et al. Enzyme-Linked Immunosorbent Assay for the Determination of Lipoxygenase Isoenzymes in Soybean . Crop Science, 1982, 22: 333-337
    [26]James M Narvd, Walter R Fehr, Linda C Weldon. Analysis of Soybean seed lipoxygenases. Crop Seience Society of America, 2000, 40: 838-840.
    [27]张利华,张志良,沈曾佑.不同物质对大豆幼苗化学发光的影响.华东师范大学学报(自然科学版),1997,4:80-86.
    [28]Yasuo Kondo, Teruo Miyazawa, Junya Mizutani. Detection andtime-course analysis of phospholipid hydroperoxide in soybeanseedlings after treatment with fungal elicitor, by chemiluminescence-HPLC assay. Bioehim Biaphys Acta, 1992, 1 127: 227-232.
    [29]徐文英,傅翠真,苏震.大豆脂肪氧化酶的研究动态.植物生理学通讯,1996,32(4):308-313].
    [30]Shibata D, Steczko J, Dixon J E, et al. Primary structure of soybean lipoxygenase-1. Journal of Biology and Chemistry, 1987, 262(21): 10080-10085.
    [31]Shibata D, Steczko J, Dixon J E, et al. Primary structure of soybeanlipoxygenase-2. Joumal of Biology and Chemistry, 1988, 263: 6816-6821.
    [32]Richard L Y, Miriam F, Cecilia L. Isolation and characterization of a soybean lipoxygenase-3 gene. Molecular General Genetics, 1988, 21 1: 215-222.
    [33]WangC, CroftK PC, J?rlforsU, etal. Subcelularlocalization studies indicate that lipoxygenases 1 to 6 are not involved in lipid mobilization dudng soybean germ ination. Plan t Physiology, 1999, 120: 227-235.
    [34]Bengamin F Matthews,Thomas E, Devine, Jane Metal. Incorporation of Sequenced cDNAan d Ge nomic Markers into the Soybean Ge neticMap. Crop Science. 2001, 41: 516-521.
    [35]孙君明,伍树明,陶文静,等.大豆脂肪氧化酶-1缺失基因(1x1)的RAPD标记.中国农业科学,2004,37(2):170-174.
    [36]段红梅,王文秀,常汝镇,等.大豆SSR标记辅助遗传背景选择的效果分析.植物遗传资源学报,2003,4(1):36-42.
    [37]邱丽娟,常汝镇,许占友,等.利用分子标记评价大豆种质的研究展.大豆科学.1999,18(4):347-350.
    [38]Greg Hannon (2003) .RNAi:A Guide to Gene silencing . Cold Spring Harbor Laboratory Press . pp. 5-21
    [39]Cameron F. H, Jennings P. A ( 1991 ) . Inhibition of gene expression with a short sense fragment. Nucleic Acids Res 19,469-474.
    [40]Guo S, Kemphues K. J (1995) . par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thrkinase that is asymmertrically distributed .Cell 81,611-620.
    [41]Waterhouse P. M, Graham M. W, Wang M. B(1998). Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci 95, 13959-13964
    [42]Fire A, Xu S, Montgomery M. K, Kostas S. A, Driver S. E, Mello C. C (1998) . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391. 806-811.
    [43]Wassenegger M. (2000.) RNA-directed DNA methylation. Plant Mol. Biol 43,203-220.
    [44]Martinez J,Patkaniowska A, Vrlaub H, Lu hrmann R, Tuschl T (2002) .Single-stranded antisense siRNAs guide target RNA cleavage in RNAi.Cell 110,563-574.
    [45]Nykanen A, Haley B, Zamore P. D (2001)..ATP requirement and small interfering RNA structure in the RNA interference pathway. Cell 107, 309-321.
    [46]Hutvagner G, Zamore P. D (2002) . RNAi: nature abhors a double-stranded, Curr. Opin. Genet Dev 12:225-232.
    [47]Torgeir Holen, Mohammed Amarzguioui, Eshrat Babaie and Hans Prydz (2003).Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway.Nucleic Acids Research 31, 2401-2407
    [48]Allison H. S. Hall, Jing Wan, April Spesock, Zinaida Sergueeva, Barbara Ramsay Shaw and Kenneth A. AlexanderHigh. ( 2006. ) potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Research 34, 2773-2781
    [49]Allison H. S. Hall, Jing Wan, Erin E. Shaughnessy, Barbara Ramsay Shaw and Kenneth A. Alexander' (2004) .RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Research 32, 5991-6000
    [50]Torgeir Holen', Svein Erik Moe, Jan Gunnar Sφrbφ, Trine J. Meza, Ole Petter Ottersen and Arne Klunglan (2005). Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo. Nucleic Acids Research 33, 4704-4710
    [51]Wassenegger M (2000) . RNA-directed DNA methylation. Plant Mol. Biol 43,203-220.
    [52]Bender J (2001) .A vicious cycle:RNA silencing and DNA methylation in plants.cell 106,129-137
    [53]Metle M. F, Aufsatz W, Van der Winden J, Matzke M. A, Matzke A. J. M (2000) . Transcriptional gene silencing and promoter methylation triggered by double stranded RNA. EMBO J 19,5194-5201.
    [54]Bartel B.and Barrel D P (2003) .MicroRNAs:at the root of plant development. Plant Physiol 132,709-717
    [55]Llave C, Xie Z, Kasschau K.D, Cardngton J. C (2002) . Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297,2053-2056.
    [56]Wianny F, Zernicka-Goetz. M (2000) . Specific interference with gene function by double-stranded RNA in early mouse development Nat. Cell Biol 2,70-75.
    [57]Cogonz G, Macino G (1999) . Gene Silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase.Nature 399,166-169.
    [58]Zngelbrecht I, Van Houdt H, Van Montagu M, Depicker A (1994) . Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci 91, 10502-10506.
    [59]Vaucheret H (1992) . Promoter-dependent trans-inactivation in transgenic tobacco plants: kinetic aspects of gene Silencing and gene reactivation. C. R. Acad. Sci 317, 310-323.
    [60]Vaucheret H (1993) . Indentification of a general Silencer of 19S and 35S promoters intransgenic tobacco plants: 90bp of homology in the promoter sequence are sufficient for trans-inactivation. G. R. Acad. Sci 316, 1471-1483.
    [61]Chicas A, Macion G (2001) . Characteristics of post-transcriptional gene silencing. EMBO Rep.Z,992-996.
    [62]Xiaoyu Zhang. Junshi Yazaki.Ambika Sundaresan.Shawn Cokus. Simon W.-L. Chan. Huaming Chen.Ian R. Henderson. Paul Shinn.Matteo Pellegrini. Steve E. Jacobsen. and Joseph R. Ecker (2006) Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis .cell 121,207-221
    [63]Sijen T, Fleenor J, Simmer F. ( 2001 ) . On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107,465-476.
    [64]赵明敏,赵建,郭永清.(2006).RNA干扰及其在植物研究中的应用.农业生物技术科学4:36-39
    [65] Minsung Kim, Wynnelena Canio, Sharon Kessler, Neelima Sinha(?) (2001) Developmental Changes Due toLong-Distance Movement of a Homeobox Fusion Transcript in Tomato. Science 293,287 -289
    [66]Voirmet O, Vain P, Angell S, Baulcombe D. C (1998). Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95,117-187.
    [67]Lucas W. J. Yoo B. C, kragler F (2001) . RNA as a long-distance information macromolecule in the plants Nat. Rev. MoL Cell. Boil 11,849-857.
    [68]Berntein E, Caudy A. A, Hamond S. M, Hannon G. J (2001) . Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.
    [69]Sharp P. A (2001) . RNA interference-2001. Gene Dev15,485-490.
    [70]Michael W, Gabi K (2006) .Nomenclature and functions of RNA-directed RNA polymerases.Trends in Plant Science 3,142-152
    [71]Ceruttl L, Mian N, Bateman A (2000). Domains in gene silencing and cell differentiation proteins: The novel DAZ domain and redefinition of Piwi domain. Trends Biochem Sci 25,481-482.
    [72]Carmell M.A, Xuan Z, Zhang. M. Q (2002) . The Argonaute family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Gene Dev 16,2733-2742.
    [73]Facard M,Boutet S,Morel J.B (2000) .AGO1、QDE-2 and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animas. Proc Natl Acad Sic 97, 11650-11654
    [74]Grey Hanon (2003) . RNAi: A Guide to Gene silencing. Cold spring Harbor Laboratory Press.PP. 406.
    [75]Parrish S,Fire A (2001 ).Distinct roles for RDE-1 and RDE-4 during RNAs interference in Caenorhabditis elegans .RNA 7,1397-1402
    [76]Catalanotto C,Azzalin G, Macino G, Cogoni C (2002) Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora..Genes Dev 16,790-795
    [77]Baumercer N, Baulcombe D.C (2005) .Arabidopsis ARGONAVTE1 is an RNA slicer that selectively recnits microRNAs and short interfering RNA .Proc Natl Acad Sci 102,11928-11933
    [78]FraserA.G,KamathR.S,ZipperlenP,Martinez-CamposM,sohrmanM,AhringerJ (2000) .Functionalgenamic analysis of C.elegans chromosome I by systemic RNA interference.Nature 408,325-330
    [79]Wesley S.V, Helliwell C,A,Smith N.A,Wang M.B,Rouse D.T.LiuQ (2001) .Construct design for efficient effective and high-throughput gene silencing in plants.Plant J 27,581-590.
    [80]FraserA.G,KamathR.S ,ZipperlenP, Martinez-CamposM,sohrmanM,AhringerJ (2000) .Functionalgenamic analysis of C.elegans chromosome I by systemic RNA interference.Nature 408,325-330
    [81]Wesley S.V, Helliwell C,A,Smith N.A,Wang M.B,Rouse D.T.LiuQ (2001) .Construct design for efficient effective and high-throughput gene silencing in plants.Plant J 27,581-590.
    [82]Peele C,Jordan C,V, Muangsan (2001) .silencing of a meristematic gene Using gemini virus-derived vectors Plant J 27,357-366
    [83]Birch R.E (1997) .Plant transformation:Problems and strategies for practical application .Plant Mol.Biol 48,297-326
    [84]Schob H,Kunz.C,Meins F.J (1997) .Silencing of transgenes introduced into leaves by agroinfiltration :A simple,rapidmethod for investigating sequence requirements for gene silencing .Mol. Gen Genet 256,581-585.
    [85]Erik L, Javier R, Carolien F, Vered R, Bert C, Henk F, Ton B and Ren(?) G (2004) . RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula . Journal of Experimental Botany 399, 983-992
    [86]Grey Hanon (2003). RNAi: A Guide to Gene silencing. Cold spring Harbor Laboratory Press.pp.249-255.
    [87]Wesley S.V, Helliwell C,A,Smith N.A,Wang M.B,Rouse D.T.LiuQ (2001) .Construct design for efficient effective and high-throughput gene silencing in plants.Plant J 27,581-590.
    [88]Daisuke Miki and Ko Shimamoto (2004) . Simple RNAi Vectors for Stable and Transient Suppression of Gene Function in Rice . Plant and Cell Physiology 4, 490-495
    [89]Guo H.S,Fei J.F, Xie Q (2003) .A chemical-regulated inducible RNAi system in plants[J].Plant J 34:383-392
    [90]Kamath R.S, Fraser A G ,Dong y (2003) . Systematic analysis functional analysis of the Caenorhabditis elegans genome using RNAi .Nature 421, 231-237.
    [91]Ashrafi K, Chang F.Y, Watts J .L (2003).Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268-272.
    [92]Waterhouse P.M,Helliwell C.A (2003) .Exploring plant genomes by RNAi -induced gene silencing. Nat Rev Genet 4, 29-38
    [93]Zhaosheng.Li, Meina. Y (2006) . A novel nuclear-localized CCCH-type zinc finger protein, .OsDOS, is involved in delaying leaf senescence in rice. Plant Physiology 4, 1376-1388
    [94]Papon N ,Vansin A ,Gantet P (2004) Histidine-containing phosphotransfer domain extinction by RNA interference turns off a cytokinin signaling circuitry in Cathatanthus roseus suspension cells.J FEBS Lett 558, 85-88
    [95]Kong, Zhaosheng; Li, Meina (2006) . A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiology 4, 1376-1388
    [96]Zhang.Liangran,Tao Jiayi,Wang. Shunxin (2006) . The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant. Mol. Biol 4,533-554
    [97]Jensen P E, Haldrup A, Zhang S (2004) .The PSI-O subunit of plant photosyststem I is involved in balancing the excitation prossure between two photosystems.J Biol Chem 279,24212-24217
    [98]Ketelaar T ,Allwood E G, Anothony R (2004) .The actin-interacting protein AIP1 is essential for actin organization and plant development.J Curr Biol 14,145-149
    [99]Stevens R, Grelon M,Vezon D (2004) .ACDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. Plant Cell 16,99-113
    [100]Daisuke Miki, Rika Itoh and Ko Shimamoto (2005) . RNA Silencing of Single and Multiple Members in a Gene Family of Rice . Plant Physiology 138, 1903-1913
    [101]Senthil Subramanian, Madge Y .Graham,Oliver Yu (2005) .RNA interference of Soybean is oflavone synthase gene leads to silencing in tissues distal to the transformation site and euhanced susceptibility to Phytophthora Sojae,Plant Physiology 137,1345-1353
    [102]李小平,马媛媛,李鹏丽等(2005),利用RNA干扰敲减rlpk2基因的表达可以延缓大豆叶片衰老.科学通报11,1090-1096
    [103]Hirotaka K, Eri K, Robert W. Ridge and Hiroshi K (2006) . RNAi Knock-Down of ENOD40s Leads to Significant Suppression of Nodule Formation in Lotus japonicus .Plant and Cell Physiology 47,1102-1111
    [104]Alice A. Chen, Austin M. Derfus, Salman R. Khetan and Sangeeta N. Bhatia (2005).Quantum dots to monitor RNAi delivery and improve gene silencing .Nucleic Acids Research 33,190-196
    [105]Pinto Y.M, Kok R.A,Bandcombe D.C(1999).Resistance to rice yellow mottle virus(RYMV)in cultivated African rice varieties containing RYMV transgenes.Nature Biotechnology17,702-707
    [106]Abbott D,Wang M.B,Waterhouse P.A(2000).A single copy of a virusdedved transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology 1,347-356
    [107]Tenllado F, Martinez-GarciaB,Vargas M(2003).Crude extracts of bacterially expressed dsRNA can be used to protect plants ngainst virus infections. JBMC Biotechonl 3,3
    [108]Ramanjulu S,Jian-kang Zhu(2004).Novel and stress-regulated microRNAs and other small RNAs form Arabidopsis. The Plant Cell 16,2001-2019
    [109]Fatma K,Guy Charles L (2005) . RNA interference of Arabidopsis beta-amylase 8 prevents maltose accumulation upon cold shock and increase sensitivity of PSⅡ photochemical efficiency to freezing stress.The Plant Journa.44,730-734.
    [110]Guiliang Tang and Gad Galili (2004) . Using RNAi to improve plant nutritional value:from mechanism to application TRENDS in Biotechnology, 22,68-74
    [111]Falcosc(1995).Biotechnology13,577-582.
    [112]李加瑞,赵伟,李全梓(2005).Waxy基因的RNA沉默使转基因小麦种子中直链淀粉含量下降.遗传学报32,846-854
    [113]Kusaba M,Miyahara K, Iida S,Fukuoka H (2003) .Low glutelin contentl: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15,1455-1467
    [114]Chioa-Fen Chuang ,Meyerowite E.M (2000) .Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci VSA.97,4985-4990
    [115]Meilan R ,Branner A M,Skinner J S (2001) Modification of flowering intransgenic trees. Sci 41,247-256
    [116]Satoru M, Daisuke M,Masahiro A (2005) .RNAi-mediated Silencing of OsGEN-L(OsGEN-like),a new member of the RAD21XPG nuclease family, cause male sterility by defect of microspore development in rice.Plant Cell physiol 46,699-715
    [117] Zeynep A, Thomas H and Michael B (2005) . E-RNAi: a web application to design optimized RNAi constructs. Nucleic Acids Research(Web Server Issue)W582-W588
    [118] Thomas H, Zeynep A, Juerg B and Michael B (2006) . GenomeRNAi: a database for cell-based RNAi phenotypes Nucleic Acids Research: D492-D497
    [119] A. Olson, N. Sheth, J. S. Lee, G. Hannon and R.Sachidanandam. (2006) .RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs Nucleic Acids Research 34,D153-D157
    [120] Kristin C. Gunsalus*, Wan-Chen Yueh, Philip MacMenamin and Fabio Piano. (2004) . RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects .Nucleic Acids Research. 32, D406-D410
    [121] Andreas H, Frank B and Bianca H (2004) . DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Research 32(Web Server Issue):W113-W120
    [122] 陈章权(2003).温敏核雄性不育水稻育性转换相关基因的克隆及其RNAi植物表达载体的构建.中国博士学位论文全文数据库
    [123] 陈占宽,张新友,苗利娟(2006).花生Δ12-脂肪酸去饱和酶基因RNAi表达载体的构建.华北农学报21,9-12
    [124] 窦彩虹(2005).RNAi抑制水稻WRKY10基因表达及转铁蛋白水稻铁胁迫耐受性分析 中国博士学位论文全文数据库
    [125] Higuchi R,Recombinant PCR.In:PCR Protocols:A guide to Methods and Applications.Innis M A,D H Gelfand,J J Sninsky and T J White,eds.San Diego:Academis Press,1990.177-183
    [126] Yue-Hua Xiao, Meng-Hui Yin, Lei Hou, and Yan Pei . 2006. Direct amplification of intron-containing hairpin RNA construct from genomic DNA BioTechniques .2006. 41: 548-552
    [127] 李文霞,宁海龙,李文滨,大豆遗传转化系统的研究进展,中国农学通报,2005:21:12.61-71。[128]刘忠智,王升吉,吴元华“大豆外源基因遗传转化的研究现状及展望,沈阳农业大学学报,1999,30(3):365-368
    [129] 周延清1,路淑霞1,姬晓明3,苑保军2,卢龙斗大豆遗传转化研究河南师范大学学报(自然科学版) 2002年V ol.30 No.2:116-119
    [130] 刘海坤,卫志明大豆遗传转化研究进展植物生理与分子生物学学报, 2005,31(2): 126-134
    [131] Horsch R B,Fry J E,Hoffmann N L,ct al.Simple and general method for transferring genes into plants. Science, 1985,227:1229-1231
    [132] 26王连铮,尹光初,罗教芬,等.大豆致瘤及基因转移研究.中国科学(B),1984,2:137-141
    [133] 27 Facciotti D O,Neal J K,Lee S,et al.Light-inducible expression of a chimeric gene in soybean tissuc transformed with Ageobactedum.Bio/Technology(1985)3(3):241-246
    [134] 4 Hinchee M A,Connor-Ward D V, Newell C A,ct al.Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer.Bio/Technology,1988,6:915-922
    [135] Parrott W.A.Hoffman,L.M.Hildebrand,D.F.Wiliams,E.G.Collins,G.B.Recovery of primary transformants of soybean.Plant Cell Rep.1989,7(8):615-617
    [136] 王慧中,徐志彦.Ti质粒在大豆中表达初报.浙江农业大学学报,1995,21(2):217-218
    [137] 傅桂荣,许志苔,郑宝记,等.各ipt基因根癌农杆菌转化大豆萌动种胚的同功酶分析. 哈尔滨师范大学自然科学学报,1996,12(4):80-90
    [138] 徐香玲,李兴华,刘伟华,等.Ri质粒介导大豆花叶病毒外壳蛋白基因转化大豆的研究.大豆科学,1996,15(4):279-288
    [139] 徐香玲,高晶,刘伟华,等.Ti质粒介导的Bt、k-δ内毒素蛋白基因转化大豆的初步研究.大豆科学,1997,16(1):6-11
    [140] Zhang Z Y, Xing A Q,Staswick Q,Stawick Q,et al.The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean.Plant Cell Tiss Org Cul,1999,56:37.-46
    [141] McCabe D E, Swain W F, F.Martinell B J,et al,Stable transformation of soybean(Glycine Max)by particle acceleration. Bio/Technology,1988,6:923-926
    [142] SatoShirley, NewellChrustine,KolaczKathryn,et al.Stable transformation via particle bombardment in two different soybean regeneration systerns.Plant Cell Reports, 1993,12:408-413
    [143] Moore P, Moore Allen,Collins Glenn B.Genotypic and developmental regulation of transient expression of a reporter gene in soybean zygotic cotyledons.Plant Cell Reports, 1994,13:556-560
    [144] 胡张华,刘智宏,郎春秀,等.影响大豆基因枪转化的几个参数.浙江农业学报,1999,11(5):242-244
    [145] Hadi M Z,McMullen M D,Fmer/J.Transformation of 12 different plasmids into soybean via particle bombardment.Plant Cell Reports, 1996,15:500-505
    [146] Simmonds D H,Donaldson P A.Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes.Plant Cell Reports,2000,19:485-490
    [147] 王萍,王罡,吴颖,季静.影响大豆基因枪遗传转化因子的研究.农业生物技术学报,2002,10(3):36-37
    [148] Parrott W A,All J N,Adang M J,et al.Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var kurstaki insecticidal gene In Vitro Cell Dev Biol, 1994,30(7): 144-149
    [149] Stewart C Neal,Adang Michael J,All John N,et al.Genetic transformation,recovery and characterization of fertile soybean transgenic for synthetic Bacillus thuringicnsis cryIAc gene.Plant Physiol, 1996,112:121-129
    [150]苏彦辉,王慧丽,俞梅敏,吕德扬,郭三堆.苏云金芽孢杆菌杀虫晶体蛋白基因导入大豆的研究.植物学报,1999,41(10):1046-1051
    [151]Hazel C B,Klein T M,Anis M,et al.Growth characteristics and transformability of soybean embryogenic cultures.Plant Cell Reports,1998,17:765-722
    [152]Maughan P J,Philip R,Cho M J,et al.Biolistic transformation,expression and inheritance of bovine β-casein in soybean (Glycine max).In Vitro Cell Biol,1999,35.344-349
    [153]王罡,张艳贞,魏松红,等.花粉管通道法将Bt毒蛋白基因导入优良玉米自交系.吉林农业大学学报,2002,24(4):40-44
    [154]Zhou G Y, Weng J,Zeng Y S,et al.Introduction of exogenous DNA into cotton embryos.Methods Enzymol, 1983,101:433-481
    [155]雷勃钧,君光初,卢翠华,钱华,张开旺,周思君,王树林.外源DNA直接导入大豆的研究.大豆科学,1991,10(1):58-63
    [156]刘德璞,廖林,袁膺,等.导入外源DNA获得抗SMV大豆品系.大豆科学,1997,16(4):277-282
    [157]胡张华,黄锐之等。利用花粉管导入法获得转反义PEP基因大豆植株.浙江农业学报,1999,11(2):99-100
    [158]喻德跃,魏国兰等。花器发育调节基因gagal转化大豆的初步研究。大豆科学.2003,22(2): 79-82
    [159]周思君,大豆抗虫基因转移及其转化系统优化研究.东北农业大学博士学位论文.2000
    [160]Christou P L,Murphy J E,Swain W EStable transtbrmation of soybean by electroporation and root formation from transformed callus.Proc Natl Acad Sci USA, 1987,84:3962-3966
    [161]Jones B,Davey M R,Derect gene uptake and regeneration of transgenic shoots from protoplasts of Glycine argyrea Tind.Soybean Genetics Newsletter, 1991,18(4): 183-186
    [162]Dhir Sarwan K,Dhir Seema,Sturtevant A P, et al.Regeneration of transformed shoots from electroporated soybean(Glycine max(L.)Merr.)protoplasts.Plant Cell Reports,1991,10:97-101
    [163]Tirck H N,Finer J J.Sonication assisted Agrobactedum-mediated transformasion of soybean [Glycine max(L.)Merrill.]embryogenic suspension culture tissue.Plant Cell Reports, 1998,17:482-488
    [164]Santarem E R,Trick H N,Essig J S,et al.Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons:optimization of transient expression. Plant Cell Reports,1998,17:752-759
    [165]Meurer C A,Dinking R D,Collins GB.Factors affecting soybeancotyledonary node transformation.Plant Cell Reprots, 1988,18:180-186
    [166]刘博林,岳绍先,胡乃壁,等.龙葵Atrazine抗性基因向大豆叶绿体的转移及在转基因植株中的表达.中国科学(B辑),1989,19(7):699-705
    [167]卫志明,黄健秋,徐淑萍,等.植物遗传国家重点实验室年报,1996,36-37
    [168]南相日,刘文萍,刘丽艳,等.PEG介导Bt基因转化大豆原生体获转基因植株.大豆科学,1998,17(4):327-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700