应用RNAi研究大豆β-伴大豆球蛋白基因的表达与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RNA干涉(RNA interference,RNAi)是一种双链RNA分子在mRNA水平上关闭相应序列基因的表达或使其沉默的过程,也就是序列特异性的转录后基因沉默。具有发夹结构(hairpin RNA,hpRNA)的RNA干扰载体因其高效性和特异性已广泛应用于植物基因功能的研究。大豆种子贮藏蛋白基因表达的调控主要发生在转录水平和转录后水平上。因此,我们拟构建β-伴大豆球蛋白α亚基基因的RNAi载体,并进行大豆转化,以此对大豆11S与7S的调控机制进行初步探讨。根据大豆β-伴大豆球蛋白α亚基基因序列(GenBank No.AB051865)设计特异性引物,用PCR法从南农99-10大豆总基因组中扩增出β-伴大豆球蛋白α亚基基因(CG-3),将该基因插入到植物表达载体pBI121的35S启动子和GFP基因之间,该基因与GFP基因构成融合表达基因,构建成α亚基基因过量表达的植物双元载体(pYXP7SαG);用PCR法从南农99-10大豆总基因组中扩增出α亚基基因部分片段,该片段包含α亚基基因5′端部分非翻译序列(UTR)、第一个外显子和第一个内含子。然后再用PCR法扩增α亚基基因5′端第一个外显子的部分序列,将这两个基因片段反向连接,插入到植物表达载体pBI121的35S启动子和nos终止子之间,构建成可转录表达出发夹RNA(hpRNA)结构的α亚基基因的RNA干扰表达载体(pYXP7SαRi)。
     本研究以农杆菌介导的大豆子叶节转化系统为技术平台,以栽培大豆南农88-1、豫豆23、南农87C-38和南农18-6的子叶节为外植体,用EHA105农杆菌(含pYXP7SαG质粒)对这四个不同基因型的大豆进行转化,研究了巯基混合物对大豆子叶节转化的影响。结果表明,巯基混合物对南农88-1,南农18-6,豫豆23的转化率均有提高,但对南农87C-38几乎无影响。其中南农88-1的转化率有明显的提高,在共培养基中加入单一的巯基化合物(半胱氨酸),其转化率为1.39%;在共培养基中加入巯基混合物(半胱氨酸、二硫苏糖醇和硫代硫酸钠),其转化率达到2.20%。同时应用优化的大豆子叶节转化系统,以栽培大豆南农88-1、豫豆23、南农87C-38、南农18-6、巴马九月黄、启东羊眼豆和常熟散子黄豆的子叶节为外植体,用EHA105农杆菌(含pYXP7SαRi质粒)对7个不同基因型的大豆进行转化,结果表明,不同基因型大豆之间的转化存在着明显差异。在本实验范围内转化率比较高的是南农88-1、南农18-6及豫豆23。同时筛选出了一个子叶节再生性较好的基因型,即巴马九月黄。对所有转基因植株经Southern分析鉴定,共获得大豆转基因植株21株。正常发育并收获种子的转基因大豆13株,其中过量表达α亚基基因的转基因大豆5株,RNA干扰α亚基基因的转基因大豆8株。经RT-PCR和Northern分析鉴定,RNA干扰的转基因大豆中的α亚基(CG-3)部分被抑制。
     应用蛋白质组学方法对未转化大豆南农88-1、α亚基基因过量表达的转基因大豆及转RNAi的转基因大豆种子的差异表达情况进行了研究。在双向电泳pH4-7的胶上,用PDQuest软件分析表达量变化2倍以上的蛋白点,选取25个蛋白丰度表现明显差异的蛋白点进行胶内酶解,用基质辅助激光解析电离飞行时间质谱测定均获得肽质量指纹图谱。从大豆的UniGene库中鉴定出20个蛋白,根据功能的不同,将这20个差异蛋白分属为5个功能类群。①贮藏蛋白(大豆β-伴大豆球蛋白α亚基、大豆球蛋白A_(1a)B(1b)亚基前体和大豆球蛋白A_3B_4亚基);②细胞分裂与生长相关蛋白(成熟相关蛋白、种子成熟蛋白PM22和PM32、68kDa LEA蛋白等);③与运输相关的蛋白(糖结合蛋白同源S-64);④与抗性相关蛋白(HSP70);⑤与转录相关蛋白(RNA结合蛋白)。分析结果表明,RNAi介导大豆β-伴大豆球蛋白(7S)基因表达降低而引起大豆球蛋白(11S)的GY2和GY5基因表达量增加,这证明大豆11S与7S存在一种补偿机制,即11S蛋白含量可补偿7S蛋白含量的降低。同时对参与这一补偿机制的其它蛋白可能的作用进行了讨论。对未转化大豆南农88-1、α亚基基因过量表达的转基因大豆及转RNAi的转基因大豆种子的氨基酸含量分析表明,其总氨基酸含量基本无变化。
     研究证明编码种子贮藏蛋白的基因是多基因家族,它们在种子中的表达具有高度的发育专一性和组织特异性。因此,种子特异性启动子对于种子贮藏蛋白基因表达调控机制的研究具有十分重要的意义。本研究通过PCR技术从三个栽培大豆(南农99-10、N2899和南农88-1)和两个野生大豆(江浦野生豆-1和ZYD4174)的基因组中分离到大豆β-伴大豆球蛋白α亚基基因启动子片段(7SαP),序列分析表明:7SαP片段包含多个种子特异性启动子所特有的序列元件,如RY重复序列元件、ACGT序列元件、AGCCCCA序列元件和A/T富含序列元件等,而这五个大豆材料的7SαP序列的同源性达99%。将从南农99-10中克隆的7SαP片段与pBI121-GFP连接构建表达载体,经农杆菌介导的花浸染方法转化拟南芥。Southern结果显示,7SαP片段和报告基因GFP以单拷贝的形式整合到拟南芥基因组中,转基因拟南芥中的GFP检测表明,GFP基因在启动子片段7SαP驱动下获得了种子特异性表达,为进一步在分子水平上研究种子贮藏蛋白的表达调控和应用基因工程有效地对大豆品质进行遗传改良奠定了基础。
RNA interference (RNAi) is a post-transcriptional gene-silencing phenomenon induced by double-strand RNA. In plants, hpRNA(hairpin RNA) has been widely used to analyze gene function because of its high specificity and efficacy. Soybean storage protein gene expression is regulated by both transcriptional and post-transcriptional processes. Thus it has become possible to get more information about the 11S and 7S regulatory mechanisms by RNAi. Aαsubunit gene(CG-3) ofβ-conglycinin was isolated by PCR from genomic DNA in Nannong 99-10 (GenBank No.AB051865).Then the CG-3 gene inserted into the vector pBI121,which the site was between CaMV35S and green fluorescent protein (GFP) ,to generate the plasmid vector pYXP7SαG.Aα-subunit gene fragment (containing 5'UTR,the 1st exon and the 1st intron of CG-3) and the otherα-subunit gene fragment (a part of 1st exon of CG-3) were amplified by PCR from genomic DNA in Nannong 99-10. These twoα-subunit gene fragments were ligated in an antisense orientation and inserted into the vector pBI121, which the site was between CaMV35S and nos terminator, to produce hpRNAi vector pYXP7SαRi.
     Transformation of four soybean cultivars ( Nannong88-1, Nannongl8-6, Yu23 and Nannong 87C-38) by infecting cotyledonary-node with A. tumefaciens strain EHA105 (containing plasmid pYXP7SαG). The results indicated that the addition of thiol compounds ( L-cysteine, dithiothreitol and sodium thiosulfate) in co-cultivation period increased the transformation efficiency of three soybean cultivars (Nannong88-1, Nannong18-6 and Yu23). There has no affect on Nannong 87C-38. The transformation efficiency of Nannong88-1 was 1.39% in system only with L-cysteine, while 2.20% in system with thiol compounds.Using the same system, transformation of seven soybean cultivars ( Nannong88-1, Nannong18-6, Yu23, Nannong87C-38, Changshusanzihuangdou, Qidongyangyandou and Bamajiuyuehuang) by infecting cot-node with A. tumefaciens strain EHA105 (containing plasmid pYXP7SαRi). The result showed that the transformation frequency was different among cultivars of soybean. Three genotypes with high transformation frequency , its Nannong88-1, Nannong18-6 and Yu23.In addition, Bamajiuyuehuang showed with high regeneration frequency.We have obtained 21 positive transformated plants by Southern blot. 13 soybean transgenic lines were cultivated to set seeds. There were 5 soybean transgenic lines from the vector pYXP7SαG, and 8 soybean transgenic lines from the vector pYXP7SαRi.The results showed that the presence of transcripts from CG-3 gene in developing seeds were supressed by RT-PCR and Northern analysis in transgenic lines with hpRNA vector.
     A proteomic approach was used to analyze differential expression of proteins among the seeds of the control(Nannong 88-1) ,the over-expression of CG-3 and the RNAi-CG-3 trans- genic soybean. 25 protein spots was detected on the 2-D gels by PDQuest image software, which peoteins expression was greater than 2 fold. These 25 protein spots were treated by tryptic in-gel digestion and characterized by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and peptide mass fingerprintings of all were obtained, Total 20 proteins were identified from Soybean UniGene database. These proteins are classified into five groups .①Storage proteins(a-subunit ofβ-conglycinin, proglycinin AlaBlb subunit, Glycinin A3B4 subunit).②Cell growth/division (maturation associated protein, seed maturation protein PM22 and PM32, 68 kDa LEA protein)③Transporter (sucrose binding protein homolog S-64)④Disease/defense(heat Shock 70kD protein).⑤Transcription (glycine-rich RNA-binding protein). In our study, the result seeds with reducedα-subunit ofβ-conglycinin by RNAi was apparently compensated by an increased accumulation of GY gene products GY2 and GY5.The result further indicated that a decrease in the level ofβ-conglycinin(7S) protein leads to an increased level of glycinin protein(11S). We next analyzed the total amino acid composition among the seeds of the control(Nannong 88-1) ,the over-expression of CG-3 and the RNAi-CG-3 transgenic soybean. The total amino acid content of seeds differed little among the three soybean seeds.
     The seed-specific promoter only express its down stream genes from mid to late stage of seed maturation,and there is no expression or much lower expression in other tissues.So the seed-specific promoter are distinguished for the improvement having brought to plant quality engineering. A promoter fragment (7SαP ) ofαsubunit gene was isolated by PCR from genomic DNA in various soybean accessions, including cultivars Nannong99-10, N2899, Nannong 88-1, and wild soybeans Jiangpu -1 and ZYD4174.The sequences of 7SαP fragment from 5 soybean accessions shared 99% homology. It indicated that the promoter of a subunit gene were conserved. Meanwhile,sequencing analysis showed that the 7SαP fragment contained several seed-specific motifs, such as RY motif, AGCCCA motif, ACGT motif and A/T rich motif. So the expression vector pBI121-7SαP was constructed with the 7SαP fragment (Nannong99-10) promoter and the GFP reporter gene for functional analysis. Arabidopsis thaliana plants were transformed by A.grobacterium mediated method. Southern blot results showed that the 7SαP had been integrated into genomic DNA of Arabidopsis thaliana. Assay of GFP expression in the seeds of transgenic Arabidopsis thaliana was determined to identify the function of 7SαP promoter. The results showed that 7SαP was a seed-specific promoter.It will be a favourite tools for directing seed-specific expression of foreign genes in the genetic engineering of crops.
引文
1.Abderranhmane,王戈林,沈萍.一种具有高活性的酪氨酸酶基因启动子片段的分离.武汉大学学报.1999,45(2):233~237.
    2.财音青格乐,李明春,蔡易等.大豆种子特异性启动子的克隆及序列分析.作物学报.2005,31(1):11~17.
    3.陈敏,苗以农,唐树延,徐豹.大豆子叶细胞超微结构的比较.大豆科学.1989,8(2):153~157.
    4.陈章良.植物基因工程研究.北京大学出版社.1993,116~137.
    5.高新起.种子贮藏蛋白的运输、积累和基因表达调控.细胞生物学杂志.2005,27:35~38.
    6.何水林,郑金贵.农业生物技术在作物品质改良中的应用.福建农业大学学报.2000,29(3):269~276.
    7.韩志勇,王新其,沈革志等.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农业学报.2001,17(2):27~32.
    8.胡敏珊.粗毛栓菌基因启动子的分离与克隆,2001,四川大学硕士学位论文.
    9.胡张华,刘智宏,郎春秀,黄锐之,陈锦清.影响大豆基因枪转化的几个参数.浙江农业学报.1999,11(5):242~244.
    10.胡志昂,王洪新,赵述文等.栽培大豆和野生大豆种子蛋白的变异.大豆科学.1986,3(5):205~209.
    11.黄祥富,黄上志,傅家瑞.植物热激蛋白的功能及其基因表达的调控.植物学通报,1999,16(5):530~536.
    12.黄君健,李杰之,林坚等.人端粒酶催化亚基hTERT基因启动子的克隆.生物技术通讯.1999,10(3):167~170.
    13.金东淳等.大豆籽粒7S球蛋白变异品系蛋白质氨基酸组分的相关分析.第十一届全国大豆科研生产座谈会资料.1996.
    14.李永春,张宪银,薛庆中.蔗糖合酶基因启动子克隆及其转基因水稻植物中特异性表达.作物学报.2002,8(5):586~590.
    15.李姗姗,迟彦,李凌飞,马玺,平文样,于冲,周东坡.启动子克隆方法研究进展.中国生物工程杂志.2005,25(7):9~16.
    16.路静,赵华燕,何奕昆,宋艳茹.高等植物启动子及其应用研究进展.自然科学进展.2004,14(8):856~862.
    17.罗克明,郭余龙,肖月华,侯磊,裴炎.棉花Lea蛋白D-113基因启动子的克隆及序列分析.遗传学学报.2002,29(2):161~165.
    18.刘良式.植物分子遗传学.北京:科学出版社.1998:214.
    19.刘海坤,卫志明.利用根癌农杆菌介导转化大豆成熟种子胚尖获得转基内植株.植物生理与分子生物学学报.2004,30(6):631~636.
    20.刘志胜,李里特,辰巳英三.大豆蛋白质的营养品质和生理功能研究进展.大豆科学.2000,19(3):263~266.
    21.雷勃钧等.大豆属贮存蛋白的研究,大豆及某些野生类型大豆球蛋白构成的比较.大豆科学.1984,3:36~39.
    22.李建粤等.大豆DNA导入水稻引起后代种子贮藏蛋白变异.上海农业学报.1997,13(4):11~16.
    23.王连铮,尹光初,罗教芬,雷勃钧,王剑,姚振纯等.大豆致瘤及基因转移研究.中国科学(B).1984,2:137~141
    24.王罡,王萍,蔺宇,张领兵,吴颖.大豆基因型对根癌农杆菌菌株敏感性的研究.遗传.2002,24(3):297~300.
    25.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社.1998:351~353.
    26.王丽侠,郭顺堂,付翠真,关荣霞,张其属,常汝镇,邱丽娟.大豆种子贮藏蛋白11S与7S组份的研究.中国粮油学报.2004,19(4):53~57.
    27.王萍,王罡,吴颖,季静.影响大豆基因枪遗传转化因子的研究.农业生物技术学报.2002,10(3):36~37.
    28.王升吉等.基因转化技术在大豆育种上的应用现状.山东农业科学.2000,2:41~43.
    29.王新国,肖成祖,张国华等.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学与分子生物学报.2001,17(1):61~65.
    30.张树珍,杨本鹏,刘飞虎.花特异表达启动子PchsA的克隆及其序列分析.农业生物技术学报.2002,10(2):116~119.
    31.张宪银,薛庆中.水稻种子贮藏蛋白分子生物学研究进展.浙江农业学报.2000,12(2):108~111.
    32.张晓宁,王昊,陈火英,沈大棱.盐藻启动子活性片段的克隆及序列分析.复旦学报(自然科学版).2002,41(2):227~229.
    33.郑蕊.大豆种子蛋白积累与调控的蛋白质组研究.2005.南京农业大学硕士学位论文.
    34.郑云兰,李霞辉主编.大豆营养分析技术.黑龙江科学技术出版社.1991.
    35.郑易之、何孟元、胡阿林、郝水.大豆子叶细胞中液泡发育成蛋白体的不同形式.植物学报.1990,32(2):97~102.
    36.曾海涛,王义琴,陈英,潘惠新,黄敏仁.花卉花色基因工程的研究现状及存在问题.中国生物工程杂志.2004,24(1):1~4.
    37.石东乔,周奕华,万里红,刘桂珍,胡赞民,陈正华.甘蓝型油菜基因BcNAI启动子在转基因烟草中对GUS基因表达的调控.植物生理学报.2001,27(4):313~320.
    38.孙晓红,陈明杰,潘迎捷.启动子克隆概述.食用菌学报.2002,9(3):57~62.
    39.孙英.转gagal基因大豆的培育及初步鉴定.2003,南京农业大学硕士学位论文.
    40.谈建中,楼程富.大豆种子贮存蛋白基因及其遗传转化的研究进展.大豆科学.2000,19(1):57-62.
    41.杨予涛,杨国栋,刘石娟,郭兴启,郑成超.一个光合组织特异表达强启动子的分离及功能分析.中国科学C辑.2003,33(4):298~306.
    42. Alba M M, Pages M (1998) Plant proteins containing the RNA recognition motif, Trends Plant Sci. 1: 15~21.
    43. Allen, R D, Bernier F, Lesserd, P A, Beachy R N. (1989) Nuclear factors interact with a soybean β-conglycinin enhancer. Plant Cell 1:623~631.
    44. Aragao F J L, Sarokin L, Vianna G R, Rech E L(2000). Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L). Merrill) plants at a high frequency. Theor.Appl. Genet. 101: 1~6.
    45. Bailey M A, Berma H R,Parrot W A.(1994) Inheritance of tumor formation in response to Agrobacterium tumefaciens in soybean.Crop Science.34:514~519.
    46. Barker S J, Harada J J, Goldberg R B (1988). Cellular localization of soybean storage protein mRNA in transformed tobacco seeds. Proc. Natl. Acad. Sci. USA 85, 458~462.
    47. Bate N J, Niu X P, Wang Y W, Reimann K S, Helentjaris T G (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 134: 246~254.
    48. Bass B L.RNA interference, The short answer, Nature, 2001, 411(6836):428~429.
    49. Baumlein H , Nagy L, Villarroel R, et al.(1992).Cis-analysis of a seed protein gene promoter:the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene.Plant J.2:233~239.
    50. Beachy R N, Chen Z L, Horsch R B, Rogers S G,Hoffman N J, Fraley R T(1985). Accumulation and assembly of soybean β-conglycinin in seeds of transformed petunia plants. EMBO J. 4, 3047~3053.
    51. Beilinson V,Chen Z,Shoemaker R C,Fischer R L, Goldberg R B,Nielsen N C. (2002)Genomic organization of glycinin in genes in soybean.Theor Appl Genet.104:1132~1140.
    52. Bernstein E, Caudy A C, Hammond S M,Hannon G J.(2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363~366.
    53. Bevan M, Colot V, Kosack H M et al. (1993)Transcriptional control of plant storage protein genes.Biological Sciences. 342:209~215.
    54. Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R,Dirkse W, Van Staveren M, Stiekema W, et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana.Nature 391: 485-488.
    55. Bray E A,Beachy R N. (1985) Regulation by ABA of β-conglycinin expression in cultured developing soybean cotyledons. Plant Physiol. 79, 746-750.
    56. Bray E A, Naito S, Pan N S, Anderson E, Dube P, Beachy R N(1987). Expression of the β-subunit of 6-conglycinin in seeds of transgenic plants. Planta. 172, 364-370.
    57. Byrne M C, McDonell R E,Wright M S,Carnes M G. (1987)Strain and cultivars specificity in the Agrobacterium soybean interaction .Plant Cell Tissue and Organ Culture. 8: 3-15.
    58. Byzova M,Verduyn C, Brouwer D,Block M,(2004)Transforming petals into sepaloid organs in Arabidopsis and oil seed raperimplementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.Planta.218:379-387.
    59. Buzeli R A, Cascardo J C, Rodrigues L A. (2002) Tissue-specific regulation of BiPgenes: acis-acting regulatory domainis required for BiP promoter activity in plant meristems. Plant Mol. Biol.50(4-5):757-771.
    60. Cahoon E B,CarlsonT J, Ripp K G et al.(1999)Biosythetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA.96(22):12935-12940.
    61. Cahoon E B,Marillia E F,Stecca K L et al. (2000) Production of fatty acid components of meadow foam oil in somatic soybean embryos.Plant Physiol. 124:243—251.
    62. Cahoon E B,Ripp K G, Hall S E et al. (2001)Formation of conjugated Δ~8,Δ~(10) -double bonds by Δ~(12) oleic-acid desaturase-related enzymes.Bio Chem.276(4):2637-2643.
    63. Chamberland S,Daigle N,Bernier F.(1992)The legumin boxes and the 3'part of a soybean β-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Molecular Biology. 19:937-949.
    64. Chen Z,Shoemaker R C(1998)Four genes affecting seed traits in soybean map to linkage group F.J.Hered.89:211-215.
    65. Chen Z L,Schuler M A , Beachy R N. (1986)Functional analysis of regulatory elements in a plant embryo specific gene.Proc Natl Acad Sci USA.83:8560-8564.
    66. Chen Z L, Pan N S,Beachy R N. (1988) A DNA sequence element that confers seed-specific enhancement to a constitutive promoter. The EMBO Journal.7:297-302.
    67. Cheng T Y,Saka T,Voqui-Dinh T H.(1980).Plant regeneration from soybean cotyledonary node segments in culture.Plant Sci Lett.19:91 -99.
    68. Chiu W L,Niwa Y,Zheng W et al. (1996)Engineered GFP as a vital reporter in plants.Curr Biol.6(3):325-330.
    69. Chrispeels M J. (1983)The Golgi apparatus mediates the transport of phytohemagglutinin to the protein bodies in bean cotyledons.Planta. 158:140—151.
    70. Christou P, Swain W F, Yang N S, et al. (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci.USA.86:7500—7504.
    71. Chuang C F,Meyerowite E M.(2000) Specific and heritable genetic interference by double-strand RNA in Arabidopsis thaliana .Proc Natl Acad Sci USA. 97: 4985—4990.
    72. Cho T J,Corinne S D, Nielsen N C.(1989)Inheritance and organization of glycinin genes in soybean.Plant Cell. 1:329—337.
    73. Clough S J . Bent A F. (1998)Floral dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana.The. Plant Journal. 16(6):735—743.
    74. Coates J B, Medeiros J S, Thanh V H, Nielsen NC.(1985)Characterization of the subunits of β-conglycinin. Arch.Biochem. Biophys. 243:184—194.
    75. Dalmay T, Hamilton A, Rudd S, Angell S. Baulcombe D C. (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 101: 543—553.
    76. Diers B W,Beilinso N V,Nielsen N C, Shomaker R C.(1993) Genetic mapping of the Gy_4 and Gy_5 glycinin genes in soybean and analysis of a variant of Gy_4. Theor. Appl. Genet. 89: 297 —304.
    77. Digeonj F, Guiderdonie , Alaryr. (1999)Cloning of a wheat Puroindo line gene promoter by I-PCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds.plant Mol Biol. 6:1101—1112.
    78. Dinkins R D, Reddy M, Meurer, S S et al. (2001)lncreased sulfur amino acids in soybean plants overexpressing the maize 15kDa zein protein. In Vitro Cellular Developmental Biology Plant.37:742-747.
    79. Donaldson P H, Simmonds D H. (2000) Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep.19: 478—484.
    80. Drews G N, Goldberg R B.(1989)Characterization of the glycinin gene family in soybean. Plant Cell. 1:313-328.
    81. Elbashir S M, Lendeckel W. Tuschl T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15: 188—200.
    82. El-Shemy H A, Teraishi M, Khalafalla M M, Katsube-Tanaka T, Utsumi S .Ishimoto M. (2004)Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein. Molecular Breeding. 14: 227—238.
    83. Finer J J, McMullen M D (1991).Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol .27:175-182.
    84. Fire A, Xu S, Montgomery M K., Kostas S A, Driver S E ,Mello C C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391: 806—811.
    85. Frankish H.(2003) Consortium uses RNAi to uncover genes'function. Lancet,361:584.
    86. Fukushima D.(1991)Recent progress of soybean protein foods : chemistry, technology and nutrition.Food Reviews International 3:323—351.
    87. Fukushima D.(1991)Structures of plant storage proteins and their functions. Food Reviews International.3:353-379.
    88. Fujiwara T, Beachy R N. (1994) Tissue-specific and temporal regulation of a β-conglycinin gene: roles of the RY repeat and other cis-acting elements. Plant Mol. Biol. 24, 261—272.
    89. Fukushima D.(1991)Recent progress of soybean protein foods. Food Rev.Int.7:323-351.
    90. Fukusaki E, Kawasaki K, Kajityama S et al. (2004) Flower color odulations torenia hybrida by down regulation of chalcone synthaes genes with RNA interference. J Biotechnol. 3: 229—240.
    91. Garner M E,Hymowitz T,Xu S J, Hartman G L.(200l)Physical map location of the Rps1-Kal- lele in soybean.CropSci.41:1435—1438.
    92. Gayler K R, Sykes G E. (1981) β-Conglycinin in developing soybean seeds. Plant Physiol. 67:958-961.
    93. Gayler K R, Sykes G E. (1985) Effects of nutritional stress on the storage proteins of soybeans. Plant Physiol. 78:582-585.
    94. Gento T, Satoshi F, Naoki F et al.(2003)Agrobacterium-tumefacines-mediaited transformation for random insertional mutagenesis in Colletotrichum lagenarium.Gen Plant Pathol. 69: 230—239.
    95. Glazov E, Phillips K ,Budziszewski G J et al. (2003) A gene encoding an RNaseD exonu-clease-like protein is required for post-transcriptional silencing in Arabidopsis. Plant J. 3:342—349.
    96. Goldberg R B. (1986)Regulation of plant gene expression. Philos. Trans. R. SOC. Lond. B Biol. Sci. 314:343-353.
    97. Goto F,Yoshihara T, Shigemoto N, Toki S,Takaiwa F. (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat biotechnol. 3:282—286.
    98. Guo S, Kemphues K J. (1995)par-1, a gene required forestablishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611—620.
    99. Hajica M, Takahashi M, Sakai S, Matwunaga R(1998)Dominant inheritance of trait lacking β-conglycinin detected in a wild soybean line.Breed Sci.48:383—386.
    100. Hajduch M, Ganapathy A, Stein JW, Thelen J J A (2005)Systematic proteomic study of seed filling in soybean, establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteomedatabase.Plant Physiology 137:1397-1419.
    101. Hayashi M, Harada K, Fujiwara T, Kitamura K(1998)Characterization of a 7S globulin deficient mutant of soybean[Glycine max(L.)Merill].Mol Gen Gene. 258:208—214.
    102. Hammond S, Boettcher S, Caudy A, Kobayashi R, Hannon G J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 293:1146—1150.
    103. Hamilton A J, Baulcombe D C.(1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 286: 950—952.
    104. Hammond S M,Caudy A A,Hannon G J.( 2001)Post-transcriptional gene silencing by double-stranded RNA.Nature Rev Gen.2:110-119.
    105. Hansen G, Chilton M D. (1996) "Agrolistic" transformation of plant cells: integration of T-strands generated in planta. Proc. Natl. Acad. Sci. USA.93:14978- 14983.
    106. Heim R, Tsien R Y. (1996)Engineering green fluorescent protein for improved brightness, longer wavelengths and fluoresce resonance energy transfer.Curr Biol.6:178- 182.
    107. Helm R M, Cockrell G, West C M, Herman E M, Sampson HA, Bannon GA, Burks AW (2000) Mutational analysis of the IgE-binding epitopes of P34/Gly ml. J Allergy Clin Immunol 105: 378-384.
    108. Herman E M, Larkins B A. (1999)Protein storage bodies. Plant Cell 11:601—613.
    109. Hinchee M A W,Ward D V C, Newell C A, McDonnell R E, Sato S J et al. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technol. 6: 915—922.
    110. Hsing Y I C, Tsou C H, Hsu T F,Chen Z Y,Hsieh K L,Hsieh J S,Chow T Y(1998)Tissue- and stage-specific expression of a soybean(Glycine max L.) seed-maturation,biotinylated protein.Plant Molecular Biology 38:481—490.
    111.Jame S K, Pietro P A.(1994) seed specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional.Plant Molecular Biology. 2:327—340.
    112. Josefsson L G ,Lenman M,Ericson M L et al. (1987)Structure of a gene encoding the 1.7S storage protein .Napin from Brassica napus.The Journal of Biological Chemistry .262: 1196—1208.
    113. Kalantidis K, Psaradakis S, Tabler M et al.(2002)The occurrence of CMV specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact..15: 826—833
    114. Katsube T, Kurisaka N, Ogawa, M, Maruyama N, Ohtsuka R, Utsumi S ,Takiwa F. (1999)Accunlulation of soybean glycinin and its assembly with the glutelins in rice.Plant Physiology. 120:1063—1073.
    115. Kawagoe Y, Murai N. (1996)A novel basic region/helix-loop-helix protein binds to a G-box motif CACGTTG of the bean seed storage protein β-phaseolin gene. Plant Science.116: 47—57.
    116. Kim C S, Kamiya S, Sato T, et al. (1990) Improvement of nutritional value and functional properties of soybean glycinin by protem engineering.Protein Engineering.3:725—731.
    117. Kinney A J, Jung R ,Herman E M (2001) Cosuppression of the a subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. The Plant Cell 13:1165-1178.
    118. Kitamura K, Davies C S, Nielsen N C. (1984)Inheritance of alleles for Cgy1 and Gy4 storage protein genes in soybean.Theor. Appl. Genet. 68: 253—257.
    119. Kito M, Moriyama T, Kimura Y, et al. (1993) Changes in plasma lipid levels in young healthy volunteers by adding an extruder-cooked soy protein to conventional meals. Bioscience, Biotechnology and Biochemistry.57:354—355.
    120. Ko T-S, Lee S, Krasnyanski S, Korban S S (2003)Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Gene . 107:439—447.
    121. Konishi S, Izawa T, Lin S Y et al. (2006) An SNP caused loss of seed shattering during rice domestication. Science.312:1392—1396.
    122. Krishnan H B (2005) Engineering soybean for enhanced sulfur amino acid content. Crop Sci 45:454—461.
    123. Kudirka D T, Colburn S M, Hinchee M A, Wright M S. (1986) Interactions of Agrobacterium tumefaciens with soybean (Glycine max (L.) Merr.) leaf explants in tissue culture. Can J Genet Cytol 28:808-817.
    124. Kusaba M (2004) RNA interference in crop plants. Current Opinion in Biotechnology 15:139—143.
    125. Lelievere J M, Oliveira L O, Nielsen N C.(1992)5'-CATGCAT-3' elements modulate the expression of glycinin genes.Plant Physiol.98:387—391.
    126. Liu Hai-kun,Yang Chao,Wei Zhi-Ming (2004)Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system,Planta. 219:1042—1049.
    127. Liu Q, Singh S P, Green A G.(2002)High-stearic and high-oleic cotton seed oils produced by hairpin RNA-mediated post-transcriptional gene silencing.Plant Physiol.l29:1732—1743.
    128. Ltoh Y, Kitamura Y, Masaomie et al. (1993) Cis-acting regulatory regions of the soybean seed storage US globulin gene and their interaction with seed embryo factors.Plant Mol Biol, 21:973—984.
    129. Ltoh Y et al.(1994)The glycinin box :a soybean embryo factor biding motif within the quantitativer egulatory region of the 11S seed storage globulin promoter. Mol Gen Genet. 243:353—357.
    130. Lutcke H A, Chow K C, Mickel F S. (1987)Selection of AUG initiation codons differs in plants and animals.The Embo.Journal.6:43 — 48.
    131. Mary E, Williams R F, Chua N H.(1992)Sequences flanking the hexameric G-Box Core CACGTG affect the specificity of protein binding/The Plant Cell.4:485—496.
    132. Mariani C, Gossele V, De Beuckeleer M. (1992)A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants.Nature.357:384—387.
    133. McCabe D E, Swain W F, Martinell B J, Christou P (1988) Factors affecting soybean cotyledonary node transformation. Bio/Technology. 6:923 - 926.
    134. Meinke D W, Chen J, Beachy R N. (1981)Expression of storage protein genes during soybean seed development. Planta. 153:130—139.
    135. Meurer C A, Dinkins R D, Collins G B(1998)Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18:180—186.
    136. Miernyk J A, Duck N B, Shatters J et al.(1992)The 70-kilodation heat shock cognate can act as a molecular chaperone during the membrane translocation of a plant secretory protein precusor.Plant Cell,.4:821-829
    137. Molnar A, Lovas A, Banfalvi Z. (2001)Tissue-specific signal(s) activate the promoter of a metallocar- boxypeptidase inhibitor gene family in potato tuber and berry. Plant Mol . Biol. 3:301-311.
    138. Momma K,Hashimoto W, Ozawa S,Kawai S,Katsube T et al.(1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: analyses of the grain composition and digestibility of glycininin transgenic rice. Biosci. Biotechnol. Biochem. 63 :314—318.
    139. Moore P J,Moore A,Collins G B. (1994)Genotypic and developmental regulation of transient expression of a reporter gene in soybean zygotic cotyledons.Plant Cell Reports. 13:556—560.
    140. Napoli C, Lemieux C. and Jorgensen R. (1990) Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 2: 279-289.
    141. Nielsen N C.Dickinson C D, Tae-JuCho et al. (1989)Characterization of the glycinin genefamily in soybean.Plant Cell.l:313-328.
    142. Nielsen N C, Dickinson C D, Cho T J, Thanh V H, Scallon B J et al. (1986)Studies on the mechanism of regulation of the mRNA level for a soybean storage protein subunit by exogenous L-methionine. Plant Physiol. 80:561—567.
    143. Nordlee J A et al.(1996)Identification of a Brazil-nut allergen in transgenic soybean .N Engl J Med. 1:688-697.
    144. Okita T W, Krishnan H B, Kim W T. (1988)Immunological relationships among the major seed protein of cerals.Plant Science.57:103-111.
    145. Ogawa T, Tayama E, Kitamura K, Kaizuma N. (1989) Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean (Glycine max L.). Jpn J Breed 39:137-147.
    146. Ogawa T, Samoto M, Takahashi K. (2000) Soybean allergens and hypoallergenic soybean products. J Nutr Sci Vitaminol 46: 271-279.
    147. Ogita S,Uefuji H,Morimoto M ,Sano H.(2004)Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties,Plant Mol.Biol.6:931-941.
    148. Olhoft P M, Flagel L E, Donovan C M, Somers D A (2003)Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta. 5:723-735.
    149. Olhoft P M, Somers D A (2001)L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonarynode cells. Plant Cell Rep. 20:706-711.
    150. Olhoft P M, Lin K, Galbraith J, Nielsen N C, Somers D A (2001)The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells.Plant Cell Rep. 20:731-737.
    151. Owens L D,Cress D. (1985)Genotypic variability of soybean response to Agrobacterium strain harboring the Ti or Ri plasmids.Plant Physiol.l:87-94.
    152. Owens L D, Smigocki A. (1988)Transformation of soybean cells using mixed strains of Agrobacterium tumefaciens and phenolic compounds.Plant Physiol.88:570—573.
    153. Parrott W A, Hoffman L M, Hildebrand D F Williams E G, Collins G B (1989) Recovery of primary transformants of soybean. Plant Cell Rep.7:615-617.
    154. Pelissier T, Wassenegger M A (2000)DNA target of 30bp is sufficient for RNA-directed DNA methylation. RNA. 1:55 - 65.
    155. Peng I C,Quass D W, Dayton W R et al. (1988)The physicochemical and functional properties of soybean 11S globulin a review:Cereal Chemistry.6:480-489.
    156. Ponappa T, Brzozowski A E, Finer J. (1999)Transient expression and stable transformation of soybean using the jelly fish green fluorescent protein,Plant Cell Rep.19:6-12.
    157. Rachael L N, Robert W W, Raymond L R. (1979)Eukaryotic DNA fragments which act as promoters for a plasmid gene.Nature.77:324—325.
    158. Radke S E,Andrews B M ,Moloney M M et al. (1988)Transformation of Brassica napus L.using Agrobacterium tumefaciens: Developmentally regulated expression of a reintuoduced naping gene.TheorAppl Genet.75: 685-694.
    159. Ralf P, Fritz S. (1996)Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation.PlantMolec-ularBiology.31:157- 162.
    160. Russell D A, Fromm M E. (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice.Transgenic Res. 6:157- 168.
    161. Sachetto-Martins G, Franco LO, Oliveira DE(2000)Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophys. Acta 21: 1-14.
    162. Saio K,Watanabe T. (1978)Differences in functional properties of soybean proteins.Texture Studies.9:1335-1357.
    163. Santos K G B, Mundstock E, Bodanese-Zanettini M H (1997) Genotype-specific normalization of soybean somatic embryogenesis through the use of an ethylene inhibitor. Plant Cell Rep 16: 859-864.
    164. Sato S, Newell C, Kolacz K. (1993)Stable transfomation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep.12: 408-413.
    165. Scallon B,Thanh V H,Floener L A,Nielsen N C.(1985)Identification and characterization of DNA clones encoding group-II glycinin subunits.Theor.Appl.Genet.70:510-519.
    166. Schramke V,Allshire R. (2003)Hairpin RNAs and retrotransposon LTRs effect RNA and chromatin-based gene silencing.Science.301:1069—1074.
    167. Shao H B,Liang Z S, Shao M A(2005) LEA proteins in higher plants: Structure, function, gene expression and regulation. Colloids and Surfaces B: Biointerfaes 45 :131-135.
    168. Simmonds D H, Donaldson P A (2000)Genotype screening for proliferative embryogenesis and biolistic transform ation of short-season soybean genotypes. Plant Cell Rep. 19:485-490.
    169. Sijen T, Fleenor J, Simmer F, Thijssen K L, Parrish S, Timmons . et al. (2001) On the role of RNA amplification in dsRNA -triggered gene silencing. Cell. 107: 465-476.
    170. Staswick P E, Hermodson M A, Nielsen N C (1981) Identification of the acidic and basic subunit complexes of glycinin. J Biol Chem. 256:8752—8755.
    171. Sugano M, Goto S, Yamada Y et al.(1990)Cholesterol-lowering activity of various undigested fractions of soybean protein in rats.The Journal of Nutrition.120(9):977-985.
    172. Takahashi K, Banba H, Kikuchi A, Ito M, Nakamura S (1994) An induced mutant line lacking the a-subunit of β-conglycinin in soybean (Glycine max (L.) Merrill). Breed Sci 44:65—66.
    173. Takahashi M, Uematsu Y, Kashiwaba K ,Yagasaki K ,Hajika M, Matsunaga R, Komatsu K , Ishimoto M(2003) Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217: 577-586.
    174. Takaiwa F, Kikuchi S, Oono K.(1989)The complete nucleotide sequence of new type cDNA coding forrice storage protein glutelin,Nucleic Acid Research.1917:3289.
    175. Thomas T L. (1993)Gene expression during plant embryogenesis and germination: An overview. The Plant Cell.5: 1401-1410.
    176. Wang M B, Abbott D C, Waterhouse P M. (2000)A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1:347-356.
    177. Wang M B, Waterhouse P M. (2004) High-efficiency silencing of a beta -glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation . Plant Molecular Biology.3:67—82.
    178. Wang T L, Domoney C, Hedley C L, Casey R, Grusak M A .(2003) Can we improve the nutritional quality of legume seeds? Plant Physiology.131: 886—891.
    179. Walling L, Drews G N, Goldberg R B. (1986).Transcriptional and posttranscriptional regulation of soybean seed protein mRNA levels. Proc. Natl. Acad. Sci. USA 83:2123—2127.
    180. Wesley S V, Helliwell C A, Smith N A, et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27:581—590.
    181. Yamauchi F et al .(1991)Molecular understanding of soybean protein ,Food Rev. Int.,7: 283—332.
    182. Yamada T,Teraishi M,Hattori K, Ishimoto M.(2001)Transformation of azuki bean by Agrobacterium tumefaciens.Plant Cell Tiss.Org.Cult. 64:47—54.
    183. Yan B, Srinivasa Reddy M S, Collins G B, Dinkins R D (2000) Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Rep. 19: 1090 —1097.
    184. Yang Z, Zhang L, Diao F, Huang M, Wu N (2004) Sucrose regulates elongation of carrot somatic embryo radicles as a signal molecule. Plant Mol Biol 54: 441—459.
    185. Yoshino M, Kanazaw A,Tsutsumi K et al. (2001)Structure and characterization of the gene encoding alpha subunit of soybean beta-conglycinin.Genes Genet Syst.76(2):99—105.
    186. Zilberman D,Cao X, Jacobsen S E. (2003)ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methlation.Science.299:716—719.
    187. Zamore P, Tuschl T, Sharp P, Bartel D. (2000) RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell .101: 25—33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700