用户名: 密码: 验证码:
大型海藻对不同CO_2浓度的光合生理响应及其生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO_2升高引起海水无机碳体系的变化,这势必会对海洋中利用无机碳进行光合作用的海藻等初级生产者产生一定的作用,从而影响海洋初级生产力和海-气界面CO_2交换的变化规律。因此研究不同CO_2浓度对大型海藻光合生理的影响以及大型海藻固定CO_2的生态效应具有重要意义。本文在综述了有关大型海藻对不同CO_2浓度响应的基础上,力图探讨CO_2浓度与光强以及无机氮的协同作用对三种常见大型海藻龙须菜(红藻)、孔石莼(绿藻)和海带(褐藻)生理特性的影响以及大型海藻对海水无机碳体系的调节作用,以期为不同环境条件下大型海藻对不同CO_2浓度的响应以及利用海水养殖或“种植能源”吸收和固定CO_2提供一定的理论依据。主要研究工作包括以下方面:
     1.静止和充气培养条件下不同光强对龙须菜光合生理效应的影响。充气显著地促进了龙须菜的生长,而光强过低或者过高均会抑制其生长。在相同的光强下,与充气培养相比,静止培养可抑制藻体的光合作用速率,增大呼吸作用速率;而充气与否对藻体的有效光化学效率(Yield)和光合色素影响不显著。在静止和充气培养条件下,中光组藻体的光合作用速率最大,呼吸作用速率最小;Yield和光合色素随着光强的增大而下降。这些结果说明,低光对生长的影响主要是由于光合作用速率下降引起的,而高光对生长的影响的主要原因是呼吸作用速率的增加。
     2. CO_2和光强对三种大型海藻光合生理效应的影响。在正常CO_2浓度水平下,光强对三种大型海藻生长影响显著,在低光和高光下,三种海藻生长均受到抑制。在低光下,高浓度CO_2对三种海藻生长的影响不显著;在中光下,高浓度CO_2对龙须菜的生长有显著的促进作用,而对孔石莼和海带的生长作用不明显;在高光下,高浓度CO_2可促进龙须菜和孔石莼的生长,抑制海带的生长。在低光下,高浓度CO_2可使三种海藻的光合作用速率降低,光合作用速率/呼吸作用速率(P/R)升高,其中孔石莼的P/R显著高于正常CO_2浓度下的;在中光和高光下,高浓度CO_2培养下的龙须菜和孔石莼的光合作用和光合色素要低于正常CO_2浓度培养下的藻体,而高浓度CO_2对海带的光合作用要高于正常CO_2浓度培养下的。在高光下,藻体的呼吸作用速率升高、P/R降低,Chl a和Car含量最低,并且Yield值显著低于其他的光强处理组。
     3. CO_2和无机氮浓度变化对三种大型海藻光合生理效应的影响。在正常CO_2浓度下,无机N加富对三种大型海藻的生长、光合作用和光合色素均有显著的促进作用。在N限制的条件下,高浓度CO_2可促进海藻的生长。在对照N海水条件下,相对于孔石莼和海带,高浓度CO_2对龙须菜的生长具有显著的促进作用。在N加富的条件下,高浓度CO_2对龙须菜的生长作用影响不显著,而高浓度CO_2增强了海带和孔石莼的呼吸作用,并且藻体的P/R值显著低于正常CO_2浓度水平下的,这在一定程度上损耗了藻体光合作用同化积累的干物质,从而抑制孔石莼和海带的生长。不管是在正常CO_2浓度下还是CO_2浓度升高的条件下,海带的光合作用速率和光合效率显著低于龙须菜和孔石莼。NO_3~-和NH_4~+加富处理对藻体的生长和光合生理特性没有显著的影响。
     4.溶解无机氮加富对海带养殖水体无机碳体系的影响。无机碳体系各组分的变化趋势与无机氮添加浓度和无机氮形态有关。当NO_3~--N和NH_4~+-N浓度范围分别在4.73~52.78μmol L~(-1)和2.56~34.66μmol L~(-1)时,DIC、HCO_3~-和pCO_2均随着营养盐浓度的增加呈下降趋势,其中以NO_3~--3和NH_4~+-3组变化最为明显,均达到最低值,分别为2054和2112μmol L~(-1)、1776和1869μmol L~(-1)、86和114μatm;而当NO_3~--N和NH_4~+-N浓度范围分别为52.78~427.29μmol L~(-1)和34.66~268.33μmol L~(-1)时,DIC、HCO_3~-和pCO_2随着营养盐浓度的增加,其下降幅度逐渐减弱,但实验结束时DIC、HCO_3~-和pCO_2仍低于对照组。NO_3~--N加富组对海带的固碳能力的影响显著高于NH_4~+-N加富组。
     5.不同贝藻养殖方式对桑沟湾海域无机碳体系的影响。随着培养时间的延长,贝类组的DIC、HCO_3~-和pCO_2逐渐升高,pH和CO_32-逐渐降低,在42h时,pCO_2比自然海水高出了5.5倍,pH下降了0.8。而在贝藻混养组中,随着藻密度的增加,DIC、HCO_3~-和pCO_2逐渐降低,pH和CO_32-逐渐升高。在本实验中,当贝藻混养比例为1:0.96(湿重)时,养殖水体中pCO_2最低。因此,适当的混养龙须菜和栉孔扇贝可以有效降低水域中养殖贝类释放出的CO_2浓度。
Increased atmospheric CO_2concentration can be predicted to result in a change ofthe components of inorganic carbon system. Aquatic plants use CO_2for photosynthesisand some species use HCO_3~-. The CO_2and HCO_3~-concentration in seawater mustinfluence the photosynthetic carbon fixation of aquatic plants and air-sea CO_2flux.Thus, it’s important to study on the photosynthetic physiological responses ofmacroalgae to different CO_2concentration and their ecological effects. This paperreviewed the responses of macroalgae, trying to explore the ecophysiologicalcharacteristics in three macroalgae Gracilaria lemaneformis (a red macroalga), Ulvapertusa (a green macroalga) and Saccharina japonica (a brown macroalga) and theirecological effects of the fixation carbon, in order to provide theoretical basis forresponse of macroalgae to different CO_2concentrations and controlling the CO_2concentration by the macroalgae cultivation. The main results were as follows:
     1. Effect of light intensity on the photosynthetical responses of G. lemaneiformisin non-aerated and aerated cultures. At the same light intensity, non-aerated culturecould decrease the photosynthetic rate and increase respiration rate of algae, comparedto non-aerated culture. But aerated culture doesn’t affect obviously on. Yield andpigments contents. In the moderate light intensity group, there was the maximumphotosynthetic rate and the minimum respiration rate for algae, as well as Yield andpigments contents were progressively decreased with increasing light intensity. Theresults suggested that reduced growth was mainly due to the reduced photosynthesisrate in case of low light intensity, or could be ascribed to the increased respiration ratein case of high light intensity. Aerated culture could relieve the negative effect on thegrowth rate of alga for low light or high light.
     2. Effects of carbon dioxide and light intensity on the photosynthetical responsesof three macroalgae. Under the normal CO_2concentration condition, light intensity hada notably significant effect on the growth of macoalgae, and the low light or high light inhibited growth of thalli. In the low light, elevated CO_2concentration had nosignificant influence on the growth of three algae, and decreased the photosyntheticrate of three algae, but increased the P/R, where the growth of U. pertusa wassignificant lower than in the normal CO_2level; in the mediate light, increased CO_2concentration could promote the relative growth rate of G. lemaneformis, have nosignificant effect on U. pertusa, and decrease the growth of S. japonica; in the highlight, elevated CO_2concentration increased the growth of G. lemaneformis and U.pertusa, but inhibited the growth of S. japonica. Compared to the normal CO_2level,moderate light and high light decreased photosynthetic rate and pigments contents of G.lemaneformis and U. pertusa, but increased photosynthetic rate of S. japonica whenthe thalli were cultured under enriched concentration CO_2condition. In the high light,the pigments contents and Yield of the thalli were significantly decreased.
     3. Effects of different CO_2and DIN concentrations on the photosyntheticresponses of three macroalgae. The results showed that N supply could significantlyincrease the relative growth rate, photosynthetic rate and pigments contents ofmacroalgae under the normal CO_2concentration condition. When N was limited,elevated CO_2concentration could significantly increase the relative growth rate ofmacroalgae. Under the control N level condition, increased CO_2concentration couldpromote the growth of G. lemaneformis more effectively than U. pertusa and S.japonica. When both CO_2and N were enriched, the growth of G. lemaneformis didn’tincrease significantly, and increased respiration rate of U. pertusa and S. japonica andlow P/R resulted their decreased growth rate. In the any of CO_2concentration, thephotosynthetic rate and photosynthetic efficiency of S. japonica were significantlylower than G. lemaneformis and U. pertusa. There was no significant different betweenenriched NO_3~-and NH_4~+supply on growth and photosynthesis of macroalgae.
     4. Effects of DIN enrichment on inorganic carbon system of S. japonica culturewater. The results indicated that inorganic carbon system of culturing S. japonica wascorrelated with the concentrations and forms of DIN. The concentrations of DIC, HCO_3~-and pCO_2generally decreased with the increasing of nitrogen concentrationunder the concentration of4.73~-52.78μmol L~(-1)(NO_3~--N) and2.56-34.66μmol L~(-1)(NH_4~+-N) and were most remarkably affected by the NO_3~--3and NH_4~+-3groups,corresponding with the lowest values2054and2112μmol L~(-1),1776and1869μmolL~(-1),86and114μatm, respectively. However, when the concentration of nitrogen wasbetween52.78-427.29μmol L~(-1)(NO_3~--N) and34.66-268.33μmol L~(-1)(NH_4~+-N), thefalling trends of DIC, HCO_3~-and pCO_2were weakened with nitrogen increasing, butthe concentrations of DIC, HCO_3~-and pCO_2were also lower than the control group.Influence of NO_3~--N addition group on inorganic carbon system of seawater was largerthan NH_4~+-N addition group. And the ability of carbon fixation in NO_3~--N additiongroup was significantly higher than in NH_4~+-N addition group.
     5. Carbon dioxide fixation by the seaweed G. lemaneiformis in integratedmulti-trophic aquaculture with the scallop Chlamys farreri in Sanggou Bay, China. Incontrol groups, continuous dissolution of CO_2produced by scallops into the seawaternot only caused an ongoing increase of partial pressure of CO_2(pCO_2),5.5timeshigher than that of natural seawater, but also acidified seawater by0.8units after42hof culture. However, in all seaweed-scallop groups, the higher the algal density, themore CO_2was absorbed; pCO_2was lowest in the maximum density of macrolagae.The results showed that a ratio of bivalve to seaweed was1:0.96(FW), the seawatercould produce the lowest pCO_2. Overall, the integrated culture of seaweed and scallopcould provide an efficient and environmentally friendly means to reduce CO_2emissions from bivalve mariculture.
引文
方建光,匡世焕,孙慧玲,孙耀,周诗赉,宋云利,崔毅,赵俊,杨琴芳,李锋,张爱君,王兴章,汤庭耀.桑沟湾栉孔扇贝养殖容量的研究[J].海洋水产研究,1996a,2:18~32.
    方建光,孙慧玲,匡世焕,孙耀,周诗赉,宋云利,崔毅,赵俊,杨琴芳,李锋,王兴章,汤庭耀.桑沟湾海带养殖容量的研究[J].海洋水产研究,1996b,2:7~18.
    毛玉泽,叶乃好,王金叶,李玚,崔现军,邹健,方建光.海带藻片对氮营养盐吸收特性研究[C].2008年中国水产学会学术年会论文摘要集,2008.
    毛玉泽,杨红生,周毅,胡宗福,袁秀堂,游奎,王如才.龙须菜(Gracilarialemaneiformis)的生长、光合作用及其对扇贝排泄氮磷的吸收[J].生态学报,2006,26(10):3225~3231.
    毛兴华,朱明远,杨小龙.桑沟湾大型底栖植物的光合作用和生产力的初步研究[J].生态学报,1993,13(1):25~29.
    王艳,王小冬,李韶山.充气和搅动对球形棕囊藻生长及囊体形成的影响[J].生态学报,2010,30(12):3368~3374.
    王焕明,李少芬,陈浩如,王肇鼎.江蓠与新对虾,青蟹混养试验[J].水产学报,1993,4:273~281.
    王翔宇,詹冬梅,李美真,徐智广.大型海藻吸收氮磷营养盐能力的初步研究[J].渔业科学进展,2011,32(4):67~71.
    刘长发,张泽宇,雷衍之.盐度、光照和营养盐对孔石莼(Ulva pertusa)光合作用的影响[J].生态学报,2001,21(5):795~798.
    刘树霞,邹定辉,徐军田,高坤山.不同N水平条件下羊栖菜对阳光辐射的响应[J].海洋通报,2008,27(6):44~51.
    刘树霞,徐军田,蒋栋成.温度对经济红藻龙须菜生长及光合作用的影响[J].安徽农业科学,2009,37(33):16322~1632.
    刘朝阳,孙晓庆.石莼的综合开发与利用前景[J].饲料广角,2006,17:35~37.
    孙谷畴,林植芳,林桂珠.不同光强下生长的几种亚热带森林树木的Rubisco羧化速率和碳酸酐酶的活性[J].武汉植物学研究,2001,19(4):304~310.
    安鑫龙,齐遵利,李雪梅,张秀文.大型海藻龙须菜的生态特征[J].水产科学,2009,28:109~112.
    朱明,刘兆普,徐军田,茅云翔,姚东瑞.不同氮磷水平对缘管浒苔生长及光合作用的影响[J].海洋湖沼通报,2011,3:57~61.
    汤坤贤,游秀萍,林亚森,陈敏儿,沈东煜,林泗彬.龙须菜对富营养化海水的生物修复[J].生态学报,2005,25(11):3004~3051.
    纪明侯.海藻化学[M].科学出版社,1997.
    吴红艳,高坤山,渡辉夫.静止和充气培养条件下短期紫外辐射对钝顶螺旋藻光化学效率的影响[J].水生生物学报,2005,29(6):673~677.
    孟庆俊,王华芝,陈暖,南春容.环境因子对羊栖菜氮磷吸收速率、生长速率和叶绿素a含量的影响[J].海洋环境科学,2010,29(5):723~727.
    吴荣军,朱明远,李瑞香,张学雷,郑有飞,孙丕喜, MarcDeslous-Paoli J, Auby I.海带(Laminaria japonica)幼孢子体生长和光合作用的N需求[J].海洋通报,2006,25(005):36~42.
    宋金明,李学刚,李宁,高学鲁,袁华茂,詹天荣.一种海水中溶解无机碳的准确简易测定方法[J].分析化学,2004,32(12):1689~1692.
    宋金明.中国近海生物地球化学[M].济南:山东科技出版社,2004.1~591.
    张乃星,宋金明,郭明克,曹丛华,任荣珠,吴凤丛,王尽文.过量无机氮造成的富营养化对孔石莼存在下海水无机碳体系的影响[J].环境科学,2009,30(7):1906~1913.
    张涛,沈宗根,姚春燕,陆勤勤,姜红霞,朱建一,许璞.基于叶绿素荧光技术的紫菜光适应特征研究[J].海洋学报,2011,33(3):140~147.
    张继红,方建光,唐启升.中国浅海贝藻养殖对海洋碳循环的贡献[J].地球科学进展,2005,20(3):359~365.
    张继红,王巍,韩婷婷,刘顶海,方建光,蒋增杰,刘新杰,张新军,连岩.桑沟湾春季营养盐分布特征及赤潮暴发诱因[J].水产学报,2012,32:132~139.
    张鑫,邹定辉,徐智广,刘树霞.大气CO2浓度升高和氮加富对羊牺菜生理生化特征的影响[J].南方水产,2007,3(3):35~40.
    李伟新,朱仲嘉,刘凤贤.海藻学概论[J].上海:上海科技出版社,1982.
    李枫,邹定辉,刘兆普,赵耕毛,程丽巍,朱喜锋,陈伟洲.氮磷水平对龙须菜生长和光合特性的影响[J].植物生态学报,2009,33(6):1140~1147.
    李袜,罗琼,张声华.海带中褐藻糖胶的组成分析[J].中国食品学报,2001,1:46~49.
    杨卫华,高会旺,张永举.海水养殖对近岸海域环境影响的研究进展[J].海洋湖沼通报,2006,1:100~107.
    杨宇峰,宋金明,林小涛,聂湘平.大型海藻栽培及其在近海环境的生态作用[J].海洋环境科学,2005,24:77~80.
    杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(001):53~57.
    杨红生,王健,周毅,张涛,王萍,何义朝,张福绥.烟台浅海区不同养殖系统养殖效果的比较[J].水产学报,2000,24(2):140~146.
    邱保胜,刘其芳.雨生红球藻(Haematococcus pluvialis-6B)培养条件研究[J].华中师范大学学报,1999,33(1):112~118.
    邹定辉,高坤山,阮祚禧.高CO2浓度对石莼光合作用及营养盐吸收的影响[J].青岛海洋大学学报(自然科学版),2001,31(6):877~882.
    邹定辉,高坤山.大型海藻类光合无机碳利用研究进展[J].海洋通报,2001,20(5):83~90.
    邹定辉,高坤山.高CO2浓度对大型海藻光合作用及有关过程的影响[J].生态学报,2002,22(10):1750~1757.
    邹定辉,高坤山..高CO2浓度对石莼光合作用及营养盐吸收的影响[J].青岛海洋大学学报,2001,31:877~882.
    国家海洋标准计量中心,国家海洋局第二海洋研究所,国家海洋局第一海洋研究所.GB17378-2007海洋监测规范[S].北京:中国标准出版社,2008.
    岳国峰,王金霞,王建飞,周百成,曾呈奎.海带幼孢子体的光合碳利用[J].海洋与湖沼,2001,32(6):647~652.
    岳国峰,周百成.条斑紫菜对无机碳的利用[J].海洋与湖沼,2000,31(3):33~38.
    林贞贤,宫相忠,李大鹏.光照和营养盐胁迫对龙须菜生长及生化组成的影响[J].海洋科学,2007,31(11):22~26.
    罗通,李维一. CO2、NaHCO3对螺旋藻光合放氧和pH值影响的研究[J].四川师范大学学报,1999,22(5):607~611.
    金振辉,刘岩,张静,宫庆礼,崔竞进,刘涛.中国海带养殖现状与发展趋势[J].海洋湖沼通报,2009,1:141~150.
    南春容,张海智,董双林.孔石莼水溶性抽提液抑制3种海洋赤潮藻的生长[J].环境科学学报,20004,24(7):702~706.
    赵建刚,叶长鹏.温度和营养盐胁迫对龙须菜氨氮吸收速率及生长速率的影响[J].水生态学杂志,2011,32(6):57~60.
    徐永健,陆开宏,管保军.不同氮磷浓度及氮磷比对龙须菜生长和琼胶含量的影响[J].农业工程学报,2006,22(8):209~213.
    徐军田,高坤山.二氧化碳和阳光紫外辐射对龙须菜生长和光合生理的影响[J].海洋学报,2010,32(5):144~151.
    徐娟华,马武翔,谢强敏,赵孟辉.石莼多糖的提取分离及其降血脂作用的初步研究[J].中国中医药科技,2002,9(3):167~168.
    徐智广,李美真,霍传林,于道德,张振冬,邵雁群.高浓度CO2引起的海水酸化对小珊瑚藻光合作用和钙化作用的影响[J].生态学报,2012,32(003):699~705.
    徐智广,邹定辉,张鑫,刘树霞,高坤山. CO2和硝氮加富对龙须菜(Gracilarialemaneiformis)生长、生化组分和营养盐吸收的影响[J].生态学报,2008,28(8):3752~3759.
    徐智广,邹定辉,高坤山,李美真.不同温度、光照强度和硝氮浓度下龙须菜对无机磷吸收的影响[J].水产学报,2011,35(7):1023~1029.
    黄健,唐学玺,段德麟,刘涛,李永祺.不同光照条件下海带体内各种化合物的含量及光合作用和呼吸作用的变化[J].海洋科学,2002,26(4):55~58.
    黄道建,黄小平,岳维忠.大型海藻体内TN和TP含量及其对近海环境修复的意义[J].台湾海峡,2005,24(3):316~321.
    曾呈奎,吴超元,任国忠.温度对海带配子体生长发育的影响[J].海洋与湖沼,1962,4(1-2):22~28.
    温珊珊,张寒野,何文辉,张饮江,徐姗楠,何培民.真江蓠对氨氮去除效率与吸收动力学研究[J].水产学报,2008,32(5):794~803.
    程丽巍,邹定辉,郑青松,刘兆普,李枫,蒋和平.光照和温度对氮饥饿及饱和营养条件下石莼(Ulva lactuca)的硝态氮吸收动力学影响[J].生态学杂志,2010,29:939~944.
    程丽巍.三种大型海藻对海水中营养盐供应变化的生理响应研究[D].南京农业大学硕士学位论文,2010. pp12.
    滕怀丽,黄旭雄,周洪琪,华雪铭,杨志刚,冷向军.充气方式对盐藻生长,细胞营养成分及氮磷营养盐利用的影响[J].水产学报,2010,34(6):942~948.
    Ahn O, Petrell R J, Harrison P J. Ammonium and nitrate uptake by Laminariasaccharina and Nereocystis luetkeana originating from a salmon sea cage farm [J].Journal of Applied Phycology,1998,10(4):333~340.
    Anderson R, Archer D, Bathmann U, Boyd P, Buesseler K, Burkill P, Bychkov A,Carlson C, Chen C T, Doney S. A new vision of ocean biogeochemistry after adecade of the Joint Global Ocean Flux Study (JGOFS)[J]. Ambio,2001,10:4~30.
    Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosyntheticperformance of Gracilaria sp.(Rhodophyta) from Cádiz, Spain, cultured underdifferent inorganic carbon and nitrogen levels [J]. European Journal of Phycology,1999,34(05):497~504.
    AndriéC, Oudot C, Genthon C, Merlivat L. CO2fluxes in the tropical Atlantic duringFOCAL cruises [J]. Journal of Geophysical Research.1986,91:11741~11755.
    Axelsson L, Ryberg H, Beer S. Two modes of bicarbonate utilization in the marinegreen macroalga Ulva lactuca [J]. Plant,Cell&Environment,1995,18:439~445.
    Axelsson L, Uusitalo J. Carbon acquisition strategies for marine macroalgae [J]. MarineBiology,1988,97(2):295~300.
    Bakker D C, de Baar H J, de Jong E. The dependence on temperature and salinity ofdissolved inorganic carbon in East Atlantic surface waters [J]. Marine Chemistry,1999,65:263~280.
    Barkan E, Luz B, Lazar B. Dynamics of the carbon dioxide system in the Dead Sea [J].Geochimica et Cosmochimica Acta,2001,65:355~368.
    Barr N G, Rees T A V. Nitrogen status and metabolism in the green seaweedEnteromorpha intestinalis: an examination of three natural populations [J]. MarineEcology Progress Series,2003,249:133~144.
    Bates N R, Takahashi T, Chipman D W, Knap A H. Variability of pCO2on diel toseasonal timescales in the Sargasso Sea near Bermuda [J]. Journal of GeophysicalResearch,1998,103:15567~15585.
    Beer S, Bj rk M. Photosynthetic properties of protoplasts, as compared with thalli, ofUlva Fasciata (Chlorophyta)[J]. Journal of Phycology,1994,30(4):633~637.
    Beer S, Israel A. Photosynthesis in Ulva fasciata IV. pH, carbonic anhydrase andinorganic carbon conversions in the unstirred layer [J]. Plant,cell&Environment,1990,13:555~560.
    Beer S, Rehnberg J. The acquisition of inorganic carbon by the seagrass Zostera marina[J]. Aquatic Botany,2007,56:277~283.
    Bischof K, Hanelt D, Wiencke C. UV-radiation can affect depth-zonation of Antarcticmacroalgae [J]. Marine Biology,1998,131(4):597~605.
    Bj rk M, Haglund K, Ramazanov Z, Pedersén M. Inducible mechanism for HCO3-utilization and repression of photorspirsation in protoplasts and thallus of threespecies Ulva (Chlorophyta)[J]. Journal of Phycology,1993,29(2):166~173.
    Bowes G. Facing the Inevitable: Plants and Increasing Atmospheric CO2[J]. AnnualReview of Plant Physiology and Plant Molecular Biology,1993,44:309~332.
    Brenchley J L, Raven J A, Johnston A M. Resource acquisition in two intertidal fucoidseaweeds, Fucus serratus and Himanthalia elongata: seasonal variation and effectsof reproductive development [J]. Marine Biology,1997,129(2):367~375.
    Brinkhuis B H, Renzhi L, Wu C, Jiang X. Nitrite uptake transients and consequencesfor in vivo algal nitrate reductase assays [J]. Journal of phycology,1989,25(3):539~545.
    Buschmann A H, Mora O A, Gómez P, B ttger M, Buitano S, Retamales C, Vergara PA, Gutierrez A. Gracilaria chilensis outdoor tank cultivation in Chile: use ofland-based salmon culture effluents [J]. Aquacultural Engineering,1994,13:283~300.
    Canadell J G, Quéré C L, Raupach M R, Field C B, Buitenhuis E T, Ciais P, Conway TJ, Gillett N P, Houghton R A, Marland G. Contributions to acceleratingatmospheric CO2growth from economic activity, carbon intensity, and efficiencyof natural sinks [J]. Proceedings of the National Academy of Sciences of theUnited States of America,2007,104(47):18866~18870.
    Chauvaud L, Thompson J K, Cloern J E, Thouzeau G. Clams as CO2generators: thePotamocorbula amurensis example in San Francisco Bay [J]. American Society ofLimnology and Oceanograpy,2003,48(6):2086~2092.
    Copin Montégut C, Copin Montégut G. Theoretical considerations about the reactionsof calcification in sea water [J]. Mar Chem,1999,63:213~224.
    Dawes C J, Koch E W. Physiological Responses of the Red Algae Gracllarla Verrucosaand G. Tikvahiae Before and After Nutrient Enrichment [J]. Bulletin of MarineScience,1990,46(2):335~344.
    Dickson A G, Goyet C. Handbook of methods for the analysis of the various parametersof the carbon dioxide system in sea water [M].1994,4~26.
    Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawaterfrom273.15to318.15K [J]. Deep Sea Research Part A. Oceanographic ResearchPapers,1990,37(5):755~766.
    Falk S, Palmqvist K. Photosynthetic light utilization efficiency, photosystem IIheterogeneity, and fluorescence quenching in Chlamydomonas reinhardtii duringthe induction of the CO2-concentrating mechanism [J]. Plant Physiology,1992,100(2):685~691.
    Fasham M, Balino B, Bowles M, Anderson R, Archer D, Bathmann U. A new vision ofocean biogeochemistry after a decade of the Joint Global Ocean Flux Study(JGOFS), AMBIO [J]. Special Report,2001,10:4~31.
    Feely R A, Gammon R H, Taft B A, Pullen P E, Waterman L S, Conway T J, Gendron JF, Wisegarver D P. Distribution of chemical tracers in the eastern equatorialPacific during and after the1982–1983El Nino/Southern Oscillation event [J].Journal of Geophysical Research,1987,92:6545~6558.
    Fei X G. Solving the coastal eutrophication problem by large scale seaweed cultivation[J]. Hydrobiologia,2004,512(1-3):145~151.
    Franklin L, Forster R. The changing irradiance environment: consequences for marinemacrophyte physiology, productivity and ecology [J]. European Journal ofPhycology,1997,32(3):207~232.
    Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. Calcification in thearticulated coralline alga Corallina pilulifera, with special reference to the effect ofelevated CO2concentration [J]. Mari Biol,1993,117:129~132.
    Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. Photorespiration and CO2fixation in the red alga Porphyra yezoensis Ueda [J]. Jpn.J.Phycol.,1992,40:373~377.
    Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M..Enhanced growth of thered alga Porphyra yezoensis Ueda in high CO2concentrations [J]. Journal ofApplied Phycology,1991,3(4):355~362.
    Gao K, Aruga Y, Asada K, Kiyohara M. Influence of enhanced CO2on growth andphotosynthesis of the red algae Gracilaria sp. and G. chilensis [J]. Journal ofApplied Phyco1ogy,1993,5(6):563~571.
    Gao K, Ji Y, Aruga Y. Relationship of CO2concentrations to photosynthesis ofintertidal macroalgae during emersion [J]. Hydrobiologia,1999,137:355~359.
    Gao K, McKinley K R. Use of macroalgae for marine biomass production and CO2remediation: a review [J]. Journal of Applied Phycology,1994,6(1):45~60.
    García-Sánchez M J, Fernández J A, Niell X. Effect of inorganic carbon supply on thephotosynthetic physiology of Gracilaria tenuistipitata [J]. Planta,1994,194(1):55~61.
    Geider R J, Roche J L, Greene R M, Olaizola M. Response of the photosyntheticapparatus of Phaeodactylum Tricornutum (Bacillariophyceae) to nitrate, phosphate,or iron starvation [J]. Journal of phycology,1993,29:755~766.
    Ghoshal D, Husic H D, Goyal A. Dissolved inorganic carbon concentration mechanismin Chlamydomonas moewusii [J]. Plant Physiology and Biochemistry,2002,40(4):209~305.
    Giordano M, Maberly S C. Distribution of carbonic anhydrase in British marinemacroalgae [J]. Oecologia,1989,81:534~539.
    Golléty C, Gentil F, Davoult D. Secondary production, calcification and CO2fluxes inthe cirripedes Chthamalus montagui and Elminius modestus [J]. Oecologia,2008,155:133~142.
    Gordillo F J L, Niell F X, Figueroa F L. Non-photosynthetic enhancement of growth byhigh CO2level in the nitrophilic seaweed Ulva rigida C.Agardh (Chlorophyta)[J].Planta,2001,213(1):64~70.
    H der D, Gr niger A, Hallier C, Lebert M, Figueroa FL, Jiménez C. Photoinhibition byvisible and ultraviolet radiation in the red macroalga Porphyra umbilicalis grownin the laboratory [J]. Plant Ecology,1999,145(2):351~358.
    Haglund K, Bj rk M, Ramazanov Z, García-Reina G, Pedersén M. Role of carbonicanhydrase in photosynthesis and inorganic-carbon assimilation in the red algaGracilaria tenuistipitata [J]. Planta,1992,187(2):275~281.
    Haglund K, Pedersén M. Outdoor pond cultivation of the subtropical marine red algaGracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake,co-cultivation with rainbow trout and epiphyte control. Journal of AppliedPhycology,1993,5(3):271~284.
    Hall D O, Rao K K. Photosynthesis [M].5th ed. Cambridge University Press,1994.
    Han T T, Jiang Z J, Fang J G, Zhang J H, Mao Y Z, Zou J, Huang Y, Wang D Z.Carbon dioxide fixation by the seaweed Gracilaria lemaneiformis in integratedmulti-trophic aquaculture with the scallop Chlamys farreri in Sanggou Bay, China[J]. Aquaculture International,2012,1~9.
    Hanelt D, Huppertz K, Nultsch W. Daily course of photosynthesis and photoinhibitionin marine macroalgae investigated in the laboratory and field [J]. Marine EcologyProgress Series,1993,97:31~37.
    Hanelt D, Huppertz K, Nultsch W. Photoinhibition of photosynthesis and its recovery inred algae [J]. Botanica acta,1992,105:278~284.
    Hanelt D. Photoinhibition of photosynthesis in marine macroalgae [J]. Scientia Marina,1996,60:243~248.
    Hanisak M D, Harlin M M. Uptake of inorganic nitrogen by Codium fragile Subsp.Tomentosoides (Chlorophyta)[J]. Journal of Phycology,1978,14(4):450~454.
    Harmens H, Stirling C M, Marshall C, Farrar J F. Does down-regulation ofphotosynthetic capacity by elevated CO2depend on N supply in Dactylisglomerata?[J]. Physiologia Plantarum,2000,108(1):43~50.
    Hawkins A, Duarte P, Fang J G, Pascoe P L, Zhang J H, Zhang X L, Zhu M Y. Afunctional model of responsive suspension-feeding and growth in bivalve shellfish,configured and validated for the scallop Chlamys farreri during culture in China[J]. J Exp Mar Biol Ecol,2002,1:13~40.
    Hein M, Pedersen M F, Jensen K S. Size-dependent nitrogen uptake in micro-andmacroalgae [J]. Marine Ecology Progress Series,1995,118:247~253.
    Hein M, Sand-Jensen K. CO2increases oceanic primary production [J]. Nature,1997,388:526~527.
    Humphrey G F. The photosynthesis: Respiration ratio of some unicellular marine algae[J]. Journal of Experimental Marine Biology and Ecology,1975,18(2):111~119.
    Hutchins D A, Fu F., Zhang Y, Warner M E, Feng Y, Portune K, Bernhardt P W,Mulholland M R. CO2control of Trichodesmium N2fixation, photosynthesis,growth rates, and elemental ratios: Implications for past, present, and future oceanbiogeochemistry [J]. Limnology and Oceanography,2007,52(4):1293~1304.
    Israel A, Beer S. Photosynthetic carbon acquisition in the red alga Gracilaria conferta[J]. Marine Biology,1992,112(4):697~700.
    Israel A, Hophy M. Growth, photosynthetic properties and Rubisco activities andamounts of marine macroalgae grown under current and elevated seawater CO2concentrations [J]. Global Change Biology,2002,8(9):831~840.
    Israel A, Katz S, Dubinsky Z, Merrill J E, Friedlander M. Photosynthetic inorganiccarbon utilization and growth of Porphyra linearis (Rhodophyta)[J]. Journal ofApplied Phycology,1999,11(5):447~453.
    Johnston A M, Maberly S, Raven J A. The acquisition of inorganic carbon by four redmacroalgae from different habitats [J]. Oecologia,1992,92:317~326.
    Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics [J].Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313~349.
    Lapointe B E, Tenore K R, Dawes C J. Interactions between light and temperature onthe physiological ecology of Gracilaria tikvahiae (Gigartinales: Rhodophyta)[J].Marine Biology,1984,80(2):161~170.
    Larned S T, Atkinson M J. Effects of water velocity on NH4+and PO43-uptake andnutrient-limited growth in the macroalga Dictyosphaeria cavernosa [J]. MarineEcology Progress Series,1997,157:295~302.
    Larsson C, Axelsson L, Ryberg H, Beer S. Photosynthetic carbon utilization byEnteromorpha intestinalis (Chlorophyta) form a Swedish rockpool [J]. EuropeanJournal of Phycology,1997,32(1):49~54.
    Larsson C, Axelsson L. Bicarbonate uptake and utilization in marine macroalgae [J].European Journal of Phycology,1999,34(1):79~86.
    Lartigue J, Sherman T D. Response of Enteromorpha sp.(Chlorophyceae) to a nitratepulse: nitrate uptake, inorganic nitrogen storage and nitrate reductase activity [J].Marine Ecology Progress Series,2005,292:147~157.
    Lavery P S, McComb A J. The nutritional eco-physiology of Chaetomorpha linum andUlva rigida in Peel Inlet, Western Australia [J]. Botanica Marina,1991,34:251~260.
    Liu Y, Liu Z, Zhang J, He Y, Sun H. Experimental study on the utilization of DIC byOocystis solitaria Wittr and its influence on the precipitation of calcium carbonatein karst and non-karst waters [J]. Carbonate Evaporites,2010,25:21~26.
    Lobban C S,Harrison P J. Seaweed ecology and physiology [M]. Cambridge UniversityPress,1994.
    Maberly S C. Carbonate ions appear to neither inhibit nor stimulate use of bicarbonateions in photosynthesis by Ulva lactuca [J]. Plant,Cell&Environment,1992,15(2):255~260.
    Maberly S C. Exogenous sources of inorganic carbon for photosynthesis by marinemacroalgae [J]. Journal of Phycology,1990,26(3):439~449.
    Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. Potential of the seaweed Gracilarialemaneiformis for integrated multi-trophic aquaculture with scallop Chlamysfarreri in North China [J]. Journal of Applied Phycology,2009,21(6):649~656.
    Martin S, Gattuso J P. Response of Mediterranean coralline algae to ocean acidificationand elevated temperature [J]. Global Change Biology,2009,15(8):2089~2100.
    Martin S, Thouzeau G, Chauvaud L, Jean F, Guérin L, Clavier J. Respiration,calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.:Implications for carbon, carbonate, and nitrogen fluxes in affected areas [J].Limnol Oceanogr,2006,51:1996~2007.
    McGlathery K J, Pedersen M F, Borum J. Changes in intracellular nitrogen pools andfeedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta)[J].Journal of Phycology,1996,31(3):393~401.
    Mehrbach C, Culberson C H, Hawley J E, Pytkowicz R M. Measurement of theapparent dissociation constants of carbonic acid in seawater at atmosphericpressure [J]. Limnol Oceanogr,1973,18(6):897~907.
    Mercado J M, Figuroa F L, Niell F X, Axelsson L. A new method for estimatingexternal carbonic anhydrase activity in marcoalgae [J]. Journal of Phycology,1997,33(6):999~1006.
    Mercado J M, Gordillo F J L, Figueroa F L, Niell F X. External carbonic anhydrase andaffinity for inorganic carbon in intertidal macroalgae [J]. Journal of ExperimentalMarine Biology and Ecology,1998,221(2):209~220.
    Mercado J M, Javier F, Gordillo L, Niell F X, Figueroa F L. Effects of different levelsof CO2on photosynthesis and cell components of the red alga Porphyra leucosticte[J]. Journal of App1ied Phyco1ogy,1999,11(5):455~461.
    Mercado J M, Niell F X. Carbon dioxide uptake by Bostrychia scorpioides(Rhodophyceae) under emersed conditions [J]. European Journal of Phycology,2000,35(1):45~51.
    Metzl N, Poisson A, Louanchi F, Brunet C, Schauer B, Bres B. Spatio-temporaldistributions of air-sea fluxes of CO2in the Indian and Antarctic oceans [J]. TellusB,1995,47:56~69.
    Miller L A, Yager P L, Erickson K A, Amiel D, Bacle J, Kirk Cochran J, Garneau M,Gosselin M, Hirschberg D J, Klein B. Carbon distributions and fluxes in the NorthWater,1998and1999[J]. Deep Sea Research Part II: Topical Studies inOceanography,2002,49:5151~5170.
    Millero F J, Degler E A, O’Sullivan D W, Goyet C, Eischeid G. The carbon dioxidesystem in the Arabian Sea [J]. Deep Sea Research Part Ⅱ:Topical Studies inOceanography,1998,45:2225~2252.
    Moore B D, Cheng S H, Sims D. Seemann J R. The biochemical and molecular forphotosynthetic acclimation to elevated atmospheric CO2[J]. Plant, Cell&Environment,1999,22(6):567~582.
    Nakaji T, Takenaga S, Kuroha M, Izuta T. Photosynthetic response of Pinus densifloraseedlings to high nitrogen load [J]. Environmental Sciences,2002,9(4):269~282.
    Neori A, Cohen I, Gordin H. Ulva lactuca biofilters for marine fishpond effluents. II.Growth rate, yield and C: N ratio [J]. Botanica Marina,1991,34:483~490.
    Neori A, Msuya F E, Shauli L, Schuenhoff A, Kopel F, Shpigel M. A novel three-stageseaweed (Ulva lactuca) biofilter design for integrated mariculture [J]. Journal ofApplied Phycology,2003,15(6):543~553.
    Nunes J P, Ferreira J G, Gazeau F, Lencart-Silva J, Zhang X L, Zhu M Y, Fang J G. Amodel for sustainable management of shellfish polyculture in coastal bays [J].Aquacult,2003,219:257~277.
    Osmond C B, Chow W S. Ecology of Photosynthesis in the Sun and Shade: Summaryand Prognostications [J]. Australian Journal of Plant Physiology,1988,15(2):1~9.
    Oudot C, Ternon J F, Lecomte J. Measurements of atmospheric and oceanic CO2in thetropical Atlantic:10years after the1982-1984FOCAL cruises [J]. Tellus B,1995,47(1-2):70~85.
    Pedersen A, Kraemer G, Yarish C. The effects of temperature and nutrientconcentrations on nitrate and phosphate uptake in different species of Porphyrafrom Long Island Sound (USA)[J]. Journal of Experiment Marine Biology andEcology,2004,312(2):235~252.
    Phillips J C, Hurd C L. Nitrogen ecophysiology of intertidal seaweeds from NewZealand: N uptake, storage and utilisation in relation to shore position and season[J]. Marine Ecology Progress Series,2003,264:31~48.
    Raven J A. Implications of inorganic carbon utilization: ecology, evolution, andgeochemistry [J]. Can J Bot,1991,69:908~924.
    Raven J A. Inorganic carbon acquisition by marine autotrophs [J]. Advances inBotanical Research,1997,27:85~209.
    Raymond P A, Cole J J. Gas exchange in rivers and estuaries: Choosing a gas transfervelocity [J]. Estuaries and Coasts,2001,24(2):312~317.
    Riebesell U. Carbon box for a diatom [J]. Nature,2000,407:959~960.
    Rivkin R B. Phytoadaptation in marine phytoplankton: variations in ribulose1,5-bisphisphate activity [J]. Marine Ecology Progress Series,1990,62:61~72.
    Runcie J W, Ritchie R J, Larkum A W D. Uptake kinetics and assimilation of inorganicnitrogen by Catenella nipae and Ulva lactuca [J]. Aquatic Botany,2003,76(2):155~174.
    Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, WongC, Wallace D W, Tilbrook B. The oceanic sink for anthropogenic CO2[J]. Science,2004,305:367~371.
    Sakshaug E, Bricaud A, Dandonneau Y, Falkowski P G, Kiefer D A, Legendre L, MorelA, Parslow J, Takahashi M. Parameters of photosynthesis: definitions, theory andinterpretation of results [J]. Journal of Plankton Research,1997,19(11):1637~1670.
    Santana-Casiano J M, Gonzalez-Davila M, Laglera L M. The carbon dioxide system inthe Strait of Gibraltar [J]. Deep Sea Research Part II: Topical Studies inOceanography,2002,49:4145~4161.
    Schippers P, Lürling M, Scheffer M. Increase of atmospheric CO2promotesphytoplankton productivity [J]. Ecol Lett,2004,7:446~451.
    Sheen J. Feedback control of gene expression [J]. Photosynthesis Research,1994,39(3):427~438.
    Shelp B J, Canvin D T. Utilization of exogenous inorganic carbon species inphotosynthesis by Chlorella pyrenoidosa [J]. Plant physiol,1980,65:774~779.
    Smith R, Bidwell R. Mechanism of photosynthetic carbon dioxide uptake by the redmacroalga, Chondrus crispus [J]. Plant Physiol,1989,89:93~99.
    Smith S V. Marine macrophytes as a global carbon sink [J]. Science,1981,211(4484):838~840.
    Solomon S, Qin D H, Manning M, Marquis M, Averyt K, Tignor M M, Miller H L.Climate change2007: The Physical Science Basis. Contribution of Working GroupI to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange [M]. Cambridge University Press, Cambridge,2007.
    Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogennutrition: the physiological and molecular background [J]. Plant, Cell&Environment,1999,22(6):583~621.
    Stumm W, Morgan J J. Aquatic chemistry [M]. Wiley, New York,1981.
    Stumm W. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria inNatural Waters [M]. New York, Wiley Press,1970.
    Surif M B, Raven J A. Photosynthetic gas exchange under emersed conditions ineulittoral and normally submersed members of the Fucales and Laminariales:interpretation in relation to C isotope ratio and N and water use efficiency [J].Oecologia,1990,82:68~80.
    Surif M B, Raven J A. Exogenous inorganic carbon sources for photosynthesis inseawater by members of the Fucales and the Laminariales (Phaeophyta):ecological and taxonomic implications [J]. Oecologia,1989,78(1):97~105.
    Sverdrup H U, Johnson M W, Fleming R H. The oceans, their physics, chemistry, andgeneral biology [M]. Scholarship California Digital Library, Prentice-HallEnglewood Cliffs,1942, Vol.1087.
    Takahashi T, Sutherland S C, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N,Wanninkhof R, Feely R A, Sabine C. Global sea-air CO2flux based onclimatological surface ocean pCO2, and seasonal biological and temperature effects[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2002,49:1601~1622.
    Tang Q S, Zhang J H, Fang J G. Shellfish and seaweed mariculture increaseatmospheric CO2absorption by coastal ecosystems [J]. Marine Ecology ProgressSeries,2011,424:97~104.
    Thomas H, Schneider B. The seasonal cycle of carbon dioxide in Baltic Sea surfacewaters [J]. Journal of Marine Systems,1999,22:53~67.
    Thomas T E, Harrison P J. Effects of nitrogen supply on nitrogen uptake, accumulationand assimilation on Porphyra perforate (Rhodophyta)[J]. Marine Biology,1985,85(3):269~278.
    Topinka J A. Nitrogen uptake by Fucus spiralis (Phaeophyceae)[J]. Journal ofphycology,1978,14(3):241~247.
    Trebst A. A contact site between the two reaction center polypeptides of photosystem IIis involved in photoinhibition [J]. Z Naturforsch,1991,46:557~562.
    Troell M, Halling C, Neori A, Chopin T, Buschmann A H, Kautsky N, Yarish C.Integrated mariculture: asking the right questions [J]. Aquaculture,2003,226(1):69~90.
    Webber A N, Nie G Y, Long S P. Acclimation of photosynthetic proteins to risingatmospheric CO2[J]. Photosynthesis Research,1994,39(3):413~425.
    Weiss R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas [J].Mar Chem.1974,2(3):203~215.
    Wellbum A R. The spectral determination of chlorophylls a and b, as well as totalcartenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology.1994,144:307~313.
    Wheeler W N, Srivastava L M. Seasonal nitrate physiology of Macrocystis integrifoliaBory [J]. Journal of Experimental Marine Biology Ecology,1984,76:35~50.
    Wiencke C. Recent advances in the investigation of Antarctic macroalgae [J]. PolarBiology,1996,16(4):231~240.
    Xu D, Gao Z, Zhang X, Qi Z, Meng C, Zhuang Z, Ye N. Evaluation of the potential roleof the macroalga Laminaria japonica for alleviating coastal eutrophication [J].Bioresource Technology,2011,102(21):9912~9918.
    Xu J T, Gao K S. Growth, pigments, UV-absorbing compounds and agar yield of theeconomic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at differentdepths in the coastal waters of the South China Sea [J]. Journal of AppliedPhycology,2009,20(5):231~236.
    Xu Y J, Qian L M, Wang Y S. Effects of nitrogen nutrients on growth rate and pigmentcompositions of Gracilaria lemaneiformis [J]. Journal of Oceanography in TaiwanStrait,2006,25(2):222~228.
    Yang H S, Zhou Y, Mao Y Z, Li X X, Liu Y, Zhang F S. Growth characters andphotosynthetic capacity of Gracilaria lemaneiformis as a biofilter in a shellfishfarming area in Sanggou Bay, China [J]. J Appl Phycol,2005,17:199~206.
    Zhang M L, Fang J G, Zhang J H, Li B, Ren S M, Mao YZ, Gao Y P. Effect of marineacidification on calcification and respiration of Chlamys farreri [J]. J Shellfish Res,2011,30:267~271.
    Zhang N X, Song J M, Cao C H, Ren R Z, Wu F C, Zhang S P, Xu S. The influence ofmacronitrogen (NO3and NH4+) addition with Ulva pertusa on dissolvedinorganic carbon system [J]. Acta Oceanologica Sinica,2012,31(1):73~82.
    Zhang Q X, Wang L C. Study on the mixed culture of algae and prawn [J]. Mar Sci,1985,9:32~35.
    Zhou Y, Yang H S, Hu H Y, Liu Y, Mao Y Z, Zhou H, Xu X L, Zhang F S.Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta)integrated into fed fish culture in coastal waters of north China [J]. Aquacult,2006,252:264~276.
    Zou D H, Gao K S. Effects of elevated CO2concentration on the photosynthesis andrelated physiological processes in marine macroalgae [J]. Acta Ecologica Sinica,2002,22(10):1750~1757.
    Zou D H, Xia J R, Yang Y F. Photosynthetic use of exogenous inorganic carbon in theagarophyte Gracilaria lemaneiformis (Rhodophyta)[J]. Aquaculture,2004,237:421~431.
    Zou D H. Effects of elevated atmospheric CO2on growth, photosynthesis and nitrogenmetabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae,Phaephyta)[J]. Aquaculture,2005,250(3-4):726~735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700