超冷简并原子气体中的非线性量子特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性相互作用是超冷简并原子气体的一个重要特征。深入理解由于这种非线性相互作用导致的量子特性,不只是对完善与丰富线性量子理论有重要的意义,也对超冷简并原子气体的相干控制及其潜在的应用有现实的指导意义。本论文提出了一组用于非均匀玻色—爱因斯坦凝聚(Bose-Einstein condensates (BECs))描述的正交基;研究了非线性对其相干性的影响,以及利用谐振子势中多组份BECs理解和模拟一个重要的非线性问题的可能性进行了研究。具体地讲,可以概括为以下几个方面:
     正交完备基是描述线性量子系统的重要基础,由于非线性相互作用和外势的影响,原则上不存在一组正交完备基。在一维无限深势阱中,我们发现一组与线性薛定谔方程的完备基一一对应的的非线性基底。利用这组正交基和波戈留波夫理论,我们对一维无限深势阱中的定态解的稳定性进行了研究,结果发现:对于基态解,无论是非线性参数为正或是为负均是稳定的;但对于第一激发态解,当取负的非线性大于某一个临界值时,它是不稳定的。
     我们对具有非对称BECs的干涉现象进行了研究,发现由于初始波包的不对称性,所形成的干涉条纹也具有一定的不对称性。利用该干涉条纹的性质,结合BECs的特性,我们提出一种用于测量微弱类重力的量子干涉仪。如果对物质波的密度测量可以保证实现的话,则对微弱力的测量精度可以达到δg~10-6。此外,我们通过量子Loschmidt echo展示了非线性的增强效应,它对于测量微弱重力起到了积极的作用。
     相干性是BECs的另一个引人注意的基本性质。由于环境或是其他人为因素,对其相干性的影响是实现原子激光中不得不考虑的问题。我们利用量子Loschmidt echo对囚禁在非谐势阱中、受到到环境扰动的BECs的相干性进行研究。结果表明:其相干性的减少呈现费米型的规律,且非简谐势阱、环境扰动和非线性相互作用三个条件必不可少。其中,非简谐势阱用来产生非简谐振荡;环境扰动则造成相干性损失;同时非线性相互作用增强了这种损失。基于这个费米型的规律,当对凝聚体进行相干性操作时,我们给出了延长其相干时间的建议。
     最后,我们提议利用简谐阱中的多组份BECs来研究一个经典的非线性问题——Fermi-Pasta-Ulam (FPU)问题。简谐势阱中单组份BECs在不考虑外界扰动时,将做非线性的简谐振动,这已经被实验所证实。多组份凝聚体间的相互作用将不同的组份耦合在一起,实现FPU的基本模型,但是,模式之间耦合被非线性相互作用所代替。我们通过对其能量、以及所对应的Husimi分布函数的计算发现:当非线性从弱到强时,能量从一种转移过程转变为一种分享过程。在两组份时,这种能量分享几乎是均等的。推广到三组份时,在特定的条件下也可以看到类似的现象。
The nonlinear atomic interaction is an important character for the ultra-cold degenerate atomic gas. It is one of the hot points in current research to deeply understand the quantum behaviors induced by the nonlinear interaction, not only for extending the quantum theory, but also for coherent manipulation and potential application of the ultra-cold degenerate atomic gas. In this thesis, we have suggested one set of orthogonal basis for describing the nonuniform BECs, explored the coherence decay law enhanced by the nonlinear interaction and proposed one experiment to simulate one famous nonlinear problem.
     It is important to exactly describe the quantum system based on one orthogonal and complete basis in the frame of linear quantum theory. Due to the nonlinearity and external trap, it is difficult to find this kind basis for nonlinear system. With the help of one exactly stationary solution for G-P with1-D infinite square well, a set of orthogonal basis was presented, which is one to one corresponding to the basis of the linear case. Combined the orthogonal basis and the Bogoliubov theory, we have investigated the stability of the stationary states for G-P with the one-dimensional infinite square well, and found that:Whether the positive or negative nonlinear interaction, the ground state is always stable; the first excited state is, however, instable for the negative large enough nonlinear interaction.
     As one of the fundamental properties of BECs, the coherence has attracted more attentions both for theorists and experimenters. We have investigated the interference phenomena from spatially imbalanced BECs. An asymmetric interference pattern is reported by the asymmetry of the initial states. Considering the special character of the atom and this asymmetric interference pattern, we have suggested one novel scheme to detect weak gravity-like force, which benefits from the nonlinear interaction. The sensitivity can be around δg~10-6.
     It is one of the crucial problems to be solved for the realization of the atom lasers, due to the negative factors from unavoidable environments and other factors. Using quantum Loschmidt echo, the evolution of the coherence of BECs with an anharmonic trap, and subjected to the surrounding perturbation is investigated. Our results have shown that the coherence loss can be described by a Fermi-decay law, in which there are three indispensable factors:the anharmonic trap, the external perturbation and the nonlinear interaction. The anharmonic trap creates the anharmonic oscillations, and the weak random perturbation causes the loss of coherence by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates.
     Finally, we have shown that the evolution of multicomponent BECs with a harmonic trap can be understood as the Fermi-Pasta-Ulam problem (FPU). The single-component BEC performs a nonlinear harmonic oscillation, proved by the experiment, and can be mode for FPU. The nonlinear couple between different modes in FPU, is realized by atomic nonlinear interaction. We have calculated the energy and the Husimi distribution of each component and found the energy recurrence and the energy sharing for different regimes of nonlinear interaction. For the two components case, the strong energy sharing is found, once nonlinear interaction is large enough. For the three components case, the situation is more complex but still energy sharing is observed.
引文
[1]Toshiya Kinoshita, Trevor Wenger abd David S. Weiss, A quantum Newton's cradle, Nautre,2006,440,900.
    [2]S. N. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys.(Zeitschrift fur Physik A),1924,26,178.
    [3]A. Einstein, Sitzungsber. Kgl. Preuss. Akad. Wiss.,1924,261,3.
    [4]W. Ketterle, Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser, Rev. Mod. Phys.,2002,74,1131.
    [5]F. London, The λ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy Nature,1938,141,643.
    [6]J. L. Lin and J. P. Wolfe, Bose-Einstein condensation of paraexcitons in stressed Cu2O Phys Rev Lett.,1993,71,1222.
    [7]S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable and A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett.,1985,55,48.
    [8]S. Chu, Nobel Lecture:The manipulation of neutral particles, Rev. Mod. Phys., 1998,70,685.
    [9]Naoto Masuhara, John. M. Doyle, Jon C. Sandberg, Daniel Kleppner, and Thomas J. Greytak, Harald F. Hess and Greg P. Kochanski, Evaporative Cooling of Spin-Polarized Atomic Hydrogen, Phys. Rev. Lett.,1988,61,935.
    [10]Kendall B. Davis, Marc-Oliver Mewes, Michael A. Joffe, Michael R. Andrews, and Wolfgang Ketterle, Evaporative Cooling of Sodium Atoms, Phys. Rev. Lett.,1995, 74,5202.
    [11]M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, 1995,269,198.
    [12]K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett.,1995,75,3969.
    [13]E. A. Cornell and C. E. Wieman, Nobel Lecture:Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys.,2002, 74,875.
    [14]C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev, Lett.,1995, 75,1687.
    [15]D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner and T. J. Greytak, Bose-Einstein Condensation of Atomic Hydrogen, Phys. Rev. Lett.,1998, 81,3811.
    [16]A.Robert, O. Sirjean, A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook and A. Aspect, A Bose-Einstein Condensate of Metastable Atoms, Science,2001,292,461.
    [17]G. Modugno, G. Ferrari, G. Roati, R.J. Brecha, A. Simoni and M. Inguscio, Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling, Science, 2001,294,1320.
    [18]T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, Bose-Einstein Condensation of Cesium, Science,2003,299,232.
    [19]Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms, Phys. Rev. Lett.,2003,91,040404.
    [20]A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein Condensation of Chromium, Phys. Rev. Lett.,2005,94,160401.
    [21]M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend and W. Ketterle, Output coupler for Bose-Einstein condensed atoms, Phys. Rev. Lett.,1997, 78,582.
    [22]W. Ketterle and H.-J. Miesner, Coherence properties of Bose-Einstein condensates and atom lasers, Phys. Rev. A,1997,56,3291.
    [23]L. Pezze, L. A. Collins, A. Smerzi, G. P. Berman, and A. R. Bishop, Sub-shot-noise phase sensitivity with a Bose-Einstein condensate Mach-Zehnder interferometer, Phys. Rev. A,2005,72,043612.
    [24]J. Grond, U. Hohenester, J. Schmiedmayer and A. Smerzi, Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates, Phys. Rev. A, 2011,84,023619.
    [25]C. D. J. Sinclair, E. A. Curtis, I. Llorente Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, Bose-Einstein condensation on a permanent-magnet atom chip, Phys. Rev. A,2005,72,031603
    [26]Y. Shin, C. Sammer, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore and M. Prentiss, Interference of Bose-Einstein condensates split with an atom chip, Phys. Rev. A,2005,72,021604(R).
    [27]F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys.,1999,71,463.
    [28]M. Naraschewski, H. Wallis, A. Schenzle, J. I. Cirac and P. Zoller, Interference of Bose condensates, Phys. Rev. A,1996,54,2185
    [29]Patrick Navez, Dmitri Bitouk, Mariusz Gajda, Zbigniew Idziaszek, and Kazimierz Rza□zewski, Fourth Statistical Ensemble for the Bose-Einstein Condensate, Phys. Rev. Lett.,1997,79,1789.
    [30]S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions Phys. Rev. Lett.,2000,85,1795.
    [31]S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock, Dark Solitons in Bose-Einstein Condensates, Phys. Rev. Lett.,1999,83,5198.
    [32]M. Ben Dahan, E. peik, J. Reichel, Y. Castin and C. Salomon, Bloch Oscillations of Atoms in an Optical Potential, Phys. Rev. Lett.,1996,76,4508.
    [33]P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-Gonzalez, B. A. Malomed, G. Herring and A.R. Bishop, Statics, dynamics, and manipulations of bright matter-wave solitons in optical lattices, Phys. Rev. A,2005,71,023614.
    [34]N. Bogoliubov, J. Phys. (Moscow),1947,11,23.
    [35]E. P. Gross, Nuovo Ciment, Hydrodynamics of a Superfluid Condensate,1961,20, 454;J. Math, Phys.,1963,4,195.
    [36]L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.,1961,40,646 [Sov. Phys. JETP 13.451 (1961)].
    [37]M. J. Holland, Jin D. M. L. Chiofalo and J. Cooper, Emergence of Interaction Effects in Bose-Einstein Condensation, Phys. Rev. Lett.,1997,78,3801.
    [38]L. V. Hau, B. D. Buseh, C. Liu, Z. Dutton, M. M. Burns and J. A. Golovehenko, Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle, Phys. Rev. A,1998,58, R54.
    [39]D. S. Jin, J. R. Enser, M. R. Matthews, C. E.Wieman and E. A. Cornell, Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas, Phys. Rev. Lett.,1996, 77,420.
    [40]Yuan Liu, Xue-Feng Zhang and Wei-Dong Li, The study of the stability of 1D confined Bose-Einstein condensates based on one novel orthogonal basis, Phys. Lett. A,2009,373,2764.
    [41]L. Khaykovich, F. Schreck, G. Ferrari, T. Bourde, J. Cubizolles, L. D. Carr, Y. Castin and C. Salomon, Formation of a Matter-Wave Bright Soliton, Science,2002,296, 1290.
    [42]Christoph Becker, Simon Stellmer, Parvis Soltan-Panahi, Soren Dorscher, Mathis Baumert, Eva-Maria Richter, Jochen Kronjager, Kai Bongs and Klaus Sengstock, Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates, Nature Physics,2008,4,496.
    [43]S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature,1998,392,151.
    [44]J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio, Bose-Einstein Condensate in a Random Potential, Phys. Rev. Lett.,2005,95, 070401.
    [45]D. Clement, A. F. Varon, M. Hugbart, J. A. Retter, P. Bouyer, L. Sanchez-Palencia, D. M. Gangardt, G. V. Shlyapnikov and A. Aspect, Suppression of Transport of an Interacting Elongated Bose-Einstein Condensate in a Random Potential Phys. Rev. Lett.,2005,95,170409.
    [46]D. Clement, A. F. Varon, J. A. Retter, L. S. Palencia, A. Aspect and P. Bouyer, Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle, New Journal of Physics,2006,8,165.
    [47]Juliette Billy, Vincent Josse, Zhanchun Zuo, Alain Bernard, Ben Hambrecht, Pierre Lugan, David Clement, Laurent Sanchez-Palencia, Philippe Bouyer and Alain Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature,2008,453,891.
    [48]L. Sanchez-Palencia, D. Clement, P. Lugan, P. Bouyer, A. Aspect, Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials, New Journal of Physics,2008,10,045019.
    [49]Giacomo Roati, Chiara DErrico, Leonardo Fallani, Marco Fattori, Chiara Fort, Matteo Zaccanti, Giovanni Modugno, Michele Modugno and Massimo Inguscio, Anderson localization of a non-interacting Bose-Einstein condensate, Nature,2008, 453,895.
    [50]S. Aubry and G. Andre, Ann. Israel Phys. Soc.,1980,3,133.
    [51]Julien Chabe, Gabriel Lemarie, Benoit Gremaud, Dominique Delande, Pascal Szriftgiser and Jean Claude Garreau Experimental observation of the Anderson transition with atomic matter waves, Phys. Rev. Lett.,2008,101,255702.
    [52]N. F. Mott, Metal-Insulator Transition, Rev. Mod. Phys.,1968,40,677.
    [53]S. S. Kondov, W. R. McGehee, J. J. Zirbel, B. DeMarco, Three-Dimensional Anderson Localization of Ultracold Matter, Science,2011,334,66.
    [54]A. J. Leggett, Superfluidity, Rev. Mod. Phys.,1999,71, S318.
    [55]F. London, On the Bose-Einstein Condensation, Phys. Rev.,1938,54,947.
    [56]L. D. Landau and E. M. Lifshitz, Statistical Physics (Part 2) New York:Pergamon Press,198085-93
    [57]C. Raman, M. Kohl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas, Phys. Rev. Lett.,1999,83,2502
    [58]M. Greiner and S. Folling, Optical lattices, Nature,2008,453,736.
    [59]I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys.,2008,80,885.
    [60]M. P. A. Fisher P. B. Weichman, G. Grinstein, D. S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B,1989,40,546.
    [61]D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner and P. Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev. Lett.,1998,81,3108.
    [62]Henk T. C. Stoof, Bose-Einstein condensation:Breaking up a superfluid, Nature, 2002,415,25.
    [63]Markus Greiner, Olaf Mande, Tilman Esslinger, Theodor W. Hansch and Immanuel Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature,2002,415,39.
    [64]L. Fallani, J. E. Lye, V. Guarrera, C. Fort and M. Inguscio, Ultracold Atoms in a Disordered Crystal of Light:Towards a Bose Glass, Phys. Rev. Lett.,2007,98, 130404.
    [65]A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett.,1997, 79,4950.
    [66]S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phys. Rev. A,1999,59,620.
    [67]M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani and M. K. Oberthaler, Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction, Phys. Rev. Lett.,2005,95,010402.
    [68]D. Anaikian and T. Bergeman, Gross-Pitaevskii equation for Bose particles in a double-well potential:Two-mode models and beyond, Phys. Rev. A,2006,73, 013604.
    [69]X. Y. Jia, W. D. Li and J. Q. Liang, Nonlinear correction to the boson Josephson junction model, Phys. Rev. A,2008,78,023613.
    [70]W. D. Li and A. Smerzi, Nonlinear Kronig-Penney model, Phys. Rev. E,2004,70, 016605.
    [71]I. Danshita and S. Tsuchiya, Stability of Bose-Einstein condensates in a Kronig-Penney potential, Phys. Rev. A,2007,75,033612.
    [72]薛锐,精确非线性布洛赫解及其应用(山西大学博士论文),2009,p82-p85.
    [73]Xue Rui, Liang-zhao Xin and Wei-dong Li, The nonlinear Wannier function in square Kronig-Penney model, Chin. Phys. B,2009,18,4130.
    [74]Thomas Gorin, Tomaz Prosen, Thomas H. Seligman, Marko Znidaric, Dynamics of Loschmidt echoes and fidelity decay, Physics Reports,2006,435,33.
    [75]J. Loschmidt, Uber den Zustand des Warmegleichgewichtes eines Systems von Korpern mit Rucksicht auf die Schwerkraft, Sitzungsberichte der Akademie derWissenschaften,Wien Ⅱ 73,1876,128-142.
    [76]W. Thompson, The kinetic theory of the dissipation of energy, in:Proceedings of the Royal Society of Edinburgh, vol.8,1874, pp.325-334.
    [77]S. Zhang, B. Meier, R. Ernst, Polarization echoes in NMR, Phys. Rev. Lett.,1992, 692149.
    [78]M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge,2001.
    [79]L. Viola, E. Knill, S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett.,1999,82,2417.
    [80]F. Haake, Quantum Signatures of Chaos, Springer, Berlin,1991 (2nd enlarged Edition 2000).
    [81]D. Shepelyansky, Some statistical properties of simple classically stochastic quantum systems, Physica D,1983,8,208.
    [82]G. Casati, B. Chirikov, I. Guarneri, D. Shepelyansky, Dynamical stability of quantum "chaotic" motion in a hydrogen atom, Phys. Rev. Lett.,1986,56,2437.
    [83]S. Fishman, D. Grempel, R. Prange, Chaos, quantum recurrences, and Anderson localization, Phys. Rev. Lett.,1982,49,509.
    [84]A. Peres, Stability of quantum motion in chaotic and regular systems, Phys. Rev. A, 1984,30,1610.
    [85]M. Feingold and A. Peres, Regular and chaotic motion of coupled rotators, Physica D,1983,9,433.
    [86]M. Feingold, N. Moiseyev and A. Peres, Ergodicity and mixing in quantum theory. Ⅱ, Phys. Rev. A,1984,30,509.
    [87]L. Ballentine, J. Zibin, Classical state sensitivity from quantum mechanics, Phys. Rev. A,1996,543813-3819.
    [88]D. Grempel, R. Prange, S. Fishman, Quantum dynamics of a nonintegrable system, Phys. Rev. A,1984,29,1639.
    [89]Jie Liu, Wen-ge Wang, Chuan-wei Zhang, Qian Niu, and Bao-wen Li, Fidelity for the quantum evolution of a Bose-Einstein condensate, Phys. Rev. A,2005,72, 063623.
    [90]A. K. Rajagopal, A. R. Usha Devi and R. W. Rendell, Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms, Phys. Rev. A,2010,82,042107.
    [91]Daniel K. L. Oi and Johan ABerg, Fidelity and Coherence Measures from Interference, Phys. Rev. Lett.,2006,97,220404.
    [92]T. B. Bahder and P. A. Lopata, Fidelity of quantum interferometers, Phys. Rev. A, 2006,74,051801.
    [93]Sai-jun Wu, A. Tonyushkin and M. G. Prentiss, Observation of Saturation of Fidelity Decay with an Atom Interferometer, Phys. Rev. Lett.,2009,103,034101.
    [94]Joseph Emerson, Yaakov S. Weinstein, Seth Lloyd, and D. G. Cory, Fidelity Decay as an Efficient Indicator of Quantum Chaos, Phys. Rev. Lett.,2002,89,284102
    [95]B. Levi, B. Georgeot, and D. L. Shepelyansky, Quantum computing of quantum chaos in the kicked rotator model, Phys. Rev. E,2003,67,046220
    [96]F. Haug, M. Bienert, W. P. Schleich, T. H. Seligman, M. G. Raizen, Motional stability of the quantum kicked rotor-A fidelity approach, Phys. Rev. A,2005,71, 043803.
    [97]Yevgeny Krivolapov, Shmuel Fishman, Edward Ott, and Thomas M. Antonsen, Quantum chaos of a mixed open system of kicked cold atoms, Phys. Rev. E,2011, 83,016204.
    [98]Eugene Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev.,1932,40,749.
    [99]Roy J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev., 1963,131,2766.
    [100]E. Sudarshan, Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett.,1963,10,277.
    [101]R. J. Glauber, in Quantum Optics and Electronics, edited by C. Dewitt, A. Blandin and C. Cohen-Tannoudji, Gordon and Breach, New York,1965.
    [102]K. Husimi, Prog. Phys. Math. Sot. Japan,1940,22,264.
    [103]J. G. Kirkwood, Quantum Statistics of Almost Classical Assemblies, Phys. Rev., 1933,44,31.
    [104]Leon, Cohen, Generalized Phase-Space Distribution Functions, J. Math. Phys., 1966,7,781.
    [105]Hai-Woong LEE, Theory and application of the quantum phase-space disttibution functions, Physcis Report,1995,259,147.
    [106]H. W. Lee and M. O. Seully, The Wigner Phase-Space Descriptionof Collision Processes, Foundations of Physics,1983,13,61.
    [107]Emil Persson, Shuhei Yoshida, Xiao-Min Tong, Carlos O. Reinhold, and Joachim Burgdorfer, Quantum localization in the three-dimensional kicked Rydberg atom, Phys. Rev. A,2003,68,063406.
    [108]Khan W. Mahmud, Heidi Perry, and William P. Reinhardt, Quantum phase-space picture of Bose-Einstein condensates in a double well, Phys. Rev. A,2005,71, 023615.
    [109]S. Yoshida, C. O. Reinhold, P. Kristofel, J. Burgdorfer, S. Watanabe, and F. B. Dunning, Floquet analysis of the dynamical stabilization of the kicked hydrogen atom, Phys. Rev. A,1999,59, R4121.
    [110]Kinya Takahashi and Nobuhiko Saito, Chaos and Husimi Distribution Function in Quantum Mechanics, Phys. Rev. Lett.,1985,55,645.
    [111]S. B. Lee, M. D. Feit, Signatures of quantum chaos in signer and Husimi representations, Phys. Rev. E,1993,47,4552.
    [112]S. Chaudhury, A. Smith, B. E. Anderson, S. Ghose and P. S. Jessen, Quantum signatures of chaos in a kicked top, Nature,2009,461,768.
    [113]E. Fermi, Beweis dass ein mechanisches Normalsystem im allgemeinen quasiergodisch ist, Phys. Zeit.,1923,24,261.
    [114]E. Fermi, J. Pasta, and S. Ulam, Studies of the Nonlinear Problems, I, Los Alamos Report,1955,LA-1940,
    [115]D. K. Campbell, Ph. Rosenau and G. M. Zaslavsky, Introduction The Fermi Pasta Ulam problem—The first fifty years, Chaos,2005,15,015101.
    [116]G. P. Berman and F. M. Izrailev, The Fermi-Pasta-Ulam problem:Fifty years of progress, Chaos,2005,15,015104.
    [117]J. L. Tuck, Los Alamos Report,1968, LA-3990.
    [118]J. L. Tuck and M. T. Menzel, The superperiod of the nonlinear weighted string (FPU) problem, Advances in Mathematics,1972,9,399.
    [119]N. Kryloff and N. Bogoliuboff, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, New Jersey,1947.
    [120]J. Ford, Equipartition of energy for nonlinear systems, J. Math. Phys.,1961,2,387.
    [121]E. A. Jackson, Nonlinear coupled oscillators. Ⅱ. Comparison of theory with computer solutions, J. Math. Phys.,1963,4,686.
    [122]E. A. Jackson, Nonlinear coupled oscillators. Ⅰ. Perturbation theory; Ergodic problem,J. Math. Phys.,1963,4,551.
    [123]J. Ford and J. Waters, Computer studies of energy sharing and ergodicity for nonlinear oscillator systems, J. Math. Phys.,1963,4,1293.
    [124]D. J. Korteweg and G. de Vries, XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine,1895,39,422.
    [125]N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the reccurence of initial states, Phys. Rev. Lett.,1965,15,240.
    [126]N. J. Zabusky, Solitons and bound states of the time-independent Schrodinger equation, Phys. Rev.,1968,168,124.
    [127]N. J. Zabusky, in Proceedings of the Symposium on Nonlinear Partial Differential Equations, edited by W.Ames Academic Press Inc. New York,1967
    [128]P. D. Lax, Comm. Pure and Appl. Math.,1968,21,467.
    [129]Yu. A. Berezin and V. I. Karpman, Zh. Eksp. Teor. Fiz.,1966,51,1557 [English transl.:Soviet Phys.-JETP,1967,24,1049].
    [130]B. V. Chirikov, Atomnaya Energia,1959,6,630. [Engl. Transl. J.Nucl. Energy Part C:Plasma Phys.,1960,1,253].
    [131]F. M. Izrailev and B. V. Chirikov, Statistical Properties of a Nonlinear String, (Institute of Nuclear Physics, Novosibirsk, USSR,1965) (in Russian); Dokl. Akad. Nauk SSSR,1966,166,57. [Soviet. Phys. Dokl.,1966,11,30].
    [132]F. M. Izrailev, A. I. Khisamutdinov, and B. V. Chirikov, Numerical Experiments with a Chain of Coupled Anharmonic Oscillators, (Report 252, Institute of Nuclear Physics, Novosibirsk, USSR,1968), [English translation:LA-4440-TR, Los Alamos, 1970].
    [133]R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, Equipartiion threshold in nonlinear large Hamiltonian systems:The Fermi-Pasta-Ulam mode", Phys. Rev. A,1986,31,1039.
    [134]S. Isola, R. Livi, S. Ruffo, and A. Vulpiani, Stability and chaos in Hamiltonian dynamics, Phys. Rev. A,1986,33,1163.
    [135]G. P. Berman and A. R. Kolovsky, "The limit of stochasticity for a one-dimensional chain of interacting oscillators", Zh. Eksp. Teor. Fiz.,1984,87,1938; [Sov. Phys. JETP,1984,60,1116].
    [136]P. Villain and M. Lewenstein, Fermi-Pasta-Ulam problem revisited with a Bose Einstein condensate", Phys. Rev. A,2000,62,043601.
    [1]F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensarion in trapped gases, Rev. Mod. Phys.,1999,71,463.
    [2]J. M.Gerton, D. Strekalow, I. Prodan, R. G. Hulet, Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions, Nature,2000, 408,692.
    [3]Jae Gill Kim, Yoon-Hyuck Sean Choi, and Eok Kyun lee, Collapse of the metastable state in an attractive Bose-Einstein condensate, Phys. Rev. E,2002,66,017201.
    [4]Gordon Baym, and C. J. Pethick, Ground-State Properties of Magnetically Trapped Bose-Condensed Rubidium Gas, Phys. Rev. Lett.,1996,76,6.
    [5]C. C. Bradley, C. A. Sackett, J. J. Tollett, R. G. Hulet, Evidence of Bose Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett.,1995, 75,1687;
    [6]C. C. Bradley, C. A. Sackett, and R. G. Hulet, Bose-Einstein Condensation of Lithium: Observation of Limited Condensate Number, Phys. Rev. Lett.,1997,78,985.
    [7]P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms, Phys. Rev. A,1995,51,4704.
    [8]S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature, 1998,392,151.
    [9]S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wieman, Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions, Phys. Rev. Lett., 2000,85,1795.
    [10]K. E. Strecker G. B. Partridge, A. G. Truscott and R. G. Hulet, Formation and propagation of matter-wave soliton trains, Nature,2002,417,150.
    [11]L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, C. Salomon, Formation of a Matter-Wave Bright Soliton, Science,2002,296,1290.
    [12]R. Kanamoto, H. Saito, M. Ueda, Quantum phase transition in one dimensional Bose Einstein condensates with attractive interactions, Phys. Rev. A,2003,67,013608.
    [13]A. Parola, L. Salasnich, R. Rota and L. Reatto, Quantum phases of attractive matter waves in a toroidal trap, Phys. Rev. A,2005,72,063612.
    [14]A. Minguzzi, S. Succi, F. Toschi, M. P. Tosi and P. Vignolo, Numerical methods for atomic quantum gases with applications to Bose-Einstein condensates and to ultracold fermions, Phys. Rep.,2004,395,223-355.
    [15]E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell and C, E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates, Nature, 2001,412,295-299.
    [16]S. K. Adhikari, Bound states of attractive Bose-Einstein condensates in shallow traps in two and three dimensions,J. Phys. B:At. Mol. Opt. Phys.,2005,38,579-591.
    [17]L. Salasnich, A. Parola, and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A,2002,65,043614.
    [18]M. Olshanii, Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons, Phys. Rev. Lett.,1998,81,938.
    [19]L. D. Carr, C. W. Lark, W. P. Rcinhardt, Stationary solutions of the one dimensional nonlinear Schrodinger equation. Ⅱ. Case of attractive nonlinearity, Phys. Rev. A, 2000,62,063611.
    [20]Wei-dong Li, Stationary solutions of Gross-Pitaevskii equations in a double square well, Phys. Rev. A,2006,74,063612.
    [21]Biao Wu, R. B. Diener, and Qian Niu, Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices, Phys. Rev. A,2002,65,025601.
    [22]Wei-dong Li and Jie Liu, Continuous measurement enhanced self-trapping of degenerate ultracold atoms in a double well:Nonlinear quantum Zeno effect, Phys. Rev.A,2006,74,063613.
    [23]J. Liu, C. W. Zhang, M. G. Raizen, Q. Niu, Transition to instability in a periodically kicked Bose-Einstein condensate on a ring, Phys. Rev. A,2006,73,013601.
    [24]Jie Liu, Wen-ge Wang, Chuan-wei Zhang, Qian Niu, and Bao-wen Li, Fidelity for the quantum evolution of a Bose-Einstein condensate, Phys. Rev. A,2005,72,063623.
    [25]Chuan-wei Zhang, Jie Liu, Mark G. Raizen and Qian. Niu, Transition to Instability in a Kicked Bose-Einstein Condensate, Phys. Rev. Lett.,2004,92,054101.
    [26]F. Dalfovo, L. P. Pitaevskii and S. Stringari, Encyclopedia of Mathematical Physics, Elsevier,2006, Vol.1, pp.312.
    [27]F. Dalfovo and S. Stringari, Bosons in anisotropic traps:Ground state and vortices, Phys. Rev. A,1996,53,2477.
    [28]C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, M. Inguscio, Effect of Optical Disorder and Single Defects on the Expansion of a Bose-Einstein Condensate in a One-Dimensional Waveguide, Phys. Rev. Lett.,2005,95,170410.
    [1]A. Smerzi, S. Fantoni, S. Giovanazzi and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett.,1997, 79,4950.
    [2]S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates:Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A,1999,59,620.
    [3]M. Albiezl, R. Gati, J. Foiling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction, Phys. Rev. Lett.95,010402 (2005)
    [4]B. D. Josephson, Possible new effects in superconductive tunneling, Phys. Lett.,1962, 1,251.
    [5]M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science,1997, 275,637.
    [6]F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, Optical Ramsey spectroscopy in a rotating frame:Sagnac effect in a matter-wave interferometer, Phys. Rev. Lett., 1991,67,177.
    [7]D. W. K., C. R. Ekstrom, Q. A. Turchette and D. E. Pritchard, An interferometer for atoms, Phys. Rev. Lett.,1991,66,2693.
    [8]A. Miffre, M. Jacquey, M. Buchner, G. Trenec, and J. Vigue, Measurement of the electric polarizability of lithium by atom interferometry, Phys. Rev. A,2006,73, 011603(R).
    [9]Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard and A. E. Leanhardt, Atom Interferometry with Bose-Einstein Condensates in a Double-Well Potential, Phys. Rev. Lett.,2004,92,050405.
    [10]Y. Shin, C. Sammer, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore and M. Prentiss, Interference of Bose-Einstein condensates split with an atom chip, Phys. Rev. A,2005,72,021604(R).
    [11]B. V. Hall, S. Whitlock, R. Aderson, P. Hannaford and A. I. Sidorov, Condensate Splitting in an Asymmetric Double Well for Atom Chip Based Sensors, Phys. Rev. Lett.,2007,98,030402.
    [12]T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer and P. Kruger, Matter-wave interferometry in a double well on an atom chip, Nature Physics,2005,1,57.
    [13]Y. J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, S.J. Wu, Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate, Phys. Rev. Lett.,2005,94,090405.
    [14]A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys.,2009,81,1051.
    [15]L. Pezze, L. A. Collins, A. Smerzi, G. P. Berman, and A. R. Bishop, Sub-shot-noise phase sensitivity with a Bose-Einstein condensate Mach-Zehnder interferometer, Phys. Rev. A,2005,72,043612.
    [16]J. Chwedenczuk, L. Pezze, F. Piazza and A. Smerzi, Rabi interferometry and sensitive measurement of the Casimir-Polder force with ultracold gases, Phys. Rev. A,2010, 82,032104.
    [17]C. H. Lee, Adiabatic Mach-Zehnder Interferometry on a Quantized Bose-Josephson Junction, Phys. Rev. Lett.,2006,97,150402.
    [18]G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, and D. E. Pritchard, M. Vengalattore and M. Prentiss, Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip, Phys. Rev. Lett., 2007,98,030407.
    [19]Y. P. Huang and M. G. Moore, Optimized Double-Well Quantum Interferometry with Gaussian Squeezed States, Phys. Rev. Lett.,2008,100,250406.
    [20]J. Grond, U. Hohenester, J. Schmiedmayer, A. Smerzi, Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates, Phys. Rev. A,2011,84,023619.
    [21]Wei-yuan Ma, A. Korngreen, N. Uzlaner, Z. Priel and S. D. Silberberg, Extracellular sodium regulates airway ciliary motility by inhibiting a P2X receptor, Nature,1999, 400,894.
    [22]J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, M. A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A,2002,65, 033608.
    [23]J. E. Debs, P. A. Altin, T. H. Barter, D. Doring, G. R. Dennis, G. McDonald, R. P. Anderson, J. D. Close, and N. P. Robins, Cold-atom gravimetry with a Bose-Einstein condensate, Phys. Rev. A,2011,84,033610.
    [24]L. Gustavson, A. Landragin and M. A. Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav.,2000,17,2385.
    [25]B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, Ch. J. Borde A. Landragin and P. Bouyer, Six-Axis Inertial Sensor Using Cold-Atom Interferometry, Phys. Rev. Lett.,2006,97,010402;
    [26]D. S. Durfee, Y. K. Shaham and M. A. Kasevich, Long-Term Stability of an Area Reversible Atom-Interferometer Sagnac Gyroscope, Phys. Rev. Lett.,2006,97, 240801.
    [27]J. B. Fixler, G. T. Foster, J. M. McGuirk and M. A. Kasevich, Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science,2007,315,74.
    [28]A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, G. M. Tino, Atom interferometry gravity gradiometer for the determination of the Newtonian gravitational constant G, Euro. Phys. J. D, 2006,40,271.
    [29]G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G. M. Tino1, Determination of the Newtonian Gravitational Constant Using Atom Interferometry Phys. Rev. Lett., 2008,100,050801.
    [30]H. Muller, Sheng-wey Chiow, S. Herrmann, and S. Chu and Keng-yeow Chung, Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity, Phys. Rev. Lett.,2008,100,031101.
    [31]D. S. Weiss, B. C. Young, and S. Chu, Precision Measurement of h/mCs Based on Photon Recoil Using Laser-cooled Atoms and Atomic Interferometry, Appl. Phys. B, 1994,59,217.
    [32]Jie Liu, Wen-ge Wang, Chuan-wei Zhang, Qian Niu, and Bao-wen Li, Fidelity for the quantum evolution of a Bose-Einstein condensate, Phys. Rev. A,2005,72,063623.
    [33]Wu-ming Liu, Biao Wu, and Qian Niu, Nonlinear Effects in Interference of Bose-Einstein Condensates, Phys. Rev. Lett.,2000,84,2294.
    [34]F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensarion in trapped gases, Rev. Mod. Phys.,1999,71,463.
    [35]L. Salasnich, A. Parola and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A,2002,65,043614.
    [36]C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, M. Inguscio, Effect of Optical Disorder and Single Defects on the Expansion of a Bose Einstein Condensate in a One-Dimensional Waveguide, Phys. Rev. Lett.,2005,95,170410.
    [37]G. Manfredi and P.-A. Hervieux, Fidelity Decay in Trapped Bose-Einstein Condensates, Phys. Rev. Lett.,2008,100,050405.
    [38]A. I. Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography, Rev. Mod. Phys.,2009,81,299.
    [39]N. Gemelke, Xi-bo Zhang, Chen-lung Hung and Cheng Chin, In situ observation of incompressible Mott-insulating domains in ultracold atomic gases, Nature,2009,460, 995.
    [40]M. Born and E. Wolf, Cambridge, Cambridge University Press,1999, Principles of Optics 7th (expended) edition.
    [41]T. Schumm, P. Kruger, S. Hofferberth, I. Lesanovsky, S. Wildermuth, S. Groth, I. Bar-Joseph, L. M. Andersson and J. Schmiedmayer, A Double Well Interferometer on an Atom Chip, Quantum Information Processing,2006,5,537.
    [42]The flipping of double-well from V(z) to V(-z) could be experimentally realized by rotating the polarized direction of two independent orthogonal R-F felds shown in [40]; or adjusting the electron currents in [11].
    [1]M. Holland, K. Burnett, C. Gardiner, J. I. Cirac, and P. Zoller, Theory of an atom laser, Phys. Rev. A,1996,54, R1757.
    [2]M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science,1997, 275,637.
    [3]A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett.,1997, 79,4950.
    [4]E. W. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M, Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, Measurement of the Coherence of a Bose-Einstein Condensate, Phys. Rev. Lett.,1999,83,3112.
    [5]S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates:Josephson effects,π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A,1999,59,620.
    [6]Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard and A. E. Leanhardt, Atom Interferometry with Bose-Einstein Condensates in a Double-Well Potential, Phys. Rev. Lett.,2004,92,050405.
    [7]Y. Shin, C. Sammer, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore and M. Prentiss, Interference of Bose-Einstein condensates split with an atom chip, Phys. Rev. A,2005,72,021604(R).
    [8]T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer and P. Kruger, Matter-wave interferometry in a double well on an atom chip, Nature Physics,2005,1,57.
    [9]Brett D. Esry and Chris H. Greene, Bose-Einstein condensates:Superfluids mixing it up, Nature,1998,392,434.
    [10]R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur, and W. Ketterle, Observation of Superfluid Flow in a Bose-Einstein Condensed Gas, Phys. Rev. Lett.,2000,85,2228.
    [11]O. M. Marago, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J. Foot, Observation of the Scissors Mode and Evidence for Superfluidity of a Trapped Bose-Einstein Condensed Gas, Phys. Rev. Lett.,2000,84,2056.
    [12]Henk T. C. Stoof, Bose-Einstein condensation:Breaking up a superfluid, Nature, 2002,415,25.
    [13]M. Greiner, O. Mandel, T. Esslinger, T. W. HaEnsch and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002,415,39.
    [14]M. Greiner and S. Foiling, Optical lattices, Nature,2008,453,736.
    [15]R. B. Diener, Qi Zhou, Hui Zhai, and T. L. Ho, Criterion for Bosonic Superfluidity in an Optical Lattice, Phys. Rev. Lett.,2007,98,180404.
    [16]T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Superfluidity versus Anderson Localization in a Dilute Bose Gas, Phys. Rev. Lett.,2007,98,210602.
    [17]S. Tomlin, Bose-Einstein condensates:Visions of vortices, Nature,1999,397,301.
    [18]J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of Vortex Lattices in Bose-Einstein Condensates, Science,2001,292,476.
    [19]U. Al Khawaja, Vortex stability near the surface of a Bose-Einstein condensate, Phys. Rev. A,2003,68,063614.
    [20]A. Klein, D. Jaksch, Yan-zhi Zhang, and Wei-zhu Bao, Dynamics of vortices in weakly interacting Bose-Einstein condensates, Phys. Rev. A,2007,76,043602.
    [21]C. N. Weiler, Tyler W. Neely, David R. Scherer, Ashton S. Bradley, Matthew J. Davis and Brian P. Anderson, Spontaneous vortices in the formation of Bose-Einstein condensates, Nature,2008,455,948.
    [22]T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis, B. P. Anderson, Observation of Vortex Dipoles in an Oblate Bose-Einstein Condensate, Phys. Rev. Lett.,2010,104, 160401.
    [23]Kazuya Fujimoto and Makoto Tsubota, Nonlinear dynamics in a trapped atomic Bose-Einstein condensate induced by an oscillating Gaussian potential, Phys. Rev. A, 2011,83,053609.
    [24]Toshiya Kinoshita, T. Wenger, David S. Weiss, Observation of a One-Dimensional Tonks-Girardeau Gas, Science,2004,305,1125.
    [25]K. Lelas, T. Seva, and H. Buljan, Loschmidt echo in one-dimensional interacting Bose gases, Phys. Rev. A,2011,84,063601.
    [26]V. Dunjko, V. Lorent, M. Olshanii, Bosons in Cigar-Shaped Traps:Thomas-Fermi Regime, Tonks-Girardeau Regime, and In Between, Phys. Rev. Lett.,2001,86,5413.
    [27]S. R. Clark and D. Jaksch, Dynamics of the superfluid to Mott-insulator transition in one dimension, Phys. Rev. A,2004,70,043612.
    [28]Takeshi Fukuhara, Seiji Sugawa, Masahito Sugimoto, Shintaro Taie, and Yoshiro Takahashi, Mott insulator of ultracold alkaline-earth-metal-like atoms, Phys. Rev. A, 2009,79,041604.
    [29]P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev.,1958, 109,1492.
    [30]J. Billy, V. Josse, Zhan-chun Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. S. Palencia, Ph. Bouyer and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature,2008,453,891.
    [31]G. Roati, C. DErrico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno and M. Inguscio, Anderson localization of a non-interacting Bose-Einstein condensate, Nature,2008,453,895.
    [32]J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio, Bose-Einstein Condensate in a Random Potential, Phys. Rev. Lett.,2005,95,070401.
    [33]D. Clement, A. F. Varon, J. A. Retter, L. S. Palencia, A. Aspect and P. Bouyer, Experimental study of the transport of coherent interacting matter-waves in a 1D random potential induced by laser speckle, New J. Phys.,2006,8,165.
    [34]G. Manfredi and P.-A. Hervieux, Loschmidt Echo in a System of Interacting Electrons, Phys. Rev. Lett.,2006,97,190404.
    [35]G. Manfredi and P.-A. Hervieux, Fidelity Decay in Trapped BoseEinstein Condensates, Phys. Rev. Lett.,2008,100,050405.
    [36]A. Peres, Stability of quantum motion in chaotic and regular systems, Phys. Rev. A, 1984,30,1610.
    [37]G. Benenti, G. Casati, and G. Veble, Decay of the classical Loschmidt echo in integrable systems, Phys. Rev. E,2003,68,036212.
    [38]F. M. Cucchietti, C. H. Lewenkopf, E. R. Mucciolo, H. M. Pastawski, and R. O. Vallejos, Measuring the Lyapunov exponent using quantum mechanics, Phys. Rev. E, 2002,65,046209.
    [39]H. M. Pastawski, P. R. Levstein, G. Usaj, J. Raya, J. Hirschinger, A nuclear magnetic resonance answer to the Boltzmann-Loschmidt controversy, Physica A,2000,283, 166.
    [40]R. A. Jalabert and H. M. Pastawski, Environment-Independent Decoherence Rate in Classically Chaotic Systems, Phys. Rev. Lett.,2001,86,2490.
    [41]Ph. Jacquod, P. G. Silvestrov and C. W. J. Beenakker, Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo, Phys. Rev. E,2001,64,055203(R).
    [42]Jie Liu, Wen-ge Wang, Chuan-wei Zhang, Qian Niu and Bao-wen Li, Fidelity for the quantum evolution of a Bose-Einstein condensate, Phys. Rev. A,2005,72,063623.
    [43]Meng S Y, Fu L B, Chen J and Liu J, Linear instability and adiabatic fidelity for the dark state in a nonlinear atom-trimer conversion system, Phys. Rev. A,2009,79, 063415.
    [44]S. S. Hodgman, R. G. Dall, A. G. Manning, K. G. H. Baldwin and A. G. Truscott, Direct Measurement of Long-Range Third-Order Coherence in Bose-Einstein Condensates, Science,2011,331,1046.
    [45]M. Yasuda, F. Shimizu, Observation of Two-Atom Correlation of an Ultracold Neon Atomic Beam, Phys. Rev. Lett.,1996,77,3090.
    [46]M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, C. I. Westbrook, Hanbury Brown Twiss Effect for Ultracold Quantum Gases, Science, 2005,310,648.
    [47]T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect and C. I. Westbrook, Comparison of the Hanbury Brown-Twiss effect for bosons and fermions, Nature, 2007,445,402.
    [48]A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, Correlations and Counting Statistics of an Atom Laser, Phys. Rev. Lett.,2005,95,090404.
    [49]M. Greiner, C. A. Regal, J. T. Stewart and D. S. Jin, Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise, Phys. Rev. Lett.,2005, 94,110401.
    [50]S. Manz, R. Bucker, T. Betz, Ch. Koller, S. Hofferberth, I. E. Mazets, A. Imambekov, E. Demler, A. Perrin, J. Schmiedmayer, and T. Schumm, Two-point density correlations of quasicondensates in free expansion, Phys. Rev. A,2010,81, 031610(R).
    [51]P. Bohi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hansch and Ph. Treutlein, Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip, Nature Physics,2009,5,592.
    [52]R. G. Scott, D. A. W. Hutchinson, T. E. Judd, and T. M. Fromhold, Quantifying finite-temperature effects in atom-chip interferometry of Bose-Einstein condensates, Phys. Rev. A,2009,79,063624.
    [53]Sheng-chang Li, Li-bin Fu, Wen-shan Duan, and Jie Liu, Phys. Rev. A,2008,78, 063621.
    [54]Li-fin Fu, De-fa Ye, Chao-hong Lee, Wei-ping Zhang, and Jie Liu, Adiabatic Rosen-Zener interferometry with ultracold atoms, Phys. Rev. A,2009,80,013619.
    [55]B. V. Hall, S. Whitlock, R. Anderson, P. Hannaford, and A. I. Sidorov, Condensate Splitting in an Asymmetric Double Well for Atom Chip Based Sensors, Phys. Rev. Lett.,2007,98,030402.
    [56]G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, and D. E. Pritchard, M. Vengalattore and M. Prentiss, Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip, Phys. Rev. Lett., 2007,98,030407.
    [57]E. W. Hagley, L. Dengl, M. Kozuma, M. Trippenbach, Y. B. Band, M. Edwards, M, Doery, P. S. Julienne, K. Helmerson, S. L. Rolston, and W. D. Phillips, Measurement of the Coherence of a Bose-Einstein Condensate, Phys. Rev. Lett.,1999,83,3112.
    [58]V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Fast Rotation of a Bose-Einstein Condensate, Phys. Rev. Lett.,2004,92,050403.
    [59]F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys.,1999,71,463.
    [60]L. Salasnich, A. Parola and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A,2002,65,043614.
    [61]Guan-qiang Li, Li-bin Fu, Ju-kui Xue, Xu-zong Chen, and Jie Liu, Collective excitations of a Bose-Einstein condensate in an anharmonic trap, Phys. Rev. A,2006, 74,055601.
    [62]C. Fort, L. Fallani, V. Guarrera, J. E. Lye, M. Modugno, D. S. Wiersma, and M. Inguscio, Effect of Optical Disorder and Single Defects on the Expansion of a Bose Einstein Condensate in a One-Dimensional Waveguide, Phys. Rev. Lett.,2005,95, 170410.
    [63]Wei-dong Li, X. J. Zhou, Y. Q. Wang, J. Q. Liang, Wu-ming Liu, Phase dynamics of the Bose-Einstein condensates, Phys. Lett. A,2001,285,45.
    [64]M. Lewenstein, L. You, Quantum Phase Diffusion of a Bose-Einstein Condensate, Phys. Rev. Lett.,1996,77,3489.
    [65]M. Egorov, R. P. Anderson, V. Ivannikov, B. Opanchuk, P. Drummond, B. V. Hall, and A. I. Sidorov, Rephasing and long coherence time of an interacting Bose-Einstein condensate,2011, arXiv:Cond-mat.quant-gas 1012,3813v2.
    [66]G. Ferrari, N. Poli, F. Sorrentino and G M. Tino, Long-Lived Bloch Oscillations with Bosonic Sr Atoms and Application to Gravity Measurement at the Micrometer Scale, Phys. Rev. Lett.,2006,97,060402.
    [67]J. E. Debs, P. A. Altin, T. H. Barter, D. Doring, G. R. Dennis, G. McDonald, R. P. Anderson, J. D. Close, and N. P. Robins, Cold-atom gravimetry with a Bose-Einstein condensate, Phys. Rev. A,2011,84,033610.
    [68]L. Gustavson, A. Landragin and M. A. Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav.,2000,17,2385.
    [69]A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler and G. M. Tino, Atom interferometry gravity gradiometer for the determination of the Newtonian gravitational constant G, Euro. Phys. J.D,2006,40,271.
    [70]D. S. Weiss, B. C. Young, and S. Chu, Precision Measurement of h/mCs Based on Photon Recoil Using Laser-cooled Atoms and Atomic Interferometry, Appl. Phys. B, 1994,59,217.
    [71]M. W. Jack, Decoherence due to Three-Body Loss and its Effect on the State of a Bose-Einstein Condensate, Phys. Rev. Lett.,89,140402.
    [1]E. Fermi, Beweis dass ein mechanisches Normalsystem im allgemeinen quasiergodisch ist, Phys. Zeit.,1923,24,261.
    [2]E. Fermi, J. Pasta, and S. Ulam, Studies of the Nonlinear Problems, Ⅰ, Los Alamos Report,1955, LA-1940,
    [3]N. Kryloff and N. Bogoliuboff, Introduction to Nonlinear Mechanics, Princeton University Press, Princeton, New Jersey,1947.
    [4]J. Ford, Equipartition of energy for nonlinear systems, J. Math. Phys.,1961,2,387.
    [5]N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the reccurence of initial states, Phys. Rev. Lett.,1965,15,240.
    [6]N. J. Zabusky, Solitons and bound states of the time-independent Schrodinger equation, Phys. Rev.,1968,168,124.
    [7]R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, and A. Vulpiani, Equipartiion threshold in nonlinear large Hamiltonian systems:The Fermi-Pasta-Ulam mode", Phys. Rev. A,1986,31,1039.
    [8]S. Isola, R. Livi, S. Ruffo, and A. Vulpiani, Stability and Chaos in Hamiltonian dynamics, Phys. Rev. A,1986,33,1163.
    [9]J. Ford and J. Waters, Computer Studies of Energy Sharing and Ergodicity for Nonlinear Oscillator Systems,J. Math. Phys.,1963,4,1293.
    [10]G. P. Berman and A. R. Kolovsky, "The limit of stochasticity for a one-dimensional chain of interacting oscillators", Zh. Eksp. Teor. Fiz.,1984,87,1938; [Sov. Phys. JETP,1984,60,1116].
    [11]Toshiya Kinoshita, Trevor Wenger abd David S. Weiss, A quantum Newton's cradle, Nautre,2006,440,900.
    [12]Wei-zhu Bao, Ground States and Dynamics of Multicomponent Bose Einstein Condensates, Multiscale Model. Simul.,2004,2,210.
    [13]L. Salasnich, A. Parola and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A,2002,65,043614.
    [14]P. Villain and M. Lewenstein, Fermi-Pasta-Ulam problem revisited with a Bose Einstein condensate", Phys. Rev. A,2000,62,043601.
    [15]Eugene Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev.,1932,40,749.
    [16]K. Husimi, Prog. Phys. Math. Sot. Japan,1940,22,264.
    [17]Hai-Woong LEE, Theory and application of the quantum phase-space disttibution functions, Phys. Rep.,1995,259,147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700