二硫氰基甲烷防治番茄根结线虫病(Meloidogyne spp.)的研究及其对土壤生态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根结线虫病是许多蔬菜上发生的最严重病害之一,尤其在保护地蔬菜栽培中,常造成严重的产量损失;同时根结线虫的危害又加重了土传真菌性病害和部分细菌性病害的发生。除了利用抗病寄主、轮作和物理防治以外,化学防治是控制蔬菜根结线虫病的重要措施。传统的熏蒸性和非熏蒸性化学杀线虫剂多为高毒、高残留的农药,对环境污染严重,使用过程中对人、畜也不安全,其中许多杀线虫剂已被陆续禁用。寻找和开发新的高效、低毒、低残留、高选择性的杀线虫剂已成当务之急。二硫氰基甲烷(methylene bisthiocyanate)是一种挥发性、水难溶的有机硫氰化合物,具有强烈杀菌、杀线虫活性,并已成功用于水稻干尖线虫病的防治。本文系统研究了二硫氰基甲烷对根结线虫不同虫态的毒力、对幼虫的作用方式及对番茄根结线虫病的防治效果和防治机制,并研究了施入土壤中的二硫氰基甲烷对土壤物理、化学和生物学性状及微生物群落的影响,为二硫氰基甲烷用于防治根结线虫病提供科学理论和技术。
     本文首先研究了离体条件下,二硫氰基甲烷对根结线虫的毒力。结果表明,二硫氰基甲烷对根结线虫二龄幼虫、分散卵及卵囊孵化均有毒杀和抑制作用。4.2%二硫氰基甲烷EC在1.25μg/mL时对二龄幼虫的致死率达97%以上,对根结线虫分散卵及卵囊孵化的抑制率高达94%以上。浓度低于5μg/mL时,相同浓度下96%二硫氰基甲烷原药对二龄幼虫、卵及卵囊的活性低于4.2%乳油制剂。相同浓度下4.2%的二硫氰基甲烷EC对二龄幼虫及分散卵的活性高于对照药剂98%阿维菌素,但对卵囊孵化的抑制活性与阿维菌素相当。这一结果预示二硫氰基甲烷可以作为防治根结线虫的潜在药剂进行研究、开发,以期成为传统的高毒、高残留杀线剂的替代品,丰富杀线虫剂品种资源。
     盆栽试验结果表明4.2%二硫氰基甲烷EC的550倍液处理土壤,每公顷用量90kg,对间隔7d和9d移栽的6周龄番茄苗安全,而对间隔5d移栽的番茄苗的生长有抑制作用。提高土壤处理的药剂剂量,缩短药剂处理至苗移栽前的天数或增加移栽番茄的苗龄均可提高4.2%二硫氰基甲烷EC对番茄根结线虫病的防效。4.2%二硫氰基甲烷EC 550倍液处理土壤,7d后移栽7周龄番茄苗,28d后调查对根结线虫病的防效可达100%;1110倍液处理土壤,13 d后移栽6周龄番茄苗,对根结线虫病的防效只有34.79%。1110倍液及666倍液土壤处理后,间隔9 d,移栽7周龄番茄苗,对番茄根结线虫病的防治效果在一个月时分别达65.20%和86.94%,二个月时分别达41.53%和46.15%;对照药剂0.5%阿维菌素颗粒剂对根结线虫病的防治效果在一个月及两个月的防效分别为69.56%和43.08%;对土壤中根结线虫二龄幼虫群体数量的抑制率在30d时分别达58.57%和77.33%,50 d时可达38.22%和61.45%,不同处理间具有显著差异;田间大棚试验表明666倍液的4.2%二硫氰基甲烷在一个月时防效高达83.43%,明显高于1110倍液及0.5%阿维菌素颗粒剂,二个月后防治效果下降,各处理间没有显著差别。
     研究了96%二硫氰基甲烷对根结线虫二龄幼虫呼吸作用及体液渗漏的影响。结果表明96%二硫氰基甲烷能够抑制线虫的呼吸作用,虽然在0.5μg/mL较低浓度药剂处理幼虫5min时,对线虫呼吸表现短暂的刺激作用,但随药剂处理时间延长和浓度增加,表现强烈抑制线虫的呼吸作用,2.5μg/mL的二硫氰基甲烷处理5min~12h,线虫呼吸抑制率从31.8%升至68.0%;药剂处理的线虫悬浮液电导率明显高于对照,且药剂浓度越高,悬浮液的电导率越大,在药剂处理的15~120min内,0.5μg/mL和2.5μg/mL处理的幼虫悬浮液的电导率分别比对照高了约3.8%和6.8%,说明二硫氰基甲烷在很短的处理时间内就能破坏线虫体壁。
     通过测定药剂处理过的根结线虫幼虫、卵、卵囊及根结对番茄根的致病力,研究了二硫氰基甲烷对根结线虫的防病机制。结果表明,二硫氰基甲烷对二龄幼虫的致病力影响最大,1μg/mL的二硫氰基甲烷处理二龄幼虫10min以上就能明显降低二龄幼虫的致病力,处理30min以上能够降低卵的致病力,而在试验设定的药剂浓度1μg/mL和666倍液及时间为30min和60min内,药剂不影响卵囊和根结的致病力。这说明二硫氰基甲烷即使没有杀死幼虫和卵的情况下,也能通过影响幼虫的致病力达到防治根结线虫病的目的。
     进入土壤中的二硫氰基甲烷会对土壤生态产生一定影响。通过平板稀释法及蔗糖饱和溶液悬浮法测定了二硫氰基甲烷对土壤中微生物及线虫的作用。结果表明二硫氰基甲烷处理土壤后对土壤中真菌、放线菌、线虫具有强烈的抑制作用,浓度越高,抑制作用越强。二硫氰基甲烷在处理土壤后10 d,对土壤中的真菌、放线菌和线虫的抑制作用达到最高峰,然后,随着时间推移,抑制作用下降,真菌、放线茵、线虫的数量均回升,但50天时仍没有恢复至对照水平;二硫氰基甲烷能刺激土壤中细菌增生,666倍液处理的土壤中细菌群体数量增生高于1110倍液处理的土壤,在药剂处理10d时,分别比对照高281.11%和201.43%。二硫氰基甲烷处理土壤10-30 d时,能促进土壤呼吸,且666倍液对土壤的呼吸作用高于1110倍液,即使在药剂处理50d时,仍分别比对照高92%和50%。
     4.2%二硫氰基甲烷EC对土壤化学性质及土壤酶活性具有不同的影响。结果表明,666倍液及1110倍液的二硫氰基甲烷处理土壤后,土壤的酸破度和土壤的电导率与对照土壤没有显著差异。但是,二硫氰基甲烷处理能够提高土壤脲酶活性,在药剂处理后10d,土壤脲酶的活性最高,且666倍液处理的土壤脲酶活性高于1110倍液,随着药剂处理时间延长,脲酶活性下降,至试验结束时的50 d,脲酶活性仍没有恢复至对照水平;1110倍液的二硫氰基甲烷能抑制土壤中过氧化氢酶的活性,随着药剂处理时间的延长,药剂对过氧化氢酶的活性抑制作用下降;而666倍液处理的土壤过氧化氢酶在测定时间内表现为激活一受到抑制一再激活现象。
Root-knot nematodes, Meloidogyne spp., are highly damaging to many vegetablecrops and cause significant yield loss, especially to greenhouse vegetable and to thoseplanted in tropical and subtropical regions. Root-knot nematodes have also been shown topredispose plants to infection by fungal or bacterial pathogens, which contribute toadditional yield reductions. Besides of use of resistance cultivars, agricultural practice andphysical measurement, use of chemical nematicides and fumigants is an important means ofcontrolling root-knot nematodes. Problems can occur with conventional nematicides andfumigants usage, however, as many cannot be applied to vegetables because of the high riskof potential toxicity to non-target organisms, residues and environmental hazards. Newnematicides are needed to replace conventional chemicals, likely to be phased out in thenear future. Methylene bisthiocyanate (MBT) is a volatile, water insoluble, organicthiocyanic compound and shows considerable activity against many different nematodesand microorganisms such as bacteria and fungi. 4.2% MBT emulsifiable concentrate (EC)has been used as a seed treatment agent for controlling rice seed-born nematode diseasecaused by Aphelenchoides besseyi for a decade, but it has not yet been tested onMeloidogyne spp.
     The objectives of this research were to verify the possibility of using 4.2% MBT EC tocontrol tomato root-knot nematodes by determining the bioactivity and control efficacy ofthe compound on Meloidogyne spp. in vivo and in vitro, the mode of action to Meloidogynespp. juveniles and the controlling mechanism against tomato root-knot nematode, Its effectson soil ecology were studied in the paper, too.
     This paper reported firstly the nematicidal activity of MBT and abamectin onMeloidogyne spp. juveniles, individual egg and eggs in masses hatching in vitro. Themortality ratio of the second-stage juveniles of Meloidogyne spp. was over 97% and theinhibition of individual egg and eggs in masses hatching was above 94% when they weretreated by 4.2% MBT EC at 1.25μg/mL dosage. When the concentration was below5μg/mL, the toxicity of the MBT of industrial grade against the second-stage juveniles, individual egg and the eggs in masses was lower than that of 4.2% MBT EC formulation.The activity of abamectin to the second-stage juveniles and individual egg was lower thanthat of 4.2% MBT EC. But, the activity to eggs in masses hatching was equivalent to that of4.2% MBT EC. These results implied that MBT should be studied to implode as a potentialnematicide that replaces chemical nematicides and fumigants.
     The soil in pots was drenched with 550-fold dilution of 4.2% MBT EC (90kg/hm~2).The six-week-old tomato seedlings were transplanted 5 days, 7 days and 9 days aftertreatment. The results showed the tomato seedlings transplanted 7days and 9 days aftertreatment were safe to 550-fold dilution of 4.2% MBT EC although the growth of theseedlings transplanted 5 days after treatment were inhibited by 550-fold dilution of 4.2%MBT EC. The efficacy of 4.2% MBT EC controlling root-knot nematode on tomato wastested in pots by soil drenching with its dilutions of 550, 666, 832, 1110 folds, respectivelybefore transportation. The results revealed that efficacy of 4.2% MBT EC increased byadding treating dosage and weeks of seedlings, or decreasing interval days from soiltreatment to transplantation of seedlings. 100% and 34.79% efficacies of 4.2% MBT ECcontrolling root-knot nematode disease have been achieved when the seven-week-oldseedlings were transplanted 7 days after soil treatment with 550-fold dilution and thesix-week-old seedlings were transplanted 13 days after treatment with 1110-fold dilution,respectively. The control efficacies of 550-fold and 666-fold dilutions of 4.2% MBT againstthe root-knot nematode disease on the seven-week-old tomato seedlings transplanted 9 daysafter treatment were 65.20% and 86.94% in one month, respectively, and 41.53% and46.15% in two months after treatment. 69.56% and 43.08% efficacies of abamectincontrolling the root-knot nematode disease have been achieved in one month and twomonths, respectively. The inhibitions of 1110-fold and 666-fold dilutions against thepopulation of the second-stage juveniles of Meloidogyne spp. in soil were 58.57% and77.33% in 30 days, respectively, and 38.22% and 61.45% in 50 days after treatment. Therewas significantly different among treatments. The control efficacy of 666-fold dilution withits efficacy at 83.43% against the root-knot nematode was higher significantly than that of1110-fold dilution of 4.2% MBT EC and 0.5% abamectin. The control efficacies ofdifferent treatments decline and were not significant after two months.
     The Effects of MBT on the respiratory and leakage of body fluid of Meloidogyne spp.juveniles were studied. The results showed that the respiratory of juveniles was inhibitedstrongly by MBT with adding treatment time and concentration although the respiratory of juveniles treated by MBT at 0.5μg/mL for 5min was stimulated transitorily. The inhibitionof MBT at 2.5μg/mL on the respiratory of juveniles increased from 31.8% to 68% after5min and 12hs' treatment, respectively. The electrolyte conductivity of the solution of thejuveniles treated with MBT increased with the concentration of the nematicide rising.Especially, the electrolyte conductivity of the solution of the juveniles treated with0.5μg/mL and 2.5μg/mL MBT were about 3.8% and 6.8% higher than that of the controlstably within 15~120 min. This implied that MBT can destroyed the body wall of juvenilesin shorter treatment time
     Pathogenicity of Meloidogyne spp. juveniles, eggs, egg masses and tomato root-knotstreated by MBT were researched. The results showed that pathogenicity of the second-stagejuveniles of Meloidogyne spp. declined significantly with MBT treatment above 10min at1μg/mL and pathogenicity of eggs descend significantly only above 30min treatment. MBTdid not affect the pathogenicity of egg masses and tomato root knot in concentration at1μg/mL and 666 fold dilutions and treatment time with 30min and 60min designed. Theresult that MBT can control root-knot nematode by affecting mainly the pathogenicity ofMeloidogyne spp. juveniles in under of no killing juveniles and eggs was achieved.
     Effects of 4.2% MBT EC on the soil ecology were studied by determining the microbeand nematode populations in soil treated by 4.2% MBT EC. 4.2% MBT EC showed morehigh inhibition effects on the populations of fungi, actinomyces and nematodes with theincreasing 4.2% MBT EC concentration. The strongest inhibition of MBT on the microbeand nematode populations appeared in 10 d after treatment. Along with prolonging thetreatment time the inhibition effects of MBT decreased and the populations of fungi,actinomyces and nematodes in soil rose. The populations of fungi, actinomyces andnematodes were still lower than that of control in 50 d after treatment. The populations ofthe bacterium in soil treated rose dramatically 10 d after treatment and the populations insoil treated by 666-fold dilution were higher than that in soil treated by 1110-fold dilution.The populations of the bacterium in soil treated by 666-fold and 1110-fold dilutions rosedramatically 10 d after treatment and were 281.11% and 201.43% higher than that in thecontrol soil. The respiration in soil treated was higher than that of the control soil andrespiration in soil treated by 666-fold dilution of MBT increased faster than that of1110-fold dilution from 10 d to 30 d after treatment. Even the respiration in soil treated by666-fold and 1110-fold dilution of MBT is still 92% and 50% higher, respectively, than thatof the control soil in 50 d after treatment.
     The effects of 4.2% MBT EC on characteristics and enzyme activities of soil werestudied in the paper. The results showed that there were no significantly difference of thepH values and electrolyte conductivity between the soil treated with MBT EC at 666 or1110-fold dilution and soil treated with water as check. The urease and catalase activity haddifferent respond to MBT EC treatment. The activity of the urease got higher and it of thecatalase got decreased in treated soil. The urease activity of treated soil with 666-fold washigher than that of 1110-fold and became decreasing with the time going on. However, theurease activity still didn't recover the same level as the check even 50 days later oftreatment. 4.2% MBT EC at 1110-fold treatment could inhibit the activity of catalase, andthe inhibition decreased with the longer treatment. Whereas 4.2% MBT EC at 666-foldcould activate, then inhibit, finally re-activate the activity of catalase during the test time.
引文
1. Baojun Yang, Quoli Wang, Kaijii Hu, et al. A survey of root-knot nematodes (Meloidogyne spp.) in China. Pedobiologia. 1998, 42(2): 165-170.
    
    2. Becker J O. Effects of rhizobacteria on root-knot nematodes and gallformation. Phytopathology. 1988, 78(11): 1466-1469.
    
    3. Berkeley M J. Vibrio forming cysts on the roots of cucumbers. Cardeners' Chronicle. 1855,7: 220.
    
    4. Bertrand B, Nunez C, Sarah J L. Disease complex in coffee involving Meloidogyne arabicida and Fusarium oxysporus. Plant Pathology. 2002, 49: 383-388.
    
    5. Bird A F, Brisbane P G The influence of Pasturia penetrans in field soils on the reproduction of root-knot nematodes. Revue de Nematologie. 1988,11: 75-81.
    
    6. Brown S M, Nordmeyer D. Synergistic reduction in root galling by Meloidogyne javanica with Pasteuria penetrans and nematicides. Revue de Nematologie. 1985, 8:285-286.
    
    7. Cayrol J C. Lutte biologique controles Meloidogyne au moyedn d Arthrobotry irregularis. Revue de Nematologie. 1983, (6): 265-273.
    
    8. Cayrol J C, Dijan C, Pijarowski L. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nematologie. 1989, (12): 331-336.
    
    9. Crop Losses Committee. Estimated crop losses from plant parasitic nematode in the United States. Society of Nematologists. Special Publication No. 1 Supplement to J. Nematol. 1971,4.
    
    10. Delij F A, Kerry B R. The potential of Verticillium chlamydosporiumasa biological control agent against root knot nematodes (Meloidogyne spp.). Journal of Nematology. 1989, (10): 571.
    
    11. Diaz-Silveira M F, Herrera J O. An overview of nematological problems in Cuba. Nematropica. 1998, 28:151-164.
    
    12. Dickson D W, Oostendorp M, Mitchell D J. Pasteuria penetrans, a biological control agent of nematode. Proceedings of the Second International Nematology Congress. Veldhoven, The Netherlands. 1990,165-167.
    
    13. Dropkin V H. Introduction to plant pathology, John Wiley & Jons Inc. New York. 1980, pp293.
    
    14. Eddaoudi M, Ammati M, Rammah A. Identification of the resistance breaking populations of Meloidogyne on tomatoes in Morocco and their effect on new sources of resistance. Fundamental and Applied Nematology. 1997, 20,285-289.
    
    15. Jain C, Trivedi, et al. Effect of the interaction between Meloidogyne arabicida and Fusarium oxysporus and Rhizoctian bacticola on chickpea. Phytolo. Res. 1998,11: 95-97.
    16. Kaloshian I, Yaghoob J, Liharska T, et al. Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol. Gen. Genet. 1998,57: 376-385.
    
    17. Liharska T B, Williamson V M. Resistance to root-knot nematodes in tomato. In Fenoll, C., Grundler, F.M.W., Ohl, S.A. Cellular and Molecular aspects of Plant-Nematode Interactions. Netherlands: Kluwer Academic Publishers. 1997,191-199.
    
    18. Mankau R. Bacillus penetrans causing a virulent disease of plant-parasitic nematodes. Journal of Invertberate Pathology. 1975, 26:333-339.
    
    19. Marley P S, Hillocks R J. Effect of root-knot nematodes (Meloidogyne spp.) on fusarium wilt in pigeonpea (Cajanus cajan). Field Crops Research. 1996,46:15-20.
    
    20. Mankau R. Biological control of nematode pests by natural enemies. Ann. Rev. Phytopathol. 1980a, 18:415-440.
    
    21. Mankau R. Biological control of Meloidogyne populations by Bacillus penetrans in West Africa. Journal of Nematology, 1980b, 12: 230.
    
    22. Marley P S, Hillocks R J. Effect of root-knot nematodes (Meloidogyne spp.) on fusarium wilt in pigeonpea ( Cajanus cajan). Field Crops Research. 1996,46:15-20.
    
    23. Milligan S B. Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, Nucleotide binging, Leucine-Rich repeat family of plant genes. The plant cell. 1998,10:1307-1319.
    
    24. Molinaris M. Interactions between resistant tomato cvs and Meloidogyne spp. in vitro. Nematologica Mediterranea. 1997,25(1): 63-71.
    
    25. Motsinger R, Crawford J, Thompson S. Nematode survey of peanut and cotton in southwest Gorgia. Peanut Sci. 1976,3: 72-74.
    
    26. Oostrndorp M, Silora R A. Seed treatment with antagonisti rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Revue Nematol. 1989,12(1): 77-83.
    
    27. Prather M J, McElroy M R, Wofsy S C. Reduction in ozone at high concentrations of stratospheric halogens. Nature. 1984,312:227-231.
    
    28. Racke J, Sikora R A. Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida. Soil Biology and Biochemistry. 1992,24(6): 521-526.
    
    29. Riggis R D. Resistance-breaking races of plant parasitic nematodes, in Manual of Agricultural Nematology(Nickle,W.R.ed.). New York:Marcell Dekker. 1991, 827-849.
    
    30. Rossi M, Goggin F, Milligan S B, et al. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad. SCI. 1998,95: 9750-9754.
    
    31. Sayre R M. Biotic influences in soil environment Vol. I [A]// Zuckerman B M, Mai W F, Rohde R A. Plant Parasitic Nematodes[C]. New York and London: Academic Press. 1971, 235-256.
    32. Sikora R A. Interrationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med. Fac. Landbouvow: Rijksuniv. Gent. 1988, 867-878.
    33. Sikora R A. Management of the antagonistil potential agricultural ecosystems for the biological control of plant-parasitic nematodes. Ann Rev Phytopathol. 1991, 30: 245-270.
    34. Stifling G R, Mankau R. Parasitism of Meloidogyne eggs by a new fungal parasite. Journal of Nematology. 1978, (10): 236-240.
    35. Stirling G R, White A M. Distribution of a parasite of root-knot nematodes in South Australian Vineyards. Plant Disease. 1982, 56: 52-53.
    36. Webster J M. Nematode and biological control[A]//Webster J M. Economic Nematology. London and New York: Academic Press Inc. 1972, 469-496.
    37. Wiliamson V M, Hussey R S. Nematode pathogenesis and resistance in plants. Plant Cell. 1996, 8: 1735-1745.
    38. Xu J, Liu P, Meng Q, Long H. Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. European Journal of Plant Pathology. 2004, 110: 309-315.
    39. Xu J, Narabu T, Mizukubo T, et al. A molecular marker correlated with selected virulence against the tomato resistance gene Mi in M. incognita, M. javanica, M. arenaria. Phytopathology. 2001, 91: 377-382.
    40. Yang B, Eisenback J D. M. etnterolobii n sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology. 1983, 15: 381-391.41. Zuckerman B M & Jasson H B. Nematode chemotaxis and possible mechanism of host-prey recognition. Ann. Rev. Phytopathol. 1984, 22: 95-113.
    42.A.L.泰勒著,陈品三,郝近大译.《植物线虫学研究入门》.农业出版社,1979.
    43.毕树志,李进.《植物线虫学》.农业出版社,1965.
    44.陈品三.杀线虫剂主要类型、特性及其作用机制.农药科学与管理,2001,22(2):33-35.
    45.陈淑鸿,高学彪.淡紫拟青霉MCWA18菌株对爪哇根结线虫卵孵化的影响.中国生物防治,2000,16(2):78-80.
    46.陈书龙,李秀花,马娟.河北省根结线虫发生种类与分布.华北农学报,2006,21(4):91-94.
    47.段玉玺,吴刚.植物线虫病害防治.中国农业科技出版社,2002.
    48.冯如珍,杨宝君,王秋珍,等.广西根结线虫病害的病原鉴定.广西农学院学报,1998,8:9-14.
    49.付鹏.PGPR菌株防治蔬菜根结线虫病的研究.南京农业大学硕士学位论文,2005.
    50. 高学彪,邓穗儿,周惠娟,等.淡紫拟青霉MCWA18菌株对南方根结线虫的寄生和防治作用.中国生物防治,1998,14(4)-163-166.
    51. 韩生成,刘清利,孟颂东,等.植物寄生线虫分子生物学和抗线虫基因工程策略的研究进展.农业生物技术学报,1999,7(4):47-52.
    52. 何胜洋,葛起新.植物线虫的寄生真菌简介.植物保护学报,1987,14(1):29-32.
    53. 黄必旺,喻子牛,黄志鹏。应用细菌防治植物寄生线虫.福建农业大学学报,1998,27(3):257-260.
    54. 黄耀师,梁震,李丽.我国植物线虫研究和防治新进展.农药,2000,39(2):11-13.
    55. 雷丽萍,李天飞.根结线虫生物防治的天敌应用研究进展.西南农业大学学报,1996,9(2):119-122.
    56. 李淑君,喻璋.河南省植物根结线虫调查及其病原鉴定.河南农业大学学报,1991,25:169-174.
    57. 林茂松,沈纪冬,文玲,等.淡紫拟青霉代谢产物生理活性物质分析和生物测定.云南农业大学学报,1999,14(增刊):70-74.
    58. 林茂松,张治宇.尖镰孢菌非致病菌株对南方根结线虫数量的控制.2001,南京农业大学学报, 24(1):40-42.59. 刘维志.《植物病原线虫学》.北京:中国农业出版社,2000.
    60. 潘沧海.福建省经济作物寄生线虫的研究.Ⅰ.根结线虫的种类及其寄主植物.动物学报,1984,30.159-167.
    61. 潘沧桑,林竞译.《植物线虫学导论》.厦门:厦门大学出版社,1981,23-24.
    62. 彭德良,唐文华.番茄根结线虫Mi基因研究进展.沈阳农业大学学报,2001,32:220-223.
    63. 汪来发,杨宝君.南方根结线虫寄生真菌的分离和鉴定.云南农业大学学报,1999a,14(增 刊):78-81.
    64. 汪来发,杨宝君,李传道.寄生真菌对根结线虫的致病力评价.林业科学,1999b,35(3): 41-47.
    65. 汪来发,杨宝君,关文钢,等.淡紫拟青霉和厚壁轮枝霉防治南方根结线虫.四川农业大学学报,1998,16(2):231-233.
    66. 汪来发,杨宝君,李传道.华东地区根结线虫的调查.林业科学研究,2001,14:484-489.
    67. 汪来发,杨宝君,李传道.根结线虫生物防治研究进展.南京林业大学学报,2002,26(1):64-68.
    68. 向红琼,冯志新.Pleurotus ostreatus对线虫作用机理的研究.指物病理学报,2000,30(4):357-363.
    69. 肖炎农,王明祖,王道本.淡紫拟青霉几丁质酶对南方根结线虫的影响.中国生物防治,1997,13 (1):29-31.
    70. 谢辉.《植物线虫分类学》.安徽科学技术出版社,合肥,2000.
    71. 徐建华,魏大为,詹裕定,等.江苏省大棚蔬菜寄生线虫的种类和发生.南京农业大学学报,1994,17(1):47-51.
    72. 杨宝君,胡凯基,徐炳文.水稻根结属一新种——林氏根结线虫Meloidogyne lini n. sp..云南农业大学学报,1988a,3:11-15.
    73. 杨宝君,王秋丽,冯如珍.中国广西寄生柑桔的一种根结线虫Mebidogyne kongi(线虫门:根结线虫科).广西农学院学报,1988b,7:1-9.
    74. 杨秀娟,何玉仙,郑良.淡紫拟青霉几丁质酶及其在植物寄生线虫生防中的研究.江西农业大学学报,2000,22(1):86-89.
    75. 殷友琴,杨宝君,王秋丽.30种作物根结线虫病的病原鉴定.华南农业大学学报,1994,15(1):22-26.
    76. 于秋菊,李景富,许向阳,等.黑龙江省番茄根结线虫病病原监定及抗病种质资源筛选.中国蔬菜,1999(3):89-95.
    77. 章胜.蔬菜根结线虫病发生与防治.安徽农业,1997,10:19-21.
    78. 朱爽,马强,王斌,等.番茄根结线虫病的发生及防治.长江蔬菜,2003,05:31.
    79. 张春奇,李爱芳,查素娥,等.番茄根结线虫病的研究概况.长江蔬菜,2003,08:41-43.
    80. 赵洪海.中国部分地根结线虫的种类鉴定和四种最常见种的种内形态变异研究[D].沈阳:沈阳农业大学,1999,44-50.
    81. 赵洪海,剂维志,梁超,等.根结线虫在中国的一新记录种—拟禾本科根结线虫 M.graminicola.植物病理学报,2001,31:184-188.
    1. Butcher J A. Laboratory screening trials for new prophylactic chemicals against sapstain and decay in sawn timber. Mat. und. Org. 1973, 8(1): 51-70.
    2. Davis, W. and W. Sexton. Biochem, J. 1948, 43: 461.
    3. Eden D, Singh T and Kreber B. Effect of mobile fungicides on fungal pre-infection in radiata pine. Int. Res. Group on Wood Preserv., Document IRG/WP/30191. Stockholm, Sweden. 1999.
    4. Galloway A C and Cooper D R. Fungicides for treating Wet Blue Hides. J. Soc. Leather Technol. Chem. 1974, 58: 69.
    5. Harvill A and Wilcoxon F. Contribso Boyce. Thompson. Inst. 1934, 13:79.
    6. Hester W, U. S. Pat. 1994, 2220, 521.
    7. Lustenberger M and Deuber R. Slimicides used in the paper industry and their environmental compatibility. Papier. 1991, 45(4): 162-166.
    8. Murply D. and C. Peet J. Ecom. Entomol. 1932, 25: 123.
    9. Muthusubramanian L, Rao V S S, Mitra R B. Convenient synthesis of methylene bisthiocyanate as microbiocide. Journal of Cleaner Production. 2003, 11: 695-697.
    10. Rohrn and Haas Co. Chemicals for Industry Philadelphaia. Pa., 1945.
    11. Singh T, Kreber B, Wakeling R and Stewart A. Effect of Methylene bisthiocyanate on morphology and ultra-structure of a sapstain fungus, Ophiostoma floccosum. International Research Group on Wood Preservation. Document IRG/WP/03-10471. Stockholm, Sweden. 2003.
    12. Tripti Singh, Bernhard Kreber, Alison Strwart et al. Characterisations of the mode of action(s) of Methylene bisthiocyanate(MBT) in Ophiostoma floccosum. The 36~(th) Annual Meeting Bangalore, India. 24-28, April, 2005.
    13. United States Environmental Protection Agency. Reregistration Eligibility Decision (RED): Methylene bisthiocyanate. Prevention, Pesticides and Toxic Substances, EPA 738-R-97-005. 1997.
    14. Von Oettingen W W Hueper and W Deichmann. Gruebler J. Ind. Hyg. Toxicol. 1963, 18: 310.
    15. 陈长军,周明国,叶钟音.二硫氰基甲烷对水稻恶苗病菌菌体作用机理研究.植物病理学报,2003,33(1):48-51.
    16. 陈长军,周明国,王建新,叶钟音.二硫氰基甲烷对啤酒酵母的影响.南京农业大学学报,2004,27(1):51-54.
    17. 程天恩,张一宾.《防菌防霉手册》.上海科技文献出版社,1993.
    18.韩熹莱,李范等译.《农药的代谢与毒理》.化学工业出版社,1991,302.
    19.黄瑞纶等编.《植物化学保护》.高等教育出版社,1959,285-301.
    20.林孔勋.《杀菌剂毒理学》.北京:中国农业出版社,1994.
    21.刘乃炽.《新编农药手册》.农业出版社,北京,1997.
    22.刘照云.新型杀线剂“NJ—1”防治黄瓜根结线虫病的研究及辣椒炭疽病菌对嘧菌酯的敏感性基线.南京农业大学硕士学位论文.2004.
    23.吴文君.《农药学原理》.中国农业出版社,2000.
    24.徐寿昌主编,《工业冷却水处理技术》.化学工业出版社,1984.
    25.许宜添.非氧化性杀生剂在我国工业水处理中的应用.石油与天然气化工,1984,13,(3).
    26.叶钟音,周明国,鞠理红.浸种灵(TH—88)对稻麦种传病害防治研究.南京农业大学学报,1994,17(增刊):113-117.
    27.赵善欢.《植物化学保护》.北京:中国农业出版社,2000.
    28.朱勇,葛涌涛,陈晓峰.对杀菌剂二硫氰基甲烷的分解的测定.净水技术,1994,49,29-32.
    1. Adolphe Monkiedje, Matthew Olusoji LLori, Michael Spiteller. Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology Biochemistry. 2002,34:1939-1948.
    2. Bardgett R D, James L, Leemans D K. Microbial biomass and activity in a grassland soil amended with different application rates of silage effluent—A laboratory study. Bioresource Technology. 1995, 52:175-180.
    3. Byrnes B H, Freney J R and Ahmad N. The effect of heavy metals and lime on urease activity in soddy-podzolic soil. Moscow Univ Soil Sci Bull. 1995,50(2): 53-56.
    4. Davies H A, Greaves M P. Effects of some pesticides on soil enzyme activities. Weed Res. 1981.21: 205-209.
    
    5. Endo T, Taiki K, Nobatsura T, et al. Effects of insecticide cartap hydrochloride on soil enzyme activities, respiration and on nitrification. J Pesticide Sci. 1982,7:101-110.
    
    6. Gianfreda L, Sannino F, Ortega N, et al. Activity of free and immobilized urease in soil: Effects of pesticides. Soil Biol Biochem. 1994,26:777-784.
    
    7. Gianfreda L, Sannino F, Violante A. Pesticides effects on the activity of free, immobilized and soil invertase. Soil Biol Biochem. 1995, 27:1201-1208.
    
    8. Hart T D. Transaction of 15th world congress of soil science Acapulco. Mexico. 1994.
    9. Lal R, Lal S. Pesticides and Nitrogen Cycle, Vol, II, Boca Raton, Florida: CRC Press Inc. 1988.
    10. Lee K E and Pankhurst C E. Soil organisms and sustainable productivity. Aust. J. Soil Res. 1992, 30: 855-892.
    
    11. Leganes F, Fernandez, Valiente E. Effects of phenoxy acetic herbicides on growth, photosynthesis, and nitrogenase activity in cyanobacteria from rice fields. Arch Environ Contam Toxicol. 1992, 22(1): 130-134.
    12. Madhavi B, Anand C S, Bharathi A, Polasa H. Biotoxic effects of pesticides on symbiotic properties of Rhizobial sps. Bull. Environ. Contam. Toxicol. 1994, 52(1): 87-94.
    
    13. Martin Pet. N_2-fixing bacteria in the rhizospere Quan tification and hormonal effects on root development. Pflanzenern(?) Bodend. 1989,152:237-245.
    14. Min H, Ye Y F, Chen Z Y. Effects of butachlor on microbial populations and enzyme activities in paddy soil. J. Environ. Sci Health. Part B. 2001, 36(5): 581-595.
    15. Mohamed Tawfic Ahmed et al. Residues of some chlorinated hydrocarbon pesticide in rain water, soil and ground water, and their influence on some soft microorganisms. Environ. Intern. 1998,
    24(5/6): 665-670.
    16. Nannipieri P. and Grego S. Ecological significance of biological activity in soft, In J.M. Bollag, G.
    Stotzky(ed)Soil biochemistry. 1990, Vol.6, Marcel Dekker, New York, 293-355.
    17. Pankhurst C E and Hawke B G. Evaluation of soil biological properties as potential bioindicators of
    soil health. Aust. J. Exp. Agri. 1995, 35: 1015-1028.
    18. Piero Perucci, Costantino Mischetti, Fabrizio Battistoni. Rimsulfuron in a silty clay loam soil: effects
    upon microbiological and biochemical properties under varying microcosm conditions. Soil Biology
    and Biochemistry. 1999, 31: 195-204.
    19. Pozo C, Martinez-Toledo M V, Salmeron V, et al. Effect of Chorpyrifos on soil microbial activity.
    Environmental Toxicology and Chemistry. 1995, 14(2): 187-192.
    20. Quistad Gary B, Sparks Susan E, Casida John E. Fatty acid amide hydrolase inhibition by neurotoxic
    organophosphorus pesticides. Toxicology and Applied Pharmacology. 2001, 173(1): 48-55.
    21. Reddy M, Sudhakara, Natarajan K. Effects of the fungicide dithane M-45 on the growth and
    mycorrhizal formation of pinus patula seedlings. Soft Biology and Biochemistry. 1995, 27(11):
    1503-1504.
    22. Riffaldi R, Filippelli M, Levi-Minzi R, Saviozzi A. The influence of metam sodium of soft
    respiration, J Environ Sci Health B. 2000, 35(4): 455-465.
    23. Taiwo E LB and Oso B A. The influence of some pesticides on soil microbial flora in relation to
    changes in nutrient level, rock phosphate solubilization and P release under laboratory conditions,
    Agriculture, Ecosystems and Environ. 1997, 65: 59-68.
    24. Trevors, J. Dehydrogenase activity in soft: a comparison between the INT and TrC assay. Soil Biol
    Biochem. 1984, 16: 673-674.
    25. Tu C M. Influence of ten herbicides on activities of microorganisms and enzymes in soft. Bull.
    Environ. Contam. Toxicol. 1993a, 51(1): 30-39.
    26. Tu C M. Effect of fungicides, captafol and chlorothalonft, on microbial and enzymatic activities in
    mineral soil. J. Environ. Sci. Health, Part B. 1993b, 28(1): 67-80.
    27. Vainshtein B K, Melik-Adamyan W R, Barynin V V, et al. Three-dimensional structure of catalase
    from Penicillium viatale at 2-0 A resolution. J. Mol. Biol. 1986, 188, 49-64.
    28. 蔡道基,江希流,蔡玉祺.化学农药对生态环境安全评价研究.农村生态环境,1986,(2):9-13.
    29. 蔡玉祺,王珊龄,蔡道基.甲基异柳磷等四种农药对土壤呼吸的影响.农村生态环境,1992,(3):36-40.
    30. 陈利军,史奕,李荣华,等.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N_2O排放的影响.应用生态学报,1995,6(4):368-372.
    31. 陈祖义,米春云.农药杀虫单对土壤微生物功能的影响.环境科学,1987,8(1):36-39.
    32. 崔淑华,王开运,洪营,等.戊唑醇对土壤微生物数量和呼吸强度的影响.农业环境科学学报,2005,24(5):865-869.
    33. 戴伟,白红英.土壤过氧化氢酶活度及动力学特性与土壤性质的关系.北京林业大学学报,1995,71(1):37-41.
    34. 冯波,单敏,方华,等.百菌清对土壤微生物数量和酶活性的影响.农业环境科学学报,2006,25(3):674-677.
    35. 傅丽君,赵士熙,王海,等.4种农药对土壤微生物呼吸及过氧化氢酶活性的影响.福建农林大学学报,2005,34(4):441-445.
    36. 关松荫等主编.《土壤酶及其研究法》.农业出版社,1983.
    37. 郭明,陈红军,王春蕾.4种农药对土壤脱氢酶活性的影响.环境化学,2006,19(6):523-527.
    38. 郭明,尹亚梅,何良荣,等.农用化学物质对土壤脲酶活性的影响.农业环境保护,2000,19(2):68-71.
    39. 和文祥,蒋新,余贵芬,等.杀虫双对土壤脲酶活性特征的影响.2003,40(5):750-755.
    40. 和文祥,朱铭莪,童江云,等.有机肥对土壤脲酶活性特征的影响.西北农业学报,1997,6(2):73-75.
    41. 黄智,李时银,刘新会,等.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响.环境化学,2002,21(5):481-484.
    42. 李忠武,王振中,邢协加,等.农药污染对土壤动物群落影响的实验研究.环境科学研究,1999,12(1):49-53.
    43. 林植芳.光敏反应对过氧化氢酶的影响.生物化学与生物物理进展,1991,18(6):435-438.
    44. 陆欣,王申贵,王海洪,等.新型脲酶抑制剂的试验研究.土壤学报,1997,34(4):461-466.
    45. 邱莉萍,刘军,王益权,等.长期施肥土壤中酶活性的剖面分布及其动力学特征研究.植物营养与肥料学报,2005,11(6):737-741.
    46. 沈慧,姜凤岐,杜晓军,等.水土保持林土壤肥力及其评价指标.水土保持学报,2000,14(2):60-65.
    47. 单敏,虞云龙,方华,等.丁草胺对土壤微生物数量和酶活性的影响.农药学学报,2005,7(4):383-396.
    48. 汤树德,李汉昌,石晶波.化学除草剂对土壤中微生物生态和物质转化过程的影响.土壤学报,1984,21(1):95-103.
    49. 王金花,朱鲁生,孙瑞莲,等.阿特拉津对两种不同施肥条件土壤脲酶的影响.农业环境科学 学报,2004,23(1):162-166.
    50. 王金花,朱鲁生,王军,等.除草剂阿特拉津对土壤脲酶活性的影响.应用生态学报,2003,14(12):2281-2284.
    50. 王静,乔雄梧,朱九生,等.四种农药对土壤微生物的影响Ⅰ.土壤呼吸的变化.应用与环境生物学报,1999,(增刊):155-157.
    52. 王天元,宋雅君,滕鹏起.土壤脲酶及脲酶抑制剂.化学工程师,2004,107(8):22-24.
    53. 王振中,张友梅,夏卫生,等.有机磷农药对土壤动物群落结构的影响研究.生态学报,1996,16(4):357-365.
    54. 杨海君,肖启明,刘安元.土壤微生物多样性及其作用研究进展.南华大学学报,2005,19(4):21-26.
    55. 杨玲,孔星云,郭明.化学农药对土壤脲酶的影响.塔里木农垦大学学报,2001,13(3):13-16.
    56. 杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物学报,2002,8(5):564-570.
    57. 杨景辉编著.《土壤污染与防治》.科学出版社,1995.
    58. 于黎莎,程新胜,何永存.甲霜灵根施对土壤硝化作用的抑制效应.烟草科技,2001,(8):42-44.
    59. 徐瑞富,蒋学杰,张玉泉.多菌灵对土壤微生物呼吸作用的影响.河南农业科学,2005,8:66-68.
    60. 徐星凯,周礼恺.脲酶抑制剂/硝化抑制剂对土壤中尿素氮转化及形态分布的影响.土壤学报,2000,37(3):339-345.
    61. 徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量的影响.土壤学报,2002,39(1):89-95.
    62. 徐珍,郭正元,黄帆,等.唑螨酯对土壤呼吸作用和过氧化氢酶活性的影响.农药,2006,45(10):692-694.
    63. 姚斌,徐建民,张超兰.甲磺隆对土壤微生物多样性的影响.土壤学报,2004,41(2):320-323.
    64.于建垒,宋国春,万鲁长,等.乙草胺对土壤微生物的影响研究.环境污染治理技术与设备,2000,1(5):61-65.
    65. 张成娥,陈小利.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征.草地学报,1997,5(3):195-199.
    66. 张其水,俞新妥.杉木连栽林地营造混交林后土壤微生物的季节性动态研究.生态学报,1990,10(2):121-126.
    67. 张宪武.《土壤微生物的理论、应用和新方法研究》.沈阳,沈阳出版社,1989,pp.18-20.
    68. 周瑛,刘维屏,王婷婷.异丙甲草胺及其高效体对我国南方潮土微生物的影响Ⅰ.过氧化氢酶. 应用生态学报,2005,16(5):895-898.
    69.朱鲁生,王军,林爱军,等.二甲戊乐灵的土壤微生物生态效应.环境科学,2002,23(3):88-91.
    70.朱南文,闵航,陈美慈,等.甲胺磷对土壤中磷酸酶和脱氢酶活性的影响.农村生态环境,1996,12(2):22-24,94.
    71.朱南文,胡茂林,高廷耀.甲胺磷对土壤微生物活性的影响.农业环境保护,1999,18(1):4—7.
    1. Chindo P S, Khan F A and Erinle I D. Reaction of three tomato cultivars to two vascular diseases in presence of the root-knot nematode, Meloidogyne incognita race 1. Crop Protection. 1991, 10(1): 62-64.
    2. Franklin M T. Meloidogyne-root-knot eelworms, in Plant nematology, ed by Southey J F, Her Majesty's Stationary Office, London. 1965, 59-88.
    3. Ibrahim S K and Haydock P P J. Cadusafos inhibits hatching, invasion and movement of potato cyst nematode Globodera pallida. J Nematol. 1999, 31: 201-206.
    4. Mojtahedi H, Santo G S and Pinkerton J N. Efficacy of ethoprophos on Meloidogyne hapla and M. chitwoodi and enhanced biodegradation in soil. J Nematol. 1991, 23: 372-379.
    5. Muthusubramanian L, Rao V S S, Mitra RB. Convenient synthesis of methylene bisthiocyanate as microbiocide. Journal of Cleaner Production. 2003, 11: 695-697.
    6. Sharon E, Orion D and Spiegel Y. Binding of soil microorganisms and red blood ceils by the gelatinous matrix and eggs of Meloidogyne javanica and Rotylenchulus reniformis. Fundam Appl Nematol. 1993, 16: 5-9.
    7. Sharon E and Spiegel Y. Glycoprotein characterization of the gelatinous matrix in the root-knot nematode Meloidogyne javanica. J Nematol. 1993, 25: 585-589.
    8. Susanne Klose, Husein A, AJwa. Enzyme activities in agricultural soils fumigated with methyl bromide alternatives. Soil Biology and Biochemistry. 2004, 36: 1625-1635.
    9. 陈长军,周明国,叶钟音.二硫氰基甲烷对水稻恶苗病菌菌体作用机理研究.植物病理学报,2003,33(1):48-51.
    10. 方中达.植病研究方法(第三版).中国农业出版社.1998.
    11. 谷希树,白文川,胡学雄,等.蔬菜根结线虫的发生与防治.天津农业科学,2003,9(3):35-37.
    12. 刘维志.植物病原线虫学.北京:中国农业出版社.2000.
    13. 汪来发,杨宝君,李传道.根结线虫生物防治研究进展.南京林业大学学报,2002,26(1):64-68.
    14. 叶钟音,周明国,鞠理红.浸种灵(TH—88)对稻麦种传病害防治研究.南京农业大学学报,1994,17(增刊):113-117.
    15. 张博,王会利,慕立义.蔬菜根结线虫的发生与防治.农药,2002,43(9):4-5.
    16. 赵洪海,刘维志,王东昌.根结线虫分类手段的研究概况.莱阳农学院学报,2000,17(4):250-254.
    17.赵琛,曾乐佳,刘楷.克线磷和益舒宝对红背桂根结线虫活力和发育的影响.广东园林,2003,增刊,63-65,59.
    1. Chindo P S, Khan F A and Erinle I D. Reaction of three tomato cultivars to two vascular diseases in presence of the root-knot nematode, Meloidogyne incognita race 1. Crop Protection. 1991, 10(1): 62-64.
    2. Bridge J, Page S L J. Estimation of root-knot nematode infestation levels on roots using a rating chart. Trop. J. Pest Manage. 1980, 26: 296-298.
    3. Muthusubramanian L, V S. Sundara Rao, Rajat B. Mitra. Convenient synthesis of methylene bisthiocyanate as microbiocide. Journal of Cleaner Production. 2003, 11: 695-697.
    4. Prather M J, McElroy M R, Wofsy S C. Reduction in ozone at high concentrations of stratospheric halogens. Nature. 1984, 312: 227-231.
    5. Qi Z Q, Wang J X, Chen C J, Zhou M G. Efficacy of the methylene bisthiocyanate formulation, 4.2% MBT EC, as a potentially novel nematicide for the control of root-knot nematode. Australasian Plant Pathology, 2006, 35,733-737.
    6.陈利锋,徐敬友.农业植物病理学(南方本).中国农业出版社.2001.
    7.刘峰,慕卫,张博,等.杀虫杀线剂防治蔬菜根结线虫病药效与安全性评价.农药,2002,41(12):29-31.
    8.刘维志.植物病原线虫学.北京:中国农业出版社.2000.
    9.刘照云.新型杀线剂"NJ-1"防治黄瓜根结线虫病的研究及辣椒炭疽病菌对嘧菌酯的敏感性基线.南京农业大学硕士学位论文.2004.
    10.戚龙君,王旭,宋绍祎,等.苗木浸根杀寄生线虫处理技术.植物检疫,2002,16(5):270-272.
    11.叶钟音,周明国.浸种灵(TH-88)对稻麦种传病害的防效与应用.植保技术与推广,1994,1:11,6.
    12.叶钟音,周明国,鞠理红.浸种灵(TH—88)对稻麦种传病害防治研究.南京农业大学学报,1994,17(增刊):113-117.
    13.张博,王会利,慕立义.蔬菜根结线虫的发生与防治.农药,2002,43(9):4-5.
    14.朱勇,葛涌涛,陈晓峰.对杀菌剂二硫氰基甲烷分解的测定.净水技术,1994,49:3.
    1. Butcher J A. Laboratory screening trials for new prophylactic chemicals against sapstain and decay in sawn timber. Mat. und. Org. 1973, 8(1): 51-70.
    2. Eden D, Singh T and Kreber B. Effect of mobile fungicides on fungal pre-infection in radiata pine. Int. Res. Group on Wood Preserv. Document IRG/WP/30191. Stockholm, Sweden. 1999.
    3. Kohno Y, Watannabe M, Hosokawa D. Studies on the physiological changes in the rice plant infected with Xanthomonas citri. Ann. Phytopath. Soc. Japan, 1981, 47:555-561.
    4. Lustenberger M and Deuber R. Slimicides used in the paper industry and their environmental compatibility. Papier. 1991, 45(4): 162-166.
    5. Muthusubramanian L, Rao V S S, Mitra RB. Convenient synthesis of methylene bisthiocyanate as microbiocide. Journal of Cleaner Production. 2003, 11: 695-697.
    6. Qi Z Q, Wang J X, Chen C J, Zhou M G. Efficacy of the methylene bisthiocyanate formulation, 4.2% MBT EC, as a potentially novel nematicide for the control of root-knot nematode. Australasian Plant Pathology, 2006, 35: 733-737.
    7. Tripti Singh, Bernhard Kreber, Alison Stewart and Marlene Jaspersensis. Characterisations of the mode of action(s) of Methylene bisthiocyanate(MBT) in Ophiostoma floccosum, the 36~(th) Annual Meeting Bangalore, India. 24-28, April, 2005.
    8.陈长军,周明国,王建新,等.二硫氰基甲烷对啤酒酵母的影响.南京农业大学学报,2004,27(1):51-54.
    9.陈长军,周明国,叶钟音.二硫氰基甲烷对水稻恶苗病菌菌体作用机理研究.植物病理学报,2003,33(1):48-51.
    10.程天恩,张一宾.《防菌防霉手册》.上海科技文献出版社,1993.
    11.刘维志.植物病原线虫学[M].北京:中国农业出版社,2000.
    12.上海植物生理学会.《植物生理学实验手册》.上海:上海科技出版社.1985.
    13.徐寿昌主编.《工业冷却水处理技术》.化学工业出版社,1984.
    13.叶钟音,周明国,鞠理红,等.浸种灵(TH-88)对稻麦种传病害防治研究.南京农业大学学报,1994,17(增刊):113-117.
    1. Qi Z Q, Wang J X, Chen C J, Zhou M G.Efficacy of the methylene bisthiocyanate formulation, 4.2% MBT EC, as a potentially novel nematicide for the control of root-knot nematode. Australasian Plant Pathology, 2006, 35, 733-737.
    2. Bridge J, Page S L J. Estimation of root-knot nematode infestation levels on roots using a rating chart. Trop. J. Pest Manage. 1980, 26: 296-298.
    3. Mojtahedi H, Santo GS and Pinkerton JN, Efficacy of ethoprophos on Meloidogyne hapla and M chitwoodi and enhanced biodegradation in soil. J Nematol. 1991, 23:372-379
    4. Ioannis O Giannakou, Dimitrios G Karpouzas, Ioannis Anastasiades, Nicholas G Tsiropoulos and Athena Georgiadou. Factors affecting the efficacy of non-fumigant nematicides for controlling root-knot nematodes. Pest Manag Sci. 2005, 61: 961-972.
    5.刘乃炽.新编农药手册.北京:中国农业出版社,199 8.
    6.刘维志.《植物病原线虫学》.北京:中国农业出版社,2000.
    1. Kale S P and K Raghu. Effect of carbofuran and its degradation products on microbial numbers and respiration in soils. Chemosphere, 1989, 18 (11/12): 2345-2351.
    2. Katzenelson H and Richardson L T. The microflora of the rhizosphere oftomato plants in relation to soil sterilization. Canadian Journal of Research. 1943, C21: 249-255.
    3. Taiwo E L B and Oso B A. The influence of some pesticides on soil microbial flora in relation to changes in nutrient level, rock phosphate solubilization and P release under laboratory conditions, Agriculture, Ecosystems and Environ. 1997, 65: 59-68.
    4. Tu C M. Effect of four experimental insecticides on enzyme activities and levels of adenosine triphosphate in mineral and organic soils. Sci. Health, J. Environ. Part B. 1990, 25(6): 787-800.
    5. Zelles L I. Scheunert and E Korce. Side effects of some pesticides on nontarget soil microorganisms. J. Enviro. Sci. Health. 1985, 13(2015): 457-488.
    6. 陈长军,周明国,叶钟音.二硫氰基甲烷对水稻恶苗病菌菌体作用机理研究.植物病理学报,2003,33(1):48-51.
    7. 陈华癸.土壤微生物学.上海:上海科学技术出版社,1979.
    8. 陈宗泽,殷勤燕,王旭明,等.土壤病原菌对连作大豆的致病性初探.吉林农业大学学报,1999,21(1):29-32.
    9. 范昆.1,3-二氯丙烯对番茄根结线虫的控制效果和环境生态效应.山东农业大学硕士学位论文.2006.
    10. 李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京:中国农业出版社,1996.
    11. 刘维志.植物病原线虫学.北京:中国农业出版社,2000.
    12. 沈标.甲基对硫磷降解菌DLL-1的生态学研究.南京农业大学博士学位论文,2001.
    13. 史宝胜,杜鸿云,尹家风,等.药剂处理对重茬大棚草莓根际微生物的影响.中国农学通报,2005,21(10):303-305.
    14. 姚斌,徐建民,张超兰.甲磺隆对土壤微生物多样性的影响.土壤学报,2004,41(2):320-323.
    15. 叶钟音,周明国,鞠理红,等.浸种灵(TH-88)对稻麦种传病害防治研究.南京农业大学学报,1994,17(增刊):113-117.
    1. Carolona Femandez, Rodrigo Rodri guez-Kabana, Prem Warrior, and Joseph W. Kloepper. Induced Soil Suppressiveness to a Root-Knot Nematode Species by a Nematicide. Biological Control. 2001, 22: 103-114.
    2. Pankhurst C E and Hawke B G. Evaluation of soil biological properties as potential bioindicators of soil health. Aust. J. Exp. Agri. 1995, 35: 1015-1028.
    3. Perucci P, Dumontet S, Bufo S A, et al. Effect of organic amendment and herbicide treatment on soil microbial biomass. Biol Fertile Soils. 2000, 32: 17-23.
    4. Perucci P, Scarponi L. Effects of the herbicide imazethapyron soil microbial biomass and various soil enzyme activities. Biol Fertile Soils. 1994, 17: 237-240.
    5. Vischetti C, Perucci P, Scaroni L. Relationship between rimusulfron degradation and microbial biomass contentinaclayloam soil. Biol Fertile Soils. 2000, 31(3/4): 310-314.
    6. 褚海燕,朱建国,谢祖彬.镧对太湖地区水稻土若干水解酶活性的影响.稀土,2002,23(3):41-43.
    7. 范昆.1,3-二氯丙烯对番茄根结线虫的控制效果和环境生态效应.山东农业大学硕士学位论文.2006.
    8. 关松荫.《土壤酶及其研究法》.北京:农业出版社,1987.
    9. 郭明,尹亚梅,何良荣,等.农用化学物质对土壤脲酶活性的影响.农业环境保护,2000,19(2):68-71.
    10. 和文祥,蒋新,余贵芬.杀虫双对土壤脲酶活性特征的影响.土壤学报,2003,40(5):750-755.
    11. 李永红,高玉葆.土壤中单嘧磺隆对谷子生长及土壤微生物若干生化功能的影响.农业环境科学学报,2004,23(4):633-637.
    12. 唐美珍,郭正元,袁敏.碘甲磺隆钠盐对土壤中过氧化氢酶活性及呼吸作用的影响.土壤,2005,37(4):421-425.
    13. 王金花,朱鲁生,王军.除草剂阿特拉津对土壤脲酶活性的影响.应用生态学报,2003,14(12):2281-2285.
    14. 王天元,宋雅君,滕鹏起.土壤脲酶及脲酶抑制剂.化学工程师,2004,107(8):22-24.
    15. 肖志高,龚道新,施翔,等.咪鲜胺及其制剂和主要代谢物对土壤过氧化氢酶活性的影响.农业环境科学学报,2006,25(3):728-732.
    16. 杨春璐,孙铁珩,和文祥,等.农药对土壤脲酶活性的影响.应用生态学报.2006,17(7):1354-1356.
    17. 叶央芳,闵航,周湘池.苯噻草胺对水田土壤呼吸强度和酶活性的影响.土壤学报,2004,41(1): 93-96.
    18.周礼凯.《土壤酶学》.北京:科学出版社,1989.570.
    19.周新文.化学农药对土壤微生物的影响.上海环境科学,1997,16(12):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700