番茄菌根形成过程中抗氧化酶活性的变化及内源茉莉酸的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根(Arbuscular mycorrhiza,简称AM)是自然界最广泛存在的植物与真菌互利互惠共生体,80%以上的陆生植物可借助丛枝菌根真菌(AM fungi, AMF)从土壤中吸收矿物质(尤其是在缺磷状态下),以改善营养状况、提高对生物和非生物胁迫的耐受性以及加强物质和能量循环,改善自然生态系统。因此,有效地提高植物与AMF共生效率具有重要的科学意义和指导生产实践的价值。然而,达到这样目标的前提条件是必需充分认识菌根形成的生物学机理。由于AMF的纯培养十分困难,加之对寄主侵染的低频率以及缺乏同步性,使得对AM形成机理的认识仍很有限。近年来,不断增加的证据表明植物激素参与AM共生过程的各个主要阶段,如寄主对AMF效应剂的感受、信号转导、基因表达、蛋白质修饰等。其中茉莉酸(jasmonic acid, JA)及其衍生物直接参与AM的形成。然而,现有的研究大多数均采用外施JA的方法(如叶面喷洒或灌根),或者是测定植物内源JA的含量,而利用反向遗传学方法(即利用JA生物合成或信号感受缺失突变体)研究JA在AM形成中的作用则鲜见报道或是刚刚起步,对一些科学问题的认识仍十分有限。
     我们以番茄野生型植株及其茉莉酸缺失的突变体spr2为材料,采用嫁接技术及人工接种菌根真菌,在实验室控制的条件下,初步研究了番茄内源JA在植物根与菌根真菌共生过程中的作用机理,重点关注JA水平的作用以及地上部分JA对菌根形成的系统性作用。检测的指标包括抗氧化酶超氧化物岐化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)及其同工酶活性、可溶性糖含量以及脯氨酸水平等。结果显示:
     1.内源JA生物合成缺失突变体spr2的AM定殖水平低于野生型的AM定殖水平,表明JA对AM的形成具有一定促进作用。
     2.地上部分的JA对AM形成具有一定的系统性促进作用。
     3.菌根真菌侵染初期,AM定殖水平高的野生型植株SOD和CAT活性低于未接种的对照,表明菌根形成初期真菌抑制抗氧化酶活性是其侵染的条件之一。
     4. AM定殖水平高的野生型植株MDA含量高于定殖水平低的突变体,表明AM定殖引发了植株氧化胁迫。
     5.野生型植株AM定殖后(接种60天后)的可溶性糖和脯氨酸含量高于JA缺失突变体,也高于未接种的对照,此外,AM形成效率高的嫁接植株可溶性糖和脯氨酸含量高于AM形成效率低的嫁接,表明AM的形成有利于这些可溶性物质的合成与积累。
Arbuscular mycorrhiza (AM) is the most widespread terrestrial symbiosis and is formedby at least80%of land plant species with fungi that belong to Glomeromycota. The AMhyphal network supply plants with nutrients (predominantly phosphate) and water, in turnobtain carbohydrates from plants. Therefore, AM symbiosis contributes significantly toglobal phosphate and carbon cycling and influences primary productivity in terrestrialecosystems. In addition, mycorrhizal can enhance markedly its host plant resistance topathogens and abiotic stresses. However, so far, the understanding of the mechanism of AMformation still remains limited due to the difficulty to cultivate the pure AM fungi, coupledwith the low frequency infection for the host and the lack of a synchronicity. Fortunately,recent studies demonstrate that several new plant hormones are involved directly in the AMformation, such as strigolactones and jasmonic acid (JA). In the case of JA, however, eventhough there are several lines of evidence including our previous study have shown thatendogenous JA or exogenous application of JA to plants play a crucial role in the symbiosisbetween hosts and AM fungi, the molecular mechanism by which JA regulates AM formationis less understood. In this study, tomato wild-type plants and its mutant spr2with JAdeficiency were used to comparatively investigate the role of endogenous JA in the AMformation between plant roots and AMF, with an emphasis on the function of JA levels andsystemic role of JA in above-ground parts in AM formation. Data were collected includingthe activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), andtheir isoenzymes shown by polyacrylamide gel electrophoresis (PAGE), malondialdehyde(MDA) contents, soluble sugar contents, and proline levels.
     The results showed that:
     1. The colonisation of AM in the spr2mutant was lower than that in wild-type plants,indicating that endogrnous JA in plants had a function in AM formation.
     2. JA in the above-ground parts of plants had a systemic function in AM formation.
     3. At the early stage of AF formation, the activities of SOD and CAT were reduced inwild-type plants relative to their uninoculated controls, suggesting that the inhibition of theseantioxidative enzymes was a prerequisite to the infection of AMF to plants.
     4. The MDA levels were higher in wild-type plants with high AM colonisation than in spr2with low AM colonisation, showing that the AM colonisation induce lipid peroxidation.
     5. The contents of proline and soluble sugar in wild-type plants were higher than thosein the spr2mutant plants after AM colonization, as well as in the non-inoculated control,together with the contents of proline and soluble sugar in the grafting plants with high AMcolonization being higher than those in the grafting plants with low AM colonization,indicating that the AM colonization was favourable for these soluble compounds productionsor accumulations in plants.
引文
[1] G hre, Vera, Paszkowski, Uta. Contribution of the arbuscular mycorrhizal symbiosis toheavy metal phytoremediation.Planta,2006,223:1115–22.
    [2]盛敏,唐明,迪丽努尔,等.西北盐碱土主要植物丛枝菌根研究.西北农林科技大学,2000,35:74–78.
    [3] Shrestha YH,Ishii T. Effect of vesicular arbuscular mycorrhizal fungi on the growth,photosynthesis, transpiration and the distribution of photosynthesis of bearing Satsuma anda reentries.Journal of Japanese Society of Horticultural Science,1995,65:517-525.
    [4] CLARK RB, ZETO SK. Mineral acquisition by Arbuscular Mycorrhizal Plants.Journal ofPlant Nutrition,2000,23:867-902.
    [5] Marschnerh, Dellb. Nutrient uptake in mycorrhizal symbiosis.Plant and Soil,1994,159:89–102.
    [6] Hamid Amir, David A, Jasper, Lynette K. Abbott Tolerance and induction of tolerance to Niof arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza,2008,19:1-6.
    [7] Marschner H. Mineral Nutrition of Higher Plants.London: Academic Press,1997,537–594.
    [8] Tullio M, Perandrei F, Salerno A, et al. Tolerance to cadmium of vesicular arbuscularmycorrhizae spores isolated from acadmium-polluted and unpolluted soil. Biol Fertil Soils,2003,37:211–214.
    [9] Sirvastava AK, Singh S, Marathe RA. Organic Citrus soil fertility and plant nutrition.Journalof Sustainable Agriculture,2002,19:5–29.
    [10] Hause B, Mrosk C, Isayenkov S, et al. Jasmonates in arbuscular mycorrhizal interactions.Phytochemistry,2007,68,101–110.
    [11]王有智,黄亦存.四种外生菌根真菌产生植物激素的研究.微生物学通报,2004,24:72-74.
    [12] Glaze brook J. Contrasting mechanisms of defence against biotrophic and necrotrophicpathogens. Annu Rev Phytopathol,2005,43:205–227.
    [13] Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease.Annu Rev Phytopathol,2009,47:177–206.
    [14] Brooks DM, Hernández GG, Kloek AP, et al. Identification and characterization of awell-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv.tomatoDC3000. Mol Plant Microbe Interact.2004,17,162–174.
    [15] Bari R, Jones J. Role of plant hormones in plant defence responses. Plant Mol. Biol,2009,69:473-488.
    [16] Hayat S Ahmad A, Eds. Salicylic Acid: A Plant Hormone. Springer, Dordrecht, theNetherlands,2007,91–154.
    [17] Yuan S, Lin HH. Role of salicylic acid in plant abiotic stress. Naturforsch,2008,63,313–320.
    [18] Zhao S, Qi X. Signaling in plant disease resistance and symbiosis.Integr Plant Biol,2008,50:799–807.
    [19] Hause B, Meier W, Miersch O, Kramell R, et al. Induction of jasmonate biosynthesis inarbuscular mycorrhizal barley roots. Plant Physiol,2002,130:1213–1220.
    [20] Stumpe M, Carsjens J, Stenzel I, et al. Lipid metabolism in arbuscular mycorrhizal roots ofMedicago truncatula. Phytochemistry,2005,66:781–791.
    [21] Isayenkov S, Mrosk C, Stenzel I, et al. Suppression of allene oxide cyclase in hairy roots ofMedicago truncatula reduces jasmonate levels and the degree of mycorrhization withGlomus intraradices. Plant Physiol,2005,139,1401–1410.
    [22] Tejeda SM, Martinez VO, Délano FJ. Jasmonic acid influences mycorrhizal colonization intomato plants by modifying the expression of genes involved in carbohydrate partitioning.Physiol Plant,2008,133:339–353.
    [23] Herrera MJ, Tamayo M, Vierheilig H, et al. The jasmonic acid signaling pathway restricts thedevelopment of the arbuscular mycorrhizal association in tomato.Plant Growth Regul,2008,27:221–230.
    [24] Hause B, Mrosk C, Isayenkov S, et al. Jasmonates in arbuscular mycorrhizal interactions.Phytochemistry,2007,68:101–110.
    [25] Délano-Frier JP, Tejeda SM. Unraveling the network: novel developments in theunderstanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizalsymbiosis. Plant Signal Behav,2007,3:936–944.
    [26] Farmer EE. Jasmonate perception machines. Nature,2007,448:659–660.
    [27] Ellis C, Karafyllidis I, Wasternack C, et al.The Arabidopsis mutant cev1links cells wallsignaling to jasmonate and ethylene responses. Plant Cell,2002,14,1557–1566.2.
    [28] Ko JH, Kim JH, Jayanty SS, et al. Loss of function of COBRA, a determinant of oriented cellexpansion, invokes cellular defence responses in Arabidopsis thaliana. J Exp Bot,2006,57:2923–2936.
    [29] Koda Y. Possible involvement of jasmonate in various morphogenic events. Physiol Plant,1997,100:639–646.
    [30] Genre A, Bonfante P. Epidermal cells of a symbiosis-defective mutant of Lotus japonicusshow altered cytoskeleton organization in the presence of a mycorrhizal fungus.Protoplasma,2002,219:43–50.
    [31] Bi HH, Song YY, Zeng RS. Biochemical and molecular responses of host plants tomycorrhizal infection and their roles in plant defence. Allelopathy,2007,20:15–27.
    [32] Schliemann W, Ammer C, Strack D. Metabolite profiling of mycorrhizal roots of Medicagotruncatula. Phytochemistry,208,69:112–146.
    [33] Dixon RA, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defence–agenomics perspective. Mol Plant Pathol,2002,3:371–390.
    [34] Kape R, Wex K, Parniske M, et al. Legume root metabolites and VA-mycorrhizadevelopment. Plant Physiol,1992,141:54–60.
    [35] Scervino JM, Ponce MA, Erra BR, et al. The effect of flavones and flavonols on colonizationof tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. CanMicrobiol,2007,53:702–709.
    [36] Gundlach H, Müller M, Kutchan T, et al. Jasmonic acid is a signal transducer inelicitor-induced plant cell cultures. Proc Natl Acad Sci USA,1992,89:2389–2393.
    [37] Naoumkina M, Farag MA, Sumner LW, et al. Different mechanisms for phytoalexininduction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci USA,2007,104:17909–17915.
    [38]林先贵,顾希贤. VA菌根真菌对石刁柏生长的影响.植物学报,1992,34:551-555.
    [39]赵士杰,李树林.VA菌根促进韭菜增产的生理基础研究.土壤肥料,1993,4:38-40.
    [40]林先贵.VA菌根真菌在经济植物中的作用.土壤学进展,1994,22:48-51.
    [41]赵士杰,李树林.VA菌根促进青椒生长的生理研究.华北农学报,1994,9:81-86.
    [42]贺忠群,贺超兴,张志斌,等.不同基质接种丛枝菌根真菌对番茄生长及PA L、P PO酶活的影响.农业工程学报,2005,21:12.
    [43] Dumas E, Gianinazzi PV, Gianinazzi S. Production of new soluble proteins duringVAendomycorrhiza formation. Agriculture, Ecosystems and Environment,1989,29:111-114.
    [44]程永雄,庄明富,杜金池.内生菌根菌Glomus clarum应用在洋香瓜生产上之效益评估.中华农业研究,1993,42:81-84.
    [45]赵士杰,李树林. VA菌根促进青椒生长的生理研究.华北农学报,1994,9:81-86.
    [46]雷泽周,周柏玉,李水源. VA菌根对菜豆磷素营养的效应.西南农业大学学报,1989,11:429-432.
    [47]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控.植物生理学通迅,1988:2599-262.
    [48]张美庆,汪恩涛,周枫,等. VA菌根对番茄、青椒生长发育的影响.北京农业科学,1987:27-29.
    [49]贺超兴张志斌,王怀松.丛枝菌根真菌对番茄苗期生长及矿质营养吸收的作用.中国蔬菜,2006:9-11.
    [50] Copeman RH, Martin CA, Stutz JC. Tomato growth in response to salinity and mycorrhizalfungi from saline or non-saline soils. Hort science,1996,31:341-344.
    [51]贺忠群,贺超兴,张志斌,等.丛枝菌根真菌对番茄渗透调节物质含量的影响.园艺学报,2007,34:147-152.
    [52]王百坡.气象因素与桃授粉、受精和坐果之间的关系.园艺学报,1989,11:11-16.
    [53]贺忠群,贺超兴,张志斌,等.不同丛枝菌根真菌对番茄生长及相关生理因素的影响.沈阳农业大学学报,2006,37:308-312.
    [54] Akaraki GM, Hammad R, Rusan M. Response of two tomato cultivars differing in salttolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrihiza,2001,11:43-47.
    [55]朱娟,张树生,李岳峰,等.番茄菌根根际土壤产几丁质酶细菌的分离及其几丁质酶活性研究.南京农业大学学报,2009,32:78282.
    [56]刘润进,裘维藩.内生菌根真菌(VAM)诱导植物抗病性研究的新进展.植物病理学报,1994,24:1-4.
    [57]朱红惠,姚青,李浩华,等. AM真菌对青枯菌的抑制和对酚类物质的影响.微生物学通报,2004,31:1-5.
    [58] Zhu HH, Yao Q. Localized and systemic increase of phenols in tomato roots induced byGlom us versiforme inhibits ralston iasolanacea rum. Phytopathology,2004,152:537-542.
    [59]赵贵林,陈强,胡国霞,等.水稻脯氨酸代谢关键酶对水分胁迫的响应.干旱地区农业研究.2011,5:81-84.
    [60]贺忠群,贺超兴,张志斌,等.丛枝菌根真菌对番茄渗透调节物质含量的影响.园艺学报,2007,34:147–152.
    [61]朱娟,张树生,李岳峰,等.番茄菌根根际土壤产几丁质酶细菌的分离及其几丁质酶活性研究[J].南京农业大学学报,2009,32:78282.
    [62]胡能书.同工酶技术及其应用.长沙:湖南科学技术出版社,1985,74.
    [63]赵旌旌,丁宝莲.现代植物生理学指南.北京:科学出版社,1999,265-266.
    [64]刘爱荣,张远兵,叶梅荣,等.外源水杨酸对盐胁迫下大豆抗氧化能力的影响[J].安徽科技学院学报,2006,20:8-11.
    [65]齐付国,,陈明灿,王秀云.水杨酸对小麦幼苗抗寒性的影响.安徽农业科学,2008,36:5732-5733.
    [66] Mahdavian K M, Kalantari M, Ghorbanli, et al. The effects of salicylic acid on pigmentcontents in ultraviolet radiation stressed pepper plants.Biolgia Plantarum,2008,52:170-172.
    [67]王松华,,储卫红,周正义,等.水杨酸对小麦镉毒害的缓解效应.2005,24:15-17.
    [68] Li C, Williams MM, Loh YT, et al. Resistance of cultivated tomato to cell content-feedingherbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol,2002a,130:494–503.
    [69] Howe GA, Ryan CA. Suppressors of systemin signaling Identify genes in the tomato woundresponse pathway. Genetics,1999,153:1411–1421.
    [70] Li L, Li C, Lee GI, et al. Distinct roles for jasmonic acid synthesis and action in the systemicwound response of tomato. Proc Natl Acad Sci USA,2002b,99:6416–6421.
    [71] Delker C, Stenzel I, Hause B, et al. Jasmonate biosynthesis in Arabidopsisthaliana-Enzymes, products, regulation. Plant Biol,2006,8:297-306.
    [72]于建新,李敏,刘润进.菌根真菌与植物激素相互作用研究进展.青岛农业大学学报(自然科学版),2009,26:4-7.
    [73]胡国霞.PEG预处理对水分胁迫下水稻抗氧化系统的影响[硕士学位论文].沈阳师范大学,2011.
    [74]田霞.水稻叶片生理生化指标与水稻抗早性关系的研究[硕士学位论文].华中农业大学,2010.
    [75]刘畅.内源水杨酸改变的拟南芥突变体对盐胁迫应答的研究[硕士学位论文].沈阳师范大学,2011.
    [76] Li x, Si L T.Study on Inherited Characteristic of Resistance to Fusarium Wilt in cucumbers.Agricultural science&technology and equipment.2008:9-1.
    [77]刘爱荣,陈双臣,刘燕英,等.丛枝菌根真菌对低温下黄瓜幼苗光合生理和抗氧化酶活性的影响.生态学报,2011,12:3497-3503.
    [78]王彬,李辉,徐丽娟,等.丛枝菌根真菌对番茄信号物质的诱导效应.菌物学报,2010,29:561-568.
    [79]王彬,张金政,刘新,等.丛枝菌根真菌诱导植物信号物质研究进展.微生物学通报,2010,2:109-114.
    [80]卢静婵,王明元,姜攀,等.菌根共生体中植物信号物质的产生及其作用机制.华侨大学学报(自然科学版),2012,03:291-296.
    [81]于建新,,李敏,刘润进.菌根真菌与植物激素相互作用研究进展.青岛农业大学学报(自然科学版),2009,01:4-7.
    [82] Hohnjec N, Viewg MF, Puhler A, et al. Overlaps in the transcriptional profiles of Medicagotruncatula roots inoculated with two different Glomus fungi provide insights into the geneticprogram, activated during arbuscular mycorrhiza.Plant Physiology,2005,137:1283-1301.
    [83] Traw MB, Kim J, Enright S, et al. Negative cross-talk between salicylate andjasmonate-mediated pathways in the wassilewskiha ecotype of arabidopsis thaliana[J].Molecular Ecology,2003,12:1125-1135.
    [84] Traw MB, Dawsint E. Differential induction of trichome by three herbivores of blackmustard.Oecologia,2002,131:526-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700