连作条件下马铃薯根际微生态环境的变化及其生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对马铃薯生产中存在的因长期连作引起的病虫害严重以及产量持续下降等问题,本研究于2010年在甘肃景泰条山农场马铃薯种植区域内选择不同连作年限的相邻地块进行田间试验,以轮作地块为对照(即连作0年,用L0表示),其余依次为连作1年(L1)、2年(L2)、3年(L3)、4年(L4)和5年(L5),从根际微生态的角度出发,采用传统平板培养和PCR-DGGE指纹图谱技术相结合的方法,研究马铃薯连作条件下以根际微生物群落组成、根际细菌和真菌种群结构的变化、以及根系生理变化为特征的根际微生态环境的改变,以及根际微生态环境改变后对植株保护酶活性、丙二醛含量、植株主要生物学性状和产量的影响等生物效应,以揭示马铃薯连作障碍的可能机理,为马铃薯连作障碍的综合防控提供理论依据。主要研究结果如下:
     1.连作对马铃薯根际微生态环境的影响
     马铃薯根际可培养微生物的数量对连作的反应程度明显不同,细菌对连作的反应较敏感,放线菌反应稍滞后。随着连作年限的增加,马铃薯根际可培养细菌和放线菌数量明显减少,真菌数量显著增加,细菌与真菌数量的比值(B/F值)随连作年限的增加而减小,从轮作L0的114.22×10~3降低到连作5年L5的1.08×10~3,马铃薯连作使根际微生物群落组成由“细菌”型向“真菌”型转变。
     DGGE指纹图谱结果显示,马铃薯连作使根际土壤中细菌和真菌的种群结构均发生显著变化:马铃薯连作使根际土壤中细菌优势种群的个体数明显减少,其中对照处理L0条带数量最多,有68个操作分类单元(OTU),其它处理的条带数量均少于L0,特别是连作3年以后,条带数量减少的更明显,连作3-5年分别比对照(轮作)处理减少了19.12%、41.18%和29.41%;真菌优势种群的个体数明显增多,连作1-5年(L1-L5)处理的操作分类单元(OTU)分别比对照处理增加了38%、38%、31%、46%和77%。由此可见,马铃薯连作造成根际土壤微生物的选择性适应,出现某些种群富集,而某些种群数量降低的现象。聚类分析结果表明,连作马铃薯根际土壤细菌和真菌种群结构的相似性在相邻的连作年限间都比较高,然而随着连作年限的增加,各处理的相似性越来越低。
     从真菌DGGE条带的测序结果来看,随着连作年限的增加,马铃薯根际土壤土传病害病原菌Fusarium oxysporum和Fusarium solani数量明显增加,而Chaetomium globosum作为一种生防菌,至连作5年,数量明显减少,连作使根际土壤中土传病害病原菌种群过渡成为优势微生物种群。
     马铃薯连作使根系总吸收面积和活跃吸收面积均明显降低,与对照L0相比,在现蕾期,L2和L4根系总吸收面积分别下降了26.07%和51.18%,根系活跃吸收面积分别下降了17.14%和48.57%;在块茎膨大期,L2和L4处理根系总吸收面积分别下降了27.10%和80.06%,根系活跃吸收面积分别下降了32.68%和85.37%,且处理间均表现出显著差异。根系活力也表现出降低的趋势,在现蕾期,根系活力大小表现为L2>L0>L4,且处理间差异显著;在块茎膨大期则表现为L0>L2>L4,与L0相比,L2和L4处理根系活力分别下降了5.25%和69.29%,说明在轻度连作的情况下,马铃薯根系的活力并未表现出显著性的降低,甚至在营养生长时期有所上升。由此可见,连作造成了马铃薯根际微生态系统失衡,导致根际微生态环境恶化。
     2.连作对马铃薯植株的生物效应研究
     马铃薯叶片SOD、POD和CAT活性都随着生育期的推进而升高。在现蕾期,随着连作年限的增加,叶片SOD和POD活性随之升高,CAT活性先升高后降低,但三者的连作处理均高于对照;至块茎膨大期,叶片SOD和CAT活性都表现为:连作2年>连作4年>对照,各处理间差异不显著,POD活性先降低后升高,但连作处理均显著低于对照。叶片中MDA含量随着随生长发育的推进而升高,并且随连作年限的增加而增加,叶片细胞质膜的过氧化作用加重。
     马铃薯连作造成植株生长发育受阻,外观表现为植株矮小,单株主茎数减少,各器官生物量均随着连作年限的增加而降低,对单株结薯数影响不大,但是却显著降低了植株的单株结薯重量,最终表现为块茎产量大幅度降低。
     综上所述,马铃薯连作使根际微生物群落组成及种群结构发生明显变化,特别是根际土壤中土传病害病原菌大量增加,生防菌数量减少,根系活力和吸收面积显著降低,造成根际微生态系统失衡,根际微生态环境恶化,进而影响植株正常的代谢活动,使马铃薯生长发育受阻,最终导致块茎产量大幅度下降。
Long-time continuous cropping potato has been one of the big problems thatrestrict the yield and serious pests and diseases, a field experiment was carried out inJingtai Tiaoshan Farm in Gansu Province in2010, the rotation cropping field is CK(continuous cropping potato for zero years, L0), the rest is the continuous croppingpotato from one year to five years (L1-L5), starting from the point of view of therhizosphere micro-ecological, using the PCR-DGGE molecular fingerprintingtechniques to study rhizosphere microbial community composition, bacteria andfungal population structure changes and root physiological activity change are thecharacteristic rhizosphere micro-ecological environment change, and after therhizosphere micro-ecological environment change, the leaf protective enzymesactivity and malondialdehyde content, the biological traits of plants and yield in thecondition of continuous cropping potato. A preliminary study on the effect and themechanism of potato continuous cropping obstacles to provide a theoretical basis toreduce the potato cropping obstacles. The main results were as follows:
     1. Effects of potato continuous cropping on the rhizosphere micro-ecological
     The number of culturable rhizosphere microorganisms had significantlydifferent response for potato continuous cropping. bacterial response was sensitive,actinomycetes response was a little lag. With the continuous cropping yearsincreasing, the number of bacteria and actinomycetes decreased in the potatorhizosphere soil, while the number of fungi increased significantly; The ratio ofbacteria and fungi (B/F-value) decreased with the continuous cropping yearsincreasing, from rotation cropping L0for114.22×10~3to continuous cropping potatofor5years L5for1.08×10~3, potato continuous cropping made the rhizosphere fromthe “bacterial” type to “fungi” type.
     The results for DGGE were as follows, continuous cropping potato maderhizosphere bacteria and fungi population structure change significantly: continuouscropping potato significantly reduced the numbers of individuals of the bacteriadominant populations in rhizosphere soil,the numbers of visible bands were the most in L0, which were68the operational taxonomic unit (OTU), other treatmentswere much less than L0, the numbers of visible bands were significantly reducedafter continuous cropping three years, compared with CK, continuous cropping three,four and five years were respectively reduced19.12%,41.18%and29.41%.Continuous cropping significantly increased the numbers of individuals of the fungidominant populations, compared with CK, the OTU of continuous croppingtreatments from one to five years were increased by38%,38%,31%,46%and77%respectively. All the above illustrated that continuous cropping potato causedselective adaptation of rhizosphere soil microorganisms, which enriched somepopulations or reduced certain populations. The cluster analysis showed that, thesimilarity of bacterial and fungal population structure were higher in the adjacentcontinuous cropping years, with the continuous cropping years increasing, however,the similarity of each treatment is becoming less and less.
     From the sequencing results of the fungal DGGE bands, with the increase ofcontinuous cropping years, the number of the potato rhizosphere soil-bornepathogens Fusarium oxysporum and Fusarium solani increased significantly, whileChaetomium globosum, as a biocontrol species, was reduced significantly incontinuous cropping five years. Potato continuous cropping caused pathogen fungalpopulations become the dominant microbial populations in rhizosphere.
     The total absorbing area and actively absorbing area of roots were significantlyreduced by the continuous cropping potato. Compared with L0, the total absorbingarea of roots of L2and L4were respectively reduced26.07%and51.18%, and theactively absorbing area of roots were respectively reduced17.14%and48.57%inthe budding stage. The total absorbing area of roots were respectively reduced27.10%and80.06%, the actively absorbing area of roots were respectively reduced32.68%and85.37%in the tuber expansion stage, and the difference was significantbetween treatments. And root vigor displayed a decreasing trend, in the buddingstage, the results are as follows: L2>L0>L4, and the difference was significantbetween treatments. In the tuber expansion stage, the results are as follows: L0>L2 >L4, compared with L0, L2and L4were respectively reduced5.25%and69.29%.Therefore, when the continuous cropping was mild, root vigor of potato had notsignificantly been reduced, even which was increased in the nutritional growthperiod.
     2. Effects of potato continuous cropping on the plant biological roles
     Potato leaf SOD, POD and CAT activity were increased with the advance of thegrowth period. In the budding stage, SOD and POD activity were both increasedwith the continuous cropping years increasing, CAT activity first was increased andthen was decreased. To the tuber enlargement stage, leaf SOD and CAT activitieswere as follows: continuous cropping for three years>continuous cropping for fiveyears>CK, and the difference was not significant between treatments, POD activityof continuous cropping treatments were less than CK. MDA content was increasedwith the advance of the growth period, and which was also increased with thecontinuous cropping years increasing, and the cell membrane peroxidation effect ofthe leaf was increased.
     Growth of potato was restraibed under the condition of continuous cropping,such as plant short, Per plant main stems were reduced, the biomass of each organwere decreased with the continuous cropping years increasing, The tuber number ofper plant was little affected, however, per plant tuber weight was significantlyreduced, the ultimate expression was that the tuber yield had a significant reduction.
     In conclusion, the potato rhizosphere microorganisms community compositionand population structure had a change significantly under the condition ofcontinuous cropping, the number of the potato rhizosphere soil-borne diseasepathogens was significantly increased, but the number of biocontrol strain wasreduced obviously, the rhizosphere micro-ecological environment destruction, whichhindered the normal metabolic activity of plant system, the growth of potato wasrestrained eventually, the ultimate result was that the tuber yield had a significantreduction.
引文
[1]金黎平,屈冬玉,谢开云,等.我国马铃薯种质资源和育种技术研究进展[J].中国种业,2003,24(5):98-100.
    [2]王树安.作物栽培学各论(北方本)[M].北京:中国农业出版社,1995:239.
    [3]金黎平.马铃薯优良品种及丰产栽培技术[J].中国劳动社会保障出版社,2005,31(l):86-87.
    [4]屈冬玉,卞春松,金黎平,等.实施西部开发战略,培育马铃薯支柱产业.面向21世纪的中国马铃薯产业(陈伊里主编),哈尔滨,哈尔滨工程大学出版社,2000,1-9.
    [5]李福,岳云.甘肃省马铃薯产业集群发展思路[J].作物杂志,2011,4:11-15.
    [6]Awuah R T, Lorbeer J W. Methyl bromide and steam treatment of an organic soil for control ofFusarium yellows of celery[J].Plant Disease,1991,75(3):123-125.
    [7]陈晓红,邹志荣.温室蔬菜栽培连作障碍研究现状及防治措施[J].陕西农业科学.2002,5(12):16-20.
    [8]Soon Y K, Arshad M A. Effects of cropping systems on nitrogen, phosphorus and potassiumforms and soil organic carbon in a Gray Luvisol[J]. Biology and Fertility of Soils,1996,22(1):184-190.
    [9]Amrani M, Westfall D G, Moughli L. Phosphorus management in continuous wheat andwheat-legume rotation[J]. Nutrient Cycling inAgro ecosystems.2001,59(1):19-27.
    [10]吕卫光,余廷园,诸海涛,等.黄瓜连作对土壤理化性状及生物活性的影响研究[J].中国生态农业学报,2006,14(2):119-121.
    [11]韩丽梅,邹永久,鞠会艳,等.大豆连作微量元素营养研究(连作对锌营养的影响)[J].大豆科学,1998,17(2):65-72.
    [12]孙磊.不同连作年限对大豆根际土壤养分的影响[J].土壤肥料科学,2008,24(12):266-269.
    [13]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1005-1008.
    [14]李好琢,霍建勇.蔬菜作物的连作障碍发生机理及生态育种[J].北方园艺,2005,(3):10-11.
    [15]刘晓军,陈竹君,张英莉,等.不同栽培年限日光温室土壤养分累积特性研究[J].土壤通报,2009,40(2):285-289.
    [16]杜新民,吴忠红,张永清,等.不同种植年限日光温室土壤盐分和养分变化研究[J].水土保持学报,2007,21(2):78-80.
    [17]刘建国,张伟,李彦斌,等.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响[J].中国农业科学,2009,42(2):725-733.
    [18]张辰露,孙群,叶青.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034.
    [19]喻敏,余均沃,曹培根,等.百合连作土壤养分及物理性状分析[J].土壤通报,2004,35(3):377-379.
    [20]刘淑英,李小刚,王平.兰州市安宁区保护地蔬菜施肥状况的调查[J].甘肃农业大学学报,1998,33(2):190-193.
    [21]谢洪刚,李坤.果树连作障碍机理及控制途径[J].辽宁农业职业技术学院学报,2008,10(4):6-8.
    [22]于广武,许艳丽,刘晓冰,等.大豆连作障碍机制研究初报[J].大豆科学,1993,12(3):237-243.
    [23]林先贵,陈瑞蕊,胡君利.土壤微生物资源管理、应用技术与学科展望[J].生态学报,2010,30(24):7029-7037.
    [24]许艳丽.大豆重迎茬研究[M].黑龙江:哈尔滨工程大学出版社,1995,12-16.
    [25]封海胜,张思苏,万书波,等.土壤微生物与连、轮作花生的相互效应研究[J].莱阳农学院学报,1995,(12):97-101.
    [26]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-565.
    [27]甄文超,代丽,胡同乐,等.连作草莓土壤微生物区系动态的研究[J].河北农业大学学报,2005,28(3):70-72,87.
    [28]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1005-1008.
    [29]胡江春,王书锦.大豆连作障碍研究Ⅰ.大豆连作紫青霉菌的毒素作用研究[J].应用生态学报,1996,7(4):396-400.
    [30]胡江春,薛德林,王书锦.大豆连作障碍研究Ⅱ.大豆连作减产机理及对土壤紫青霉菌毒素的调控对策[J].应用生态学报,1998,9(4):429-434.
    [31]陈宗泽,殷勤燕,戴秉丽,等.连作大豆土壤病原菌的分离及其致病性的研究[J].吉林农业科学,1999,24(2):36-39.
    [32]吴凤芝,刘德,奕非时.土壤连作年限对黄瓜产量及品质的影响[J].东北农业大学学报,1999,30(3):245-248.
    [33]胡元森,昊坤,刘娜,等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学,2004,37(10):1521-1526.
    [34]金扬秀,谢关林,孙祥良,等.大蒜轮作与瓜类枯萎病发病的关系[J].上海交通大学学报(农业科学版),2003,21(l):9-12.
    [35]赵尊练,史联联,阎玉让,等.克服线辣椒连作障碍的施肥方案研究[J].干旱地区农业研究,2006,24(5):77-81.
    [36]邢勇,段晓燕.植物的自毒作用[J].生物学教学,2002,27(11):6-7.
    [37]Singh H P, Batish D R, Kohli R K. Autotoxicity: Concept, Organisms, and EcologicalSignificance[J]. Critical Reviews in Plant Sciences,1999,18:757-772.
    [38]Yakle G A, Cruse R M. Corn Plant residue age and placement effects upon early corngrowth[J]. Canadian Journal of Plant Science,1983,63:871-877.
    [39]Yakle G A, Cruse R M. Effects of fresh and decomposing corn plant residue extracts on cornseedling development[J]. Soil Science Society ofAmerica Journal,1984,48:1143-1146.
    [40]Martin V L, McCoy E L, Dick W A. Allelopathy of crop residues influences corn seedgermination and early growth[J].Agronomy Journal,1990,82:555-560.
    [41]Kimber R W L. Phytotoxicity from plant residues Ⅱ. The effects of time of rotting of strawfrom grasses and legumes on the growth of wheat seedlings[J]. Plant and Soil,1973,38:347-361.
    [42]Young C C, Zhu-Thorne L R, Waller G R. Phytotoxiec Potential of soils and wheat straw inrice rotation cropping systems of subtropical Taiwan[J]. Plant and Soil,1989,120:95-101.
    [43]Guenzi W D, McCalla T M. Phytotoxic substances extracted from soil[J]. Soil ScienceSociety ofAmeriea Journal,1966,30:214-216.
    [44]Chung I M, Miller D A. Nature herbicide potential and alfafa residue on selected weedspecies[J]. Agronomy Journal,1995,87:920-925.
    [45]Hall M H, Henderlong P R. Alfalfa autotoxic fraction characterization and initialseparation[J]. Crop Science,1989,29:425-428.
    [46]Abdul-Rahman AA, Habib S A. Allelopathic effect of alfalfa(Medicago stavia)on bladygrass(Imperata cylindrica)[J]. Journal of Chemical Ecology,1989,15:2289-2300.
    [47]Miller R W, Kleiman R, Powell R G, et al. Germination and growth inhibitors of alfalfa[J].Journal of Natural Products,1988,51:328-330.
    [48]Miller DA. Allelopathy in forage crop systems[J].Agronomy Journal,1996,88:854-859.
    [49]王倩.西瓜连作障碍中的自毒作用及酚酸类物质作用机理的研究[D].中国农业大学博士学位论文,2002.
    [50]Young C C. Autointoxication in root exudates of Asparagus officinalis L.[J]. Plant and Soil,1984,84:247-253.
    [51]Young C C, Chou C H. Autointoxication in residues of Asparagus officinalis L.[J]. Plant andSoil,1985,85:385-393.
    [52]Shafer W E, Garrison S A. Allelopathic effects of soil in corporate asparagus roots on lettuce,tomato and asparagus seedling emergence[J]. Hortscience,1986,21:82-84.
    [53]Hartung A C, Nair M G, PutnamAR. Isolation and characterization of phytotoxic compoundsfrom asparagus (Asparagus officinalis L.) roots[J]. Journal of Chemical Ecology,1990,16:1707-1718.
    [54]Miller H G, Ikawa M, PeirceL C. Caffeic acid identified as an inhibitory compounds inasparagus root filtrate[J]. HortScienee,1991,26:1525-1527.
    [55]王芳,王敬国.连作对茄子苗期生长的影响研究[J].中国生态农业学报,2005,13:79-81.
    [56]林文雄,熊君,周军建,等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报,2007,15(4):1-8.
    [57]李振高,潘映华,李良谟.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报,1993,30(1):1-8.
    [58]Bais H P, Walker T S, Schweizer H P, et al. Root specific elicitation and antimicrobial activityof rosmarinic acid in hairy root cultures of Ocimum basilicum[J]. Plant Physiology andBiochemistry,2002,40:983-995
    [59]胡开辉,罗庆国,汪世华,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2006,17(6):1060-1064.
    [60]游佩进,王文全,张媛,等.三七连作土壤对三七、莴苣的化感作用[J].西北农业学报,2009,18:139-142.
    [61]Segarra G, Jauregui O, Casanova E, et al. Simulataneous quantitative LC-ESI-MS/MSanalyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus underbiotic stess[J]. Phytochemistry,2006,67:395-401.
    [62]Rasmann S, Kollner T G, Degenhardt J, et al. Recruitment of entomopathogenic nematodesby insect-damaged maize toots[J]. Nature,2005,434:732-737.
    [63]Turlings T C J, Ton J. Exploiting scents of distress: the prospect of manipulatingherbivore-induced plant odours to enhance the control of agricultural pests[J]. CurrentOpinion in Plant Biology.2006,9:421-427.
    [64]Baldwin I T. Halitschke R, Paschold A, et al. Volatile singaling in plant-plant interactions:“Talking tress” in the genomics era[J]. Science,2006,311:812-815.
    [65]Van Dijk K, Nelson E B. Fatty acid competition as a mechanism by which Enterobactercloacae suppresses Pythium utlimum sporangium germination and damping-off[J]. Appliedand Environmental Microbiology,2000,66:5340-5347.
    [66]孙权,陈茹,宋乃平,等.宁南黄土丘陵区马铃薯连作土壤养分、酶活性和微生物区系的演变[J].水土保持学报,2010,24(6):208-212.
    [67]胡宇,郭天文,张绪成.旱地马铃薯连作对土壤养分的影响[J].安徽农业科学,2009,37(12):5436-5439,5610.
    [68]赵艳,张晓波.影响植物根际微生物区系之因素研究进展[J].中国农学通报,2007,23(8):425-430.
    [69]白艳茹.马铃薯连作对根际土壤微生物数量和土壤酶活性的影响[D].内蒙古农业大学硕士学位论文,2010.
    [70]马琨,张丽,杜茜,等.马铃薯连作栽培对土壤微生物群落的影响[J].水土保持学报,2010,24(4):229-233.
    [71]白艳茹,马建华,樊明寿.马铃薯连作对土壤酶活性的影响[J].作物杂志,2010,3:34-36.
    [72]徐瑞富,任永信.连作花生田土壤微生物群落动态与减产因素分析[J].农业系统科学与综合研究,2003,19(1):33-38.
    [73]王拱辰.常见镰刀菌鉴定指南[M].北京:中国农业科技出版社,1996.
    [74]牛秀群,李金花,张俊莲.甘肃省干旱灌区连作马铃薯根际土壤中镰刀菌的变化[J].草业学报,2011,20(4):236-243.
    [75]裴国平,王蒂,张俊莲,等.连作马铃薯对抗性酶及生物学特性变化的研究[J].湖南农业科学2010,(11):34-37.
    [76]张福锁,申建波,冯固.根际生态学—过程与调控[M].北京:中国农业大学出版社,2009.
    [77]焦晓丹.利用RAPD技术研究设施不同种植年限土壤微生物多样性[D].东北农业大学,2004.
    [78]吴凤芝,赵凤艳.根系分泌物与连作障碍[C].东北农业大学报,2003,4(l):114-118.
    [79]魏秀翠,杨金明,廖开志,等.连作障碍原因及综合防治措施[J].上海蔬菜,2009,5(2):61-62.
    [80]喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000,3l(1):124-126.
    [81]郑良永,胡剑非,林昌华,等.作物连作障碍的产生及防治[J].热带农业科学,2005,25(2):58-62.
    [82]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,2007,40(10):2274-2280.
    [83]李刚,文景芝,吴凤芝,等.连作条件下设施黄瓜根际微生物种群结构及数量消长[J].东北农业大学学报,2000,31(3):241-247.
    [84]李坤,郭修武,孙英妮.葡萄连作对土壤细菌和真菌种群的影响[J].应用生态学报,2009,20(12):3109-3114.
    [85]赵萌,李敏,王淼焱.西瓜连作对土壤主要微生物类群和土壤酶活性的影响[J].微生物学通报,2008,35(8):1251-1254.
    [86]李春格,李晓鸣,王敬国.大豆连作对土体和根际微生物群落功能的影响[J].生态学报,2006,26(4):1144-1150.
    [87]邹莉,袁晓颖,李玲.连作对大豆根部土壤微生物的影响研究[J].微生物学杂志,2005,25(2):27-30.
    [88]苗淑杰,乔云发,韩晓增.大豆连作障碍的研究进展[J].中国生态农业学报,2007,15(3):203-206.
    [89]张重义,陈慧,杨艳会,等.连作对地黄根际土壤细菌群落多样性的影响[J].应用生态学报,2010,21(11):2843-2848.
    [90]赵春芳,刘浩,余龙江.连作对麦冬根际土壤细菌群落的影响[J].微生物学通报,2010,37(4):487-491.
    [91]郝慧荣,李振方,熊君.连作怀牛膝根际土壤微生物区系及酶活性的变化研究[J].中国生态农业学报,2008,16(2):307-311.
    [92]甘肃年鉴编委会.甘肃年鉴[M].北京:中国统计出版社,2006:177.
    [93]鲍士旦.土壤农化分析[M].(第3版).北京:中国农业出版社,2005.
    [94]王爱国,罗光华,邵从本.大豆种子超氧物歧化酶的研究[J].植物生理学报,1983,9(1):77-84.
    [95]Gisnnopolitis C, Nries S K. Superoxide dismutase occurrence in higher plants[J]. PlantPhysiology,1977,59:309.
    [96]Amalo K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase andguaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbateperoxidase implants[J]. Plant Cell Physiology,1994,35:497-504.
    [97]张宪政.作物生理研究法[M].北京:农业出版社,1992:131-207.
    [98]胡江春,薛德林,王书锦.大豆连作障碍研究Ⅲ.海洋放线菌MB-97促进连作大豆增产机理[J].应用生态学报,2002,13(9):1095-1098.
    [99]王奇赞,徐秋芳,姜培坤,等.天目山毛竹入侵阔叶林后土壤细菌群落16S rDNA V3区片段PCR的DGGE分析[J].土壤学报,2009,46(4):662-669.
    [100]Gao K X, Mendgen K. Seed-transmitted beneficial endophytic Stagonospora sp. canpenetrate the walls of the root epidermis, but does not proliferate in the cortex, ofPhragmites australis[J]. Canadian Journal of Botany,2006,84(6):981-988.
    [101]周雪英,邓西平.旱后复水对不同倍性小麦光合及抗氧化特性的影响[J].西北植物学报,2007,27(2):0278-0285.
    [102]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922-928.
    [103]孙彩霞,刘志刚,荆艳东.水分胁迫对玉米叶片关键防御酶系活性及其同工酶的影响[J].玉米科学,2003,11(1):63-66.
    [104]田婧,郭世荣,孙锦,等.外源Spd对高温胁迫下黄瓜幼苗叶片膜脂过氧化及质子泵活性的影响[J].应用生态学报,2011,22(12):3252-3258.
    [105]刘爱荣,陈双臣,刘燕英,等.丛枝菌根真菌对低温下黄瓜幼苗光合生理和抗氧化酶活性的影响[J].生态学报,2011,31(12):3497-3503.
    [106]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [107]Qu X H, Wang J G. Effect of amendments with different phenolic acids on soil microbialbiomass, activity, and community diversity[J]. Applied soil Ecology,2008.39:172-179.
    [108]李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,37(3):563-565.
    [109]吴凤芝,王伟.大棚番茄土壤微生物区系研究[J].北方园艺,1999(3):1-2.
    [110]胡元森,吴坤,李翠香.黄瓜连作对土壤微生物区系影响Ⅱ—基于DGGE方法对微生物种群的变化分析[J].中国农业科学,2007,40(10):2267-2273.
    [111]汪立刚,王玉,华天懋,等.土壤灭菌对大豆的增产效果及其机理探讨[J].西北农业学报,2001,10(1):67-71.
    [112]季尚宁,肖玉珍,田慧梅,等.土壤灭菌对连作大豆生长发育的影响[J].东北农业大学学报,1996,27(4):326-329.
    [113]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [114]闫飞,杨振明,邹永久.大豆连作障碍中的生化互作效应[J].大豆科学,1998,17(2):147-152.
    [115]牛苗苗,李娟,杜家方,等.地黄源库关系的变化及其与连作障碍的关系[J].生态学杂志,2011,30(2):248-254.
    [116]陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18(2):2755.
    [117]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    [118]张树生,杨兴明,茆泽圣,等.连作土灭菌对黄瓜生长和土壤微生物区系影响[J].生态学报,2007,27(5):1809-1816.
    [119]柯文辉.烟草连作障碍的根际微生态研究[D].福建农林大学,2009.
    [120]赵怀勇,何新春,张红菊,等.整薯播种对马铃薯生长发育及产量和品质的影响[J].甘肃农业大学学报,2009,44(3):53-57.
    [121]Yang C H, David E Crowley. Rhizosphere microbial community structure in relation to rootlocation and plant iron nutritional status[J]. Applied and Environmental Microbiology,2000,66(1):345-351.
    [122]Van Bruggen A H C, Semenov A M, Zelenev V V. Wavelike distributions of microbialpopulations along an artificial root moving through soil[J]. Microbial Ecology,2000,40:250-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700