宫颈癌细胞细胞周期光谱信息研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞是生命科学研究的基石,一切生命的关键问题都要到细胞中去寻找。细胞分裂可说是生命起源最基本也最重要的过程,细胞周期则是细胞分裂全部生理过程的综合体现,普遍存在于高等生物中。大量研究表明,细胞周期调控异常是肿瘤发生的主要机制,所以细胞周期理论对肿瘤的预防和临床诊治具有重要的指导意义。
     随着光学与生命科学的交叉,对细胞的光信息研究工作成为了生命科学的一个重要领域,当然光学技术和细胞研究的结合不可避免会产生各种各样的问题,利用光谱技术对细胞周期进行研究则是其中一个较为突出的问题。总结起来,从国内外学者的研究中,可以看出对于细胞在细胞周期中的光谱研究主要存在以下问题:
     ①研究波段单一。几乎所有的研究机构和研究者均是在从红外光谱角度入手对细胞在细胞周期过程中红外波段的光谱变化进行研究,而没有充分利用到现有的丰富的光谱技术和手段以对细胞周期进行更为全面的研究。
     ②分析方法复杂。生物细胞在红外波段有丰富的信息,是因为几乎生物细胞内所有分子在红外波段均有光谱体现,这就使得生物细胞的红外光谱相互混叠,难以获取有用的信息。这也使得对细胞内特定分子的光谱跟踪变得十分的困难。
     ③很多与细胞周期光谱研究的关键问题没有明确的说明和解决。如进行细胞周期光谱研究的样品获取问题,进行细胞周期光谱研究的细胞样品应该是一种什么样的同步化水平,细胞周期光谱模型的建立方法等等这些问题均未得到解决。本文则是针对现有问题,利用紫外-可见光光谱分析技术和荧光光谱技术操作简便、分析快速等优点提取活体肿瘤细胞在细胞周期不同时相的光谱特征,在以下几个方面开展工作:
     ①设计并实施HeLa细胞同步化处理方案
     根据细胞同步化原理及处理方法,提出了宫颈癌细胞HeLa细胞株进行细胞同步化的处理方案以及进行光谱实验所需要达到的细胞同步化水平,以获取满足实验要求的同步化于细胞周期各时相(G1期,S期,G2期和M期)的HeLa细胞样品。
     ②设计实验以获取HeLa细胞在细胞周期各时相的紫外—可见吸收光谱
     设计了同步化后处于细胞周期各时相的HeLa细胞的紫外-可见光吸收光谱测量方案,进行HeLa细胞样品的紫外-可见光吸收光谱测量(190nm~800nm)。吸收光谱测量结果说明各时相的光谱变化基本反映了HeLa细胞周期变化的生色团和助色团变化过程,光谱中在204nm和260nm附近有两个吸收峰,其中204nm附近的吸收峰是由HeLa细胞内的芳香族氨基酸造成,260nm处的吸收峰则是蛋白质和核酸综合吸收的结果。这些变化说明HeLa细胞生长过程中紫外吸收光谱的变化反映了芳香族氨基酸、嘌呤和嘧啶衍生物与HeLa细胞生长过程的密切关系。
     ③设计实验以获取HeLa细胞在细胞周期各时相的自体荧光光谱
     设计了对同步化后处于细胞周期各时相的HeLa细胞进行了自体荧光光谱测量的测量方案。以290nm为激发光获得了各时相细胞样品的荧光光谱,测量结果表示,各时相细胞样品荧光光谱峰值位置均位于360nm和680nm处,这两处荧光峰的强度随样品的不同而发生相应的变化,这说明细胞内产生荧光的物质含量随细胞的生长变化,从而导致荧光强度的变化。其光谱曲线反映了HeLa细胞细胞周期变化过程中氨基酸和卟啉衍生物含量的变化趋势。
     ④建立HeLa细胞的光谱模型
     根据HeLa细胞紫外-可见光吸收光谱测量结果,采用生物系统光谱模型的建模方法,在种群水平上分别建立了描述HeLa细胞周期变化的一元线性回归光谱模型和多元线性回归光谱模型,并对模型进行了评价,证明了两个模型能够很好的反映HeLa细胞周期变化过程中的紫外吸收光谱变化。HeLa细胞细胞周期自体荧光光谱特征峰的强度变化趋势不适合采用线性回归模型对其进行描述,故在未对其作进一步研究。
     最后通过实验样本对模型进行验证,一元线性回归模型和多元线性回归模型对实验样本所处细胞周期时相判断的正确率在98%以上,验证结果说明本文建立的HeLa细胞的紫外吸收光谱模型能够很好的描述HeLa细胞周期变化过程中其特征峰吸光度的变化。
Cell is the cornerstone of research in life sciences. All the key issues of life have to look for answers in cells. Cell division can be said to the most basic and most important process in origin of life. Cell cycle embodies all the physiological process in cell division, and it exists in higher creatures. A large number of studies have shown that abnormal regulation and control of cell cycle is the main cause of tumor, therefore the cell cycle theory gives directions to cancer prevention and clinical diagnosis and treatment of tumor.
     With the interdisciplinary of life sciences and optics, the study of cells’optical information has become a important area in life sciences, of course, the combination of optical technology and cell research will inevitably produce various problems, especially the cell cycle study using spectrum technology. On the whole, from the studies of domestic and foreign scholars, there are some questions about the spectrum study on cells which are in cell cycle.①Single optical band. Almost all the research institutes and researchers did studies on the changes of cell cycle using infrared spectroscopy. They did not make full use of the existing spectrum technologies to give the cell cycle a comprehensive study.②Complex analysis methods. Biological cells have a wealth of information in the infrared band, because almost all the elements of biological cells have light absorption in the infrared band, which leads to the infrared spectrum aliasing. And the track of specific molecules in cells becomes very difficult.③No clear explanations and resolutions for some key issues in the spectrum study on cells which are in cell cycle, such as the access to samples, what kinds of synchronization level about the samples, methods of building cell cycle spectrum model, parameter extraction and so on.
     This article aimed at the existing problems, using ultraviolet and visible spectroscopy and fluorescence spectroscopy, extracted the spectrum characteristics of living tumor cells at different phases. The followings are our research work:
     ①Design and implement the synchronization processing plan about HeLa cells According to the principles of cell synchronization, the synchronization processing method about HeLa cells has been put forward, as well as the level of cell synchronization on the following experiments to obtain the HeLa cell samples which meet the need of the test requirement in the cell cycle Phase (G1 phase, S phase, G2 and M phase) .
     ②Do experiments to obtain ultraviolet and visible (UV) absorption spectrum of HeLa cells in different cell cycle phases.
     Design the synchronization processing plan on ultraviolet and visible absorption spectrum about HeLa cells in different cell cycle phases. Then give ultraviolet and visible light absorption spectrum measurement on HeLa cell samples (190nm ~ 1100nm).The result shows that the spectrum of cell simple in different phases reflects the changing processes of chromophore and auxochrome with the changing HeLa cell cycle. Around 204nm and 260nm, the spectrum has two peaks. The former is caused by the aromatic amino acids, the latter by comprehensive absorption of protein and nucleic acid. These changes show that in the process of HeLa cells’growth ,UV absorption spectrum reflects the close relationship among the aromatic amino acids, purine and pyrimidine derivatives and HeLa cell growth process.
     ③Do experiments to obtain the auto-fluorescence spectrum about HeLa cells in different cell cycle phases
     Design the experiment plan on auto-fluorescence spectrum of HeLa cells in different cell cycle phases. We got the autofluorescence spectrum of the samples exciting by 290nm light. The results indicated that the fluorescence spectrum has two peaks at 360nm and 680nm, the intensity of these two peaks changes in different samples. It shows that the materials producing fluorescence changes with the cell growth, resulting in the changes of fluorescence intensity. Its spectral curve reflects the trend of amino acid and porphyrin changing in HeLa cell cycle.
     ④Build HeLa cell spectral model
     According to the ultraviolet and visible light absorption spectra measurements about HeLa cells, using the method of biological spetrum modeling, the linear regression model spectrum and multiple linear regression model have been put forward evaluated .These two models both can have a very good response to changes in the HeLa cell cycle in the process of UV absorption spectrum. There will not be further studies about auto-fluorescence spectrum due to the changes of characteristic peak indensity can not be described by linear regression model.
     Finally, the correct rate of regression model and multiple linear regression model achieved 98%, which determine the simple cell at which phase in cell cycle. It shows that the UV absorption spectrum model can describe the absorbance changes of characteristic peak in cell cycle of HeLa cells.
引文
[1] B.艾伯茨,D.布雷,J.刘易斯等著.细胞分子生物学[M].北京:科学出版社,1990.
    [2]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000.
    [3]帕加诺(Pagano M.)著.张世馥译.细胞周期[M].北京:人民卫生出版社,2000.
    [4]汤雪明著.医学细胞生物学[M].北京:科学出版社,2003.
    [5]宋今丹编著.医学细胞生物学[M].北京:科学出版社,2004.
    [6]李洪君,章文华.早期子宫颈癌的诊治现状与展望[J].中国肿瘤临床与康复,2007,(14)5:471-473.
    [7]国家自然科学基金委员会.光子学与光子技术[M].北京:高等教育出版社;海德堡:施普林格出版社,1999
    [8]郭尧君编著.分光光度技术及其在生物化学中的应用[M].北京:科学出版社,1987.
    [9]郭尧君编著.荧光实验技术及其在分子生物学中的应用[M].北京:科学出版社,1979.
    [10]程介克等.“十五”国家重点图书分析化学新方法新技术丛书——单细胞分析[M].北京:科学出版社,2005
    [11] L.cercek,B.cercek,C.H.ockey,fluorescein excitation and emission polarization spectra in living cells changes during the cell cycle[J]. BIOPHYSICAL JOURNAL,1978,23:395-405.
    [12] S.Boydston-White, T.Gopen, S.Houser, J.Bargonetti, M.Diem, Infrared spectroscopy of human tissue.V.Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle[J]. Biospectro-scopy, 1999,(5):219-227.
    [13] S.Boydston-White, T.Chernenko, A.Regina, M.Miljkovi?, C.Matth?us and M.Diem. Microspectroscopy of Single Proliferating HeLa Cells[J]. Vibrational Spectrosc., 2005, (38):169-177.
    [14] S.Boydston-White, M.Romeo, T.Chernenko, A.Regina, M.Miljkovi? and M.Diem. Cell-cycle-dependent variations in FTIR micro-spectra of single proliferating HeLa cells: Principal component and artificial neural network analysis[J]. Biochimica et Biophysica Acta, 2006, (1758):908–914.
    [15] M.Romeo, B.Mohlenhoff, M.Diem. Infrared Micro-Spectroscopy of Human Cells: Causes for the Spectral Variance of Oral Mucosa (Buccal) Cells[J]. Vibrational Spectrosc. 2006, (42):9-14.
    [16] Melissa Romeo, Brian Mohlenhoff, Michael Jennings, and Max Diem. Infrared micro-spectroscopic studies of epithelial cells[J]. Biochimica et Biophysica Acta. 2006,(1758):915–922.
    [17] Asako Sakaue-Sawano, Hiroshi Kurokawa, Toshifumi Morimura, Aki Hanyu, Hiroshi Hama,Hatsuki Osawa, Saori Kashiwagi, Kiyoko Fukami, Takaki Miyata, Hiroyuki Miyoshi, Takeshi Imamura, Masaharu Ogawa, Hisao Masai and Atsushi Miyawaki. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression[J]. Cell, 2008, 132(3):487-498
    [18]夏景光李文建等.3Gyγ射线对不同肿瘤细胞细胞周期进程的影响[J].核技术.2005,28(8):621-624
    [19]夏景光李文建等.电离辐射对不同肿瘤细胞细胞周期进程的影响[J].辐射研究与辐射工艺学报.2005,23(2):91-91
    [20]夏景光李文建等.低剂量电离辐射预处理对不同肿瘤细胞周期的影响[J].高能物理与核物理.2005,29(2):201-204
    [21] Marcel Méchali and Malik Lutzmann. The Cell Cycle: Now Live and in Color[J]. Cell, 2008, 132(3):341-343
    [22] Gertrude C. Moser, H. Müller and E. Robbins. Differential nuclear fluorescence during the cell cycle[J]. Experimental Cell Research,1975, 91(1), 73-78
    [23] PARAS N.PRASAD著,何赛灵等译.生物光子学导论[M].杭州:浙江大学出版社,2006.
    [24] L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, M. Diem, Infrared spectroscopy of human tissue: I. Differentiation and maturation of epithelial cells in the human cervix[J]. Biospectroscopy 1998 (3):47–54.
    [25] Pepperkok, R.,and Shima , D.Fluorescence Microscopy of Living Vertebrate Cells in V.J.Allan,ed. Protein Localization by Fluorescence Microscopy[M]. Oxford Uninversity Press,New York,2000.
    [26] Hawes C.,Boevink P.,and Moore I.Green Fluorescence Protein in Plants, in V.J.Allan,ed., Protein Localization by Fluorescence Microscopy[M]. Oxford Uninversity Press,New York,2000.
    [27] Grossweiner L.I.,Smith K.C. Photochemistry, in K.C.Smith,ed. The Science of Photobiology, 2nd edition, Plenum, New York,1989.
    [28] Kochear I.E.,Photoimmunology, in J.Krutmann, and C.A.Elmets, ed. Photoimmunology ,Blackwell Science, London.1995.
    [29]赵南明,周海梦.生物物理学[M].北京:高等教育出版社;海德堡:施普林格出版社,2007.
    [30]李昌厚著.紫外可见分光光度计[M].北京:化学工业出版社,2005.
    [31] K.C.史密斯编,沈恂等译.光生物学[M].北京:科学出版社,1984.
    [32]高鸿.分析化学前沿[M].北京:科学出版社,1991.
    [33]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006.
    [34]刘爱平,王琦琛.细胞生物学荧光技术原理和应用[M].合肥:中国科学技术大学出版社,2007.
    [35]程极济.光生物物理学[M].北京:高等教育出版社,1987.
    [36]陈维毅,安美文,王晓君.细胞胞质分裂模型[M].北京:中国建材工业出版社,2006.
    [37]臧荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社,2004.
    [38]李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006
    [39]严衍禄,赵龙莲,韩东海等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    [40]钱小江,谢剑炜.现代仪器分析在生物医学研究中的应用[M].北京:化学工业出版社,2003.
    [41] ZHAO Yuan li, ZHANG Feng qiu,GE Xiang hong,et al.The Study of Absorption Spectrum for Cell Substrate[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004(24)8:907~910. (in Chinese)
    [42] M.Pagano.Cell Cycle—Materials and Methods[M]. Springer-Verleg Berlin Heidellberg 1996.
    [43] Gui Jian-fang. The RNA Machining and Cell Cycle Contral[M]. Beijing: Science Press(北京:科学出版社),1998,88. (in Chinese)
    [44] LI Zhong-ming, WANG Mei-wan. Fluorescence Spectrum Technique and Their Applications in Cancer Tumor Diagnosis[J]. Journal of Xianning Teachers College, 2003(6), 23:84~88
    [45]李忠明,汪美完.荧光光谱技术及其在癌肿瘤诊断中的应用[J].咸宁学院学报, 2003(6), 23:84~88
    [46] Yang Yuaniong; Ye Yanming; Li Yufen et al.. Characteristic Autofluorescence for Cancer Diagnosis and the Exploration of its Origin[J]. Journal of Fudan University,1986(1),25:90~95
    [47]杨远龙,叶衍铭,李郁芬等.恶性肿瘤特征自体荧光的来源以及在诊断中的应用[J].复旦学报(自然科学版),1986(1),25:90~95
    [48] Joany Jackman, Patrick M. O'Connor. Methods for Synchronizing Cells at Specific Stages of the Cell Cycle. Current Protocols in cell biology.2001
    [49] Schimke RT, Kung AL, Rush DF, and Sherwood SW. Differences in mitotic control among mammalian cells. Cold Spring Harbor Symp Quant Biol. 1991,(56):417-425.
    [50] Gong J, Traganos F, Darzynkiewicz Z.A selective procedure for DNA extraction from apoptotic cells applicable for eletrophoresis and flow cytometry [J]. Anal Biochem, 1994, 218(2) :314-319.
    [51] Hartwell LH, Kastan KB. Cell cycle control and cancer [J]. Science, 1994, 266(5192): 1821-1828.
    [52] VanDilla MA, Trujillo TT, Mullaney PF, et al. Cell microfluorometry: a method for rapid fluorescence measurement [J]. Science, 1969,163(872): 1213-1214.
    [53] Hartwell LH, Weinert TA.Checkpoints: controls that ensure the order in cell cycle events [J].Science, 1989,246(4390):629-634.
    [54] Pines J. Arresting developments in cell-cycle control [J]. Trends Biochem Sci, 1994,19(4): 143-145.
    [55] Harry A. Crissman and Robert A. Tobey. Cell-Cycle Analysis in 20 Minutes. Science 21 June 1974 184: 1297-1298
    [56] Bootsma D, Budke L, Vos O. Studies on synchronized divisions of tissue culture cells initiated by excess thymidine. Expt Cell Res. 1964,(33):301-304.
    [57] Stein GS, Borun TW. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa cells. J Cell Biol.1972,(52):292-296.
    [58]兰秀凤.光与生物组织相互作用的光谱学特性研究[D].南京:南京理工大学.2005.
    [59] S.Ganesan, S., Madhuri, P, Arena, S., et al. Native fluorescence characterization of human liver abnormalities. SP1E. 1999, 3599: 2024.
    [60]高淑梅.可见光诱导血液荧光光谱研究[D].南京:南京理工大学.2002.
    [61]陈晓冬.自体荧光法诊断早期胃肠癌的方法和理论研究[D].天津:天津大学.2002.
    [62]谢树森,李晖,牛憨笨等.生物医学光子学的发展与前瞻[J].中国科学(G辑:物理学力学天文学).2007,(37)增刊:1-12.
    [63]来建成;李振华;王清华等.生物组织光传输的系统模型及应用[J].光子学报.2007,(36)7:1312-1317.
    [64] BACKMAN V, WALLACE M, PERELMAN L T, et al.Detection of preinvasive cancer cells Early warning changes in precancerous epithelial cells can now be spotted in situ[J].Nature, 2000 , 406 6791 : 35236.
    [65] JACQUES S L , RAMELLA2ROMAN J C, LEE K. Imaging skin pathology with polarized light[J]. Journal of Biomedical. Optics, 2002 , 7(3): 3292340.
    [66] HUANG D. Optical coherence tomography[J]. Science, 1991 ,254(5035):117821181.
    [67]张琳.生物组织光学性质及光在生物组织中的传播研究[D].南京:南开大学.2004.
    [68] R. Lhermitte, Meteorological Doppler radar, Science, 1973, 182, 258-262.
    [69] A.E. Basharinov, A. S. Gurvich, L. Tuchkov, The terrestrial thermal Radio-emission field[J]. Izv. Atomos. Ocean Phys. 1970, 6, 366-380.
    [70] V Twersky, Multiple scattering of sound by a periodic line of obstacles[J]. Acoust. Soc. Am. 1973, 53(1):96-112.
    [71] N. Marcuvitz, On the theory of plasma turbulence[J]. Math. Phys,1974, 15,869-879.
    [72] V. Twersky, Absorption and multiple scattering biological suspensions[J]. Opt. Soc. Am. 1970, 60, 1084-1093.
    [73] Ishimaru, Correlation functions of a wave in a random distribution of stationary and moving scatterer[J]. Radio Sci. 1975 10(1):45-52.
    [74] L.F. Gate, Comparison of the photon diffusion model and Kubelka-Murk equation with the exact solution of the radiative transport equation[J]. Appl. Opt., 1974,13(2):236-238.
    [75] A.Ishimaru, Wave propagation and scattering in random media(Academic Press,1978).
    [76] S. Chandrasekhar, Radiative Transfer(Oxford University Press,London 1960).
    [77] S. A. Prahl et al., Determining the optical properties of turbid media by using the adding-doubling method[J].Appl. Opt., 1993, 32(4):559-568.
    [78]杨静,郭永彩,高潮,郭孝恩.基于反常衍射的红细胞变形研究及蒙特卡罗仿真[J].光子学报.2005,(34)4:542-546.
    [79]杨静,郭永彩,高潮.蒙特卡罗法在人体红细胞光散射研究中的应用[J].重庆大学学报. 2005,(28)7:27-30.
    [80]杨静,郭永彩,高潮.人血红细胞光散射及蒙特卡罗仿真[J].光学精密工程. 2004,12(3):198-203.
    [81]吴大建,王亚伟,韩广才.有核细胞的弹性光散射模型[J].光学学报.2005,25(12):1670-1675.
    [82]王亚伟,卜敏,崔青义等.有核细胞光散射强度分布的动态特性[J].中国激光. 2006,10:140-145.
    [83]王亚伟,蔡兰,吴大建.细胞形体和胞质厚度变化对光散射法测量细胞大小分布的影响[J].中国激光. 2005,9:142-146.
    [84] Maria Helena Bellini, Enia Lúcia Coutinho, Lilia Coronato Courrol et al.. Correlation Between Autofluorescence Intensity and Tumor Area in Mice Bearing Renal Cell Carcinoma[J]. Journal of Fluorescence, Online First?,2008 May 17
    [85] D. M. Harris, J. Weekhaven. Endogenous porphyrin fluorescence in tumours[J]. Lasers Surg Med., 1987, 7:467~472
    [86] Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues[J]. Neoplasia, 2000 2(1–2):89–117
    [87]连少辉,杨士珍,林威等.宫颈癌固有荧光及其分子基础探讨研究[J].量子电子学报,1995(2),12:174~177
    [88]连少辉,杨士珍,林威等.蛋白质与卟啉相互作用的研究—肿瘤发光机理的探讨[J].光电子·激光,1999(2),10:145~147
    [89]连少辉,江寿平,张宇.蛋白质和卟啉之间的能量转移—癌固有荧光的研究[J].中国激光,1990(4),17:241~245
    [90]曾堃,虞震芬,吴金荣等.电子、光子与癌的信息[J].自然杂志,1989(7),12:522~528
    [91]陈晓冬,郁道银,谢洪波等.蒙特卡罗模拟重建组织的自体荧光光谱[J].光学学报,2003(5),23:612~615
    [92]郑蔚,黄志伟,谢树森等.人肺组织内源性显微荧光特性研究[J].中国激光,2001(7),28:669~672
    [93] Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues[J]. Neoplasia, 2000 2(1–2):89–117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700