玉米蛋白激酶基因ZmPti1、ZmPti1-1和ZmCIPK2的抗旱功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是世界主要农作物之一。全球水资源短缺,干旱已成为玉米生产发展的主要限制因素。发现新的抗旱功能基因,培育抗旱玉米新材料,对于玉米的抗旱遗传育种具有重要的理论和现实意义。蛋白激酶在植物的抗旱过程中起到了非常重要的作用。本研究以京178和京501自交系玉米为材料,利用花粉管通道法、基因枪法构建受干旱胁迫诱导的蛋白激酶基因ZmPtil、ZmPtil-1、ZmCIPK2的过表达或RNAi(?)朱系,进一步分析了这些转基因系的抗旱功能。主要结果如下:
     为了分析ZmPtil的抗旱功能,构建了植物表达载体pBPC-ZmPtil-bar,利用花粉管通道法转化玉米,对转ZmPtil基因玉米植株的不同抗旱指标进行了分析。结果表明,与对照相比,转基因株系的抗旱能力得到了明显的提高。干旱胁迫下,与对照相比,转ZmPtil基因植株具有较少的卷叶,植株高度和干重分别比对照高6.2%和12.6%。转基因植株的穗粒数和千粒重分别比对照高21.9%和8.7%。在干旱胁迫下,转基因植株的相对电导率和MDA含量分别比对照低14.8%和18.1%,而相对含水量、可溶性糖和脯氨酸含量则分别比对照高7.3%、2.5%和22.7%。
     为了分析ZmPtil-1的抗旱功能,构建了植物表达载体35S-ZmPtil-1-DHA-NOS-pGreen0029,利用浸花法转化拟南芥,对转ZmPtil-1基因拟南芥植株的不同抗旱指标进行了分析。结果表明,与对照相比,转基因株系的抗旱水平得到了明显的提高。与对照植株相比,在干旱胁迫下,3个转基因株系的存活率分别为70%,76%和87%,显著高于野生型29%的存活率。干旱胁迫下,与对照相比,转ZmPtil-1基因拟南芥植株具有较少的枯萎叶。转基因植株的种子重比对照高58.7%。在干旱胁迫下,转基因植株的相对电导率和MDA含量分别比对照低13.7%和17.7%,而相对含水量、可溶性糖和脯氨酸含量则分别比对照高7.1%、3.6%和22.5%。
     为了进一步分析ZmPtil-1对玉米抗旱性的影响,构建了植物表达载体pGreen0229-ZmPtil-1,利用基因枪法转化玉米,对转ZmPtil-1基因玉米植株的不同抗旱指标进行了分析。结果表明,与对照相比,转基因株系的抗旱能力得到了明显的提高。干旱胁迫下,与对照相比,转ZmPtil-1基因植株具有较少的卷叶,植株高度和干重分别比对照高8.2%和14.4%。转基因植株的穗粒数和千粒重分别比对照高22.2%和8.8%。在干旱胁迫下,转基因植株的相对电导率和MDA含量分别比对照低20.4%和24.1%,而相对含水量、可溶性糖和脯氨酸含量则分别比对照高9.4%、9.0%和24.1%。
     CIPK是参与渗透胁迫、盐、低温、脱落酸(abscisic acid, ABA)和糖等信号转导途径的、植物所特有的一类蛋白激酶。ZmCIPK2(GenBank接受号为EF158033)是一个新的玉米CIPK激酶基因。组成型表达ZmCIPK2基因的拟南芥种子发芽和发芽后幼苗的早期生长对干旱胁迫超敏感。为了分析ZmCIPK2的抗旱功能,构建了RNAi表达载体pGreen0229-ZmCIPK2Sense-GFP-ZmCIPK2Antisense,利用花粉管通道法转化玉米,ZmCIPK2基因在RNAi玉米中的表达水平下降直至完全沉默。结果表明,与对照相比,RNAi株系的抗旱性得到了明显的提高。干旱胁迫下,与对照相比,ZmCIPK2基因RNAi植株具有较少的卷叶。在干旱胁迫下,ZmCIPK2RNAi株系的相对电导率和MDA含量分别比对照低16.1%和17.5%,而相对含水量、可溶性糖和脯氨酸含量则分别比对照高8.2%、8.8%和24.2%。
Maize is one of the most important crops in the world. With the global water shortage, drought stress has been a major constraint for maize production. It is of vital theoretical and practical significance for maize genetic breeding in drought resistance to analyze gene function in drought resistance, discover new drought resistance genes and cultivate new drought resistance maize lines. Protein kinase plays an important role in plant drought resistance process. In this research, transgenic ZmPtil, ZmPtil-1and ZmCIPK2, which induced by drought stress from maize, overexpressed or RNAi lines of Jing178or Jing501inbred maize were constructed via pollen tube pathway method or microprojectile bombardment. The function in drought resistance of these transgenic lines was further analyzed. The results showed as follows:
     In order to analyze the drought resistance function of ZmPtil, the plant expression vector pBPC-ZmPtil-bar was constructed and transformed into maize via pollen tube pathway method. The different drought resistance index of transgenic ZmPtil maize plants was analyzed. The results showed that the transgenic plants can enhance the drought resistance comparing to control plants. Under drought stress, compared to wild-type plants, transgenic ZmPtil plants showed a stronger growth recovery phenotype with less leaf rolling and better growth with higher plant height and dry weight, which was6.2%and12.6%higher than WT, respectively. The grain number per ear and1000-grain weight of transgenic plants was21.9%and8.7%higher than WT, respectively. After drought stress, the relative electric conductivity and MDA content of transgenic plants was14.8%,18.1%lower than that that of WT, respectively, whereas the relative water content, total soluble sugars, proline content of transgenic plants was7.3%,2.5%,22.7%higher than that that of WT, respectively.
     In order to analyze the drought resistance function of ZmPtil-1, the plant expression vector35S-ZwPri1-1-DHA-NOS-pGreen0029was constructed and transformed into Arabidopsis via floral dip method. The different drought resistance index of transgenic ZmPtil-1Arabidopsis plants was analyzed. The results demonstrated that over-expression of ZmPtil-1gene improved drought resistance in transgenic Arabidopsis. Under drought stress, compared to wild type, survival rate of the three transgenic lines, which was70%,76%and87%respectively, was significantly higher than that of wild type which was29%. Under drought stress, compared to wild-type plants, transgenic ZmPtil-1Arabidopsis plants showed a stronger growth recovery phenotype with less wither leaves and better growth. The seed weight of transgenic plants was58.7%higher than WT. After drought stress, the relative electric conductivity and MDA content of transgenic plants was13.7%,17.7%lower than that that of WT, respectively, whereas the relative water content, total soluble sugars, proline content of transgenic plants was7.1%,3.6%,22.5%higher than that that of WT, respectively.
     In order to further analyze the effect of ZmPtil-1on the drought tolerance of maize, the plant expression vector pGreenO229-ZmPtil-1was constructed and transformed into maize via microprojectile bombardment method. The different drought resistance index of transgenic ZmPtil-1maize plants was analyzed. The results demonstrated that over-expression of ZmPtil-1gene improved drought resistance in transgenic maize. Under drought stress, compared to wild-type plants, transgenic ZmPtil-1plants showed a stronger growth recovery phenotype with less leaf rolling and better growth with higher plant height and dry weight, which was8.2%and14.4%higher than WT, respectively. The grain number per ear and1000-grain weight of transgenic plants was22.2%and8.8%higher than WT, respectively. After drought stress, the relative electric conductivity and MDA content of transgenic plants was20.4%,24.1%lower than that that of WT, respectively, whereas the relative water content, total soluble sugars, proline content of transgenic plants was9.4%,9.0%,24.1%higher than that that of WT, respectively.
     A family of specific protein kinase CIPK participates in regulation of osmotic stress, salt, cold, ABA and sugar signal transduction in plant. ZmCIPK2(GenBank accession no. EF158033) is a new maize CIPK kinase gene. Transgenic ZmCIPK2Arabidopsis lines are hypersensitive to drought stress when germination and early seedling growth. In order to analyze the drought resistance function of ZmCIPK2, the RNAi expression vector pGreenO229-ZmCIPK2Sense-GFP-ZmCIPK2Antisense was constructed and transformed into maize via pollen tube pathway method. The expression level of ZmCIPK2in RNAi maize lines was declined to some extent and even completely silenced. The results showed that the RNAi lines can enhance the drought resistance comparing to control plants. Under drought stress, compared to wild-type plants, ZmClPK2RNAi plants showed a stronger growth recovery phenotype with less leaf rolling and better growth. After drought stress, the relative electric conductivity and MDA content of transgenic plants was16.1%,17.5%lower than that that of WT, respectively, whereas the relative water content, total soluble sugars, proline content of transgenic plants was8.2%,8.8%,24.2%higher than that that of WT, respectively.
引文
Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+regulated kinases. EMBO Journal,2001,20:1051-1063
    Alderson, A, Sabelli, P A, Dickinson, J R, Richardson D C M, Kreis M, Shewry P R, Halford N G. Complementation of snfl, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proceedings of the National Academy of Sciences of the United States of America,1991,88:8602-8605
    Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proceedings of the National Academy of Sciences of the United States of America,1992,89:10183-10187
    Antonelli N M, Stadler J. Genomic DNA can be used with cationic methods for highly efficient transformation of maize protoplasts. Theoretical and Applied Genetics,1990,80(3):395-401
    Assem S K, Hussein E H A, Hussein H A, Basry M. Genetic transformation of the Nicotiana protein kinase (NPK1) gene confers osmotic tolerance in Egyptian maize. Australian Journal of Basic and Applied Sciences,2009,3(2):828-835
    Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil,1973,39:205-207
    Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/ CIPK protein kinase network. Planta,2004,219(6):915-924
    Bhatnagar-Mathur P, Vadez V, Sharma K K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Reports,2008,27:411-424
    Birch R G, Franks T. Development and optimisation of microprojectile systems for plant genetic transformation. Austrilian Journal of Plant Physiology,1991,18:453-469
    Bohorova N, Zhang W, Julstrum P, McLean S, Luna B, Brito R M, Diaz L, Ramos M E, Estanol P, Pacheco M, Salgado M, Hoisington D. Production of transgenic tropical maize with cry1Ab and cry1Ac genes via microprojectile bombardment of immature embryos. Theoretical and Applied Genetics,1999,99:437-444
    Bommineni V R, Walden D B, Greyson R I. Recovery of fertile plants from isolated, cultured maize shoot apices. Plant Cell, Tissue and Organ Culture,1989,19(3):225-234
    Botella J R, Arteca J M, Somodevilla M J, Arteca R N. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (vigna radiata). Plant Molecular Biology,1996,30:1129-1137
    Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose nonfermentingl-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Journal of Biological Chemistry,2004,279:41758-41766
    Boudsocq M, Lauriere C. Osmotic signaling in plants multiple pathways mediated by emerging kinase families. Plant Physiology,2005,138:1185-1194
    Boyer J S. Plant productivity and environment. Science,1982,218:443-448
    Bush D S. Calcium regulation in plant cells and its role in signaling. Annual Review of Plant Physiology and Plant Molecular Biology,1995,46:95-122
    Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases:a gene family for control of MAP kinase funtion. The FASEB Journal,1999,14:6-16
    Cheng S H, Willmann M R, Sheen J. Calcium signaling through protein kinases:the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology,2002,129:469-485
    Chenk P W, Snaar-Jagalska, B E. Signal perception and transduction:the role of protein kinases. Biochimica et BiophysicaActa,1999,1449:1-24
    Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal,1998,16:735-743
    Could J, Devery M, Hasegawa O. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiology,1991,95:426-434
    Daniell H. GM crops:Public perception and scientific solutions. Trends in Plant Science,1999, 4:467-469
    Davuluri G R, van Tuinen A, Fraser P D, Manfredonia A, Newman R, Burgess D, Brummell D A, King S R, Palys J, Uhlig J, Bramley P M, Pennings H M J, Bowler C. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnology, 2005,23:890-895
    Dewet J M. Experimental manipulation of the tissues. New York. London longman,1984.
    Dornelas M C, Wittich P, von Recklinghausen I, van Lammeren A, Kreis M. Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinase (ASK) multigene family. Plant Molecular Biology,1999,39:137-147
    Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genesin rice, Oryza sativa L, encode transcription activators that function in drought-, high salt-and cold-responsive gene expression. The Plant Journal,2003,33(4):751-763
    Dupuis I, Pace G M. Gene transfer to maize male reproductive structures by particle bombardment of tassel primordial. Plant Cell Reports,1993,12:607-615
    Fire A, Xu S Q, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    Frame B R, Shou H, Chikwamba R K, Zhang Z, Xiang C, Fonger T M, Pegg S E, Li B, Nettleton D S, Pei D, Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology,2002,129(1):13-22
    Frame B R, Zhang H Y, Cocciolone S M, Sidorenko L V, Dietrich C R, Pegg S E, Zhen S F, Schnable P S, Wang K. Production of transgenic maize from bombarded type Ⅱ callus:Effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cellular and Developmental Biology-Plant,2000,36:21-29
    Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology,2009,50(12):2123-2132
    Gao J P, Chao D Y, Lin H X. Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice,2008,1(1):36-51
    Gong D, Guo Y and Zhu J K. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiology,2004,134:919-926
    Gong D M, Zhang C Q, Chen X Y, Gong Z Z, Zhu J K. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. Journal of Biological Chemistry,2002,277: 42088-42096
    Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O'Brien J V, Chambers S A, Adams W R J, Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P, Lemaux P G. Transformafion of maize cells and regeneration of fertile transgenic plants. The Plant Cell,1990,2:603-618
    Grimsley N, Hohn T, Davis J W, Hohn B. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature,1987, (325):177-179
    Guo Y, Halfter U, Ishitani M, Zhu J K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. The Plant Cell,2001,13:1383-1400
    Guo Y, Xiong L, Song C P, Halfter U, Zhu J K. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Developmental Cell,2002,3:233-244
    Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in arabidopsis. Plant Physiology,2002,130:639-648
    Halford, N G., Hardie, D G. SNF1-related protein kinases:global regulators of carbon metabolism in plants. Plant Molecular Biology,1998,37:735-748
    Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences of the United States of America,2000,97:3735-3740
    Hammond-Kosack K E, Jones J D A. Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:575-607
    Hanks S K, Hunter T. The eukaryotic protein kinase superfamily:kinase (catalytic)domain structure and classification. The FASEB Journal,1995, (9):576-596
    Harmon A C, Putnam-Evans C, Cormier M J. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiology,1987,83:830-837
    Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca2+signal. Trends in Plant Science, 2000,5:154-159
    Harper J F, Sussman M R, Schaller G E, Putnam-Evans C, Charbonneau H, Harmon A C. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science,1991,252:951-954
    Heath R L, Packer L. Photoperoxidation in isolated chloroplast.Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics,1968,125:189-198
    Helliwell C A, Waterhouse P M. Constructs and methods of high throughput gene silencing in plants. Methods,2003,30:289-295
    Herrmann M M, Pinto S, Kluth J, Wienand U, Lorbiecke R. The PTI1-like kinase ZmPtila from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biology,2006,6:22
    Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology,2003,132:666-680
    Hulbert S H, Webb CA, Smith S M, Sun Q. Resistance gene complexes:evolution and utilization. Annual Review of Phytopathology,2001,39:285-312
    Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize(Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology,1996,14(6):745-750
    Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize:towards the functional validation of the Zm-Asrl gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie,2002,84(11):1127-1135
    Jefferies H B J, Reinhard C, Kozma S C, Thomas G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNAfamily. Proceedings of the National Academy of Sciences of the United States of America,1994,91:4441-4445
    Jonak C, Beisteiner D, Beyerly J, Hirt H. Wound-induced expression and activation of WIG, a novel glycogen synthase kinase 3. The Plant Cell,2000,12:1467-1476
    Jonk C, Hirt H. Glycogen synthase kinase 3/SHAGGY-like kinases in plants:an merging family with novel functions. Trends in Plant Science,2002,7:457-461
    Kerschen A, Napoli C A, Jorgensen R A, Muller A E. Effectiveness of RNA interference in transgenic plants. FEBS Letters,2004,566:223-228
    Kim K N, Cheong Y H, Gupta R, Luan S. Interaction specificity of Arabidopsis calcineurin B-like sensors and their target kinases. Plant Physiology,2000,124:1844-1853
    Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a Calcium sensor associated protein kinase that regulates abscisicacid and cold signal transduction in arabidopsis. The Plant Cell,2003, 15:411-423
    Klein T M, Kornstein L, Sanford J C, Fromm M E. Genetic transformation of maize cells by particle bombardment. Plant Physiology,1989,91:440-444
    Klein T M, Wolf E D, Wu R, Sanford J C. High-velocity microprojectiles for delivery of nucleic acids into living cells. Nature,1987,327:70-73
    Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid. The Plant Cell,2004,16:1163-1177
    Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and Rice CBL-CIPK signaling networks. Plant Physiology, 2004,134:43-58
    Koziel M G, Beland G L, Bowman C, Carozzi N B, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji M R, Merlin E, Rhodes R, Warren G W, Wright M, Evola S V. Field performence of elite transgenic maize plant expressing all insecticidal protein derived from Bacillus thuringiensis. Biotechnolgy,1993,11:194-200
    Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes encoding calcineurin B-like protein in Arabidopsis are differentially regulated by stress signals. Proceedings of the National Academy of Sciences of the United States of America,1999,96:4718-4723
    Laurie S, Halford N G.. The role of protein kinases in the regulation of plant growth and development. Plant Growth Regulation,2001,34(3):253-265
    Lee J H, Montagu M V, Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proceedings of the National Academy of Sciences of the United States of America,1999,96:5873-5877
    Li B, Wei A Y, Song C X, Li N, Zhang J R. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal,2008,6:146-159
    Li J X, Kinoshita T, Pandey S, Ng C K Y, Gygi S P, Shimazaki K, Assmann S M. Modulation of an RNA-binding protein by abscisic-acid activated protein kinase. Nature,2002,418:793-797
    Li J X, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science,2000,287:300-303
    Li Z L, Bian M D, Wu Z Y, Zhang X H, Yang Q, Huang C L. Isolation and drought-tolerant function analysis of ZmPtil-1, a homologue to Ptil, from maize (Zea mays L.). African Journal of Biotechnology,2011,10:5327-5336
    Liu H Y, Toyn J H, Chiang Y C, Draper M P, Johnston L H, Denis C L. DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO Journal,1997,17:5289-5298
    Liu J P, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science,1998,280:1943-1945
    Luo Z X, Wu R. A simple method for the transformation of rice via the pollen tube pathway. Plant Molecular Biology Reporter,1988,6(3):165-174
    Lupotto E., Reali A, Oassera S, Chan M T. Maize elite inbred lines are susceptible to Agrobacterium tumefaciens-mediated transformation. Maydica,1999,44:211-218
    MAPK Group. Mitogen-activated protein kinase cascades in plants:a new nomenclature. Trends in Plant Science,2002,7:301-308
    Marzin S, Mihaly R, Pauk J, Schweizer P. A transient assay system for the assessment of cell-autonomous gene function in dehydration-stressed barley. Journal of Experimental Botany,2008,59 (12):3359-3369
    Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiology,2005,138:1903-1913
    Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki, Kamada H, Shinozaki K. Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Letters,1995,358:199-204
    Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants:the role of mitogen- activated protein kinases. Trends in Biotechnology,1997,15:15-19
    Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, The,1990,2:279-289
    Ning J, Li X H, Hicks L M, Xiong L Z. A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiology,2010,152:876-890
    Nunes ACS, Vianna G R, Cuneo F. Amaya-Farfan J, de Capdeville G, Rech E L,Aragao F J L. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta,2006,224:125-132
    Ohba H, Steward N, Kawasaki S, Berberich T, Ikeda Y, Koizumi N, Kusano T, Sano H. Diverse response of rice and maize genes encoding homologs of WPK4, an SNF1-related protein kinase from wheat, to light, nutrients, low temperature and cytokinins. Mol. Gen. Genet.,2000,263:359-366
    Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proceedings of the National Academy of Sciences of the United States of America,1986,83(3): 715-719
    Osakabe Y, Mizuno S, Tanaka H, Maruyama K, Osakabe K, Todaka D, Fujita Y, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. Journal of Biological Chemistry,2010,285(12):9190-9201
    Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIKl improves drought and salt stress tolerance in rice(Oryza sativa) plants. The Plant Journal,2010,62(2):316-329
    Pandey G K. Emergence of a novel calcium signaling pathway in plants:CBL-CIPK signaling network. Physiology and Molecular Biology of Plants,2008,14(1-2):51-68
    Plyte S E, Hughes K, Nikolakaki E, Pulverer B J, Woodgett J R. Glycogen synthase kinase-3:functions in oncogenesis and development. Biochimica et Biophysica Acta,1992,1114:147-162
    Potrykus I. Gene transfer to cereals:an assessment. Biotechnology,1990, (8):535-542
    Prakash N S, Bhojaraja R, Shivbachan S K, Priya G G H, Nagraj T K, Prasad V, Babu V S, Jayaprakash T L, Dasgupta S, Spencer T M, Boddupalli R S. Marker-free transgenic corn plant production through co-bombardment. Plant Cell Reports,2009,28:1655-1668
    Puchta H. Removing selectable marker genes:taking the shortcut. Trends in Plant Science,2000,5:273-274
    Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L S, Shinozaki K, Yamaguchi-Shinozaki K. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal,2007,50(1):54-69
    Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America,2002,99:8436-8441
    Quan R, Shang M, Zhang H, Zhao Y, Zhang J. Engineering of enhanced glyeine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal,2004,2(6):477-486
    Reggiardo M I, Arana J L, Orsaria L M, Permingeat H R, Spitteler M A, Vallejos R H. Transient transformation of maize tissues by microparticle bombardment. Plant Science,1991,75(2):237-243
    Rhodes C A, Pierce D A, Mettler I J, Mascarenhas D, Detmer J J. Genetically transformed maize plants from protoplast. Sciene,1988,240:204-206
    Rudrabhatla P, Rajasekharan R. Mutational analysis of stress-responsive peanut dual specificity protein kinase. Journal of Biological Chemistry,2003,278:17328-17335
    Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal,2000,23: 319-327
    Sambrook J, Russell D W. Molecular cloning:a laboratory manual,3rd edn. Cold Spring Harbor Laboratory Press, New York,2001, pp27-99,518-552
    Scofield S R, Tobias C M, Rathjen J P, Chang J H, Lavelle D T, Michelmore R W, Staskawicz B J. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science,1996, 274:2063-2065
    Sessa G, D'Ascenzo M, Martin G B. The major site of the Ptil kinase phosphorylated by the Pto kinase is located in the activation domain and is required for Pto-Ptil physical interaction. European Journal of Biochemistry,2000,267:171-178
    Sharma A, Komatsu S. Involvement of a Ca2+-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, RuBisCO activase, in rice. Biochemical and Biophysical Research Communications,2002,290:690-695
    Sheen J. Ca2+dependent protein kinases and stress signal transduction in plants. Science,1996,274: 1900-1902
    Shi J, Kim K N, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. The Plant Cell,1999,11: 2393-2406
    Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPKI) enhanced drought tolerance in transgenic maize. Journal of Experimental Botany,2004,55(399):1013-1019
    Shou H X, Frame B R, Whitham S A, Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding,2004,13: 201-208
    Stone J M, Waker J C. Plant protein kinase and signal transduction. Plant Phsiology,1995,108:451-457
    Syam P S R, Jayabasjaran C. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea. Journal of Plant Physiology,2006,163:1083-1093
    Taiz L, Zeiger E. Stress physiology. In:Plant physiology,2nd edn. Sinauer Associates Inc, Sunderland, 1998, pp 725-757
    Tang X, Frederick R D, Zhou J, Halterman D A, Jia Y, Martin G B. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science,1996,274:2060-2063
    Tian A G, Luo G Z, Wang Y J, Zhang J S, Gai J Y, Chen S Y. Isolation and characterization of a Ptil homologue from soybean. Journal of Experimental Botany,2004,396:535-537
    Tichtinsky G, Tavares R, Takvorian A, Schwebel-Dugue N, Twell D, Kreis M. An evolutionary conserved group of plant GSK-3/Shaggy-like protein kinase genes preferentially expressed in developing pollen. Biochimica et BiophysicaActa,1998,1442:261-273
    Tina R. Protein kinases in the plant defence response. Current Opinion in Plant Biology,2001,4:407-414
    Trojanek J B, Klimecka M M, Fraser A, Dobrowolska G, Muszynska G. Characterization of duals pecificity protein kinase from maize seedlings. Acta Biochimica Polonica,2004,51:635-647
    Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America,2004,101:17306-17311
    Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca2+-dependent protein kinase are induced by drought and high salt stress in Arabidopsis thaliana. Molecular & General Genetics,1994,244:331-340.
    Vain P, McMullen M D, Finer J J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Reports,1993,12:84-88
    Walters D A, Vetsch C S, Potts D E, Lundquist R C. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology,1992,18:189-200
    Wan Y C, Widholm J M, Lemaux P G. Type I callus as a bombardement target for generating fertile transgenic maize (Zea mays L.). Planta,1995,196:7-14
    Wang C R, Yang A F, Yue G D, Gao Q, Yin H Y, Zhang J R. Enhanced expression of phospholipase C1(ZmPLCl) improves drought tolerance in transgenic maize. Planta,2008,227(5):1127-1140
    Wang M Y, Gu D, Liu T S, Wang Z Q, Guo X Y, Hou W, Bai Y F, Chen X P, Wang G Y. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology,2007,65:733-746
    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta,2003,218:1-14
    Wesley S V, Helliwell C A, Smith N A, Wang M B, Rouse D T, Liu Q, Gooding P S, Singh S P, Abbott D, Stoutjesdijk P A, Robinson S P, Gleave A P, Green A G, Waterhouse P M. Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal,2001,27:581-590
    White P J, Broadley. Calcium in plant. Annals of Botany,2003,92:487-511
    Wu W, Su Q, Xia X Y, Wang Y, Luan Y S, An L J. The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica,2008,159:17-25
    Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. The Plant Cell, 2002,14 Suppl:S165-183
    Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid in ducible mitogen activated protein kinase. The Plant Cell,2003,15(3):745-759
    Xu J, Tian Y S, Peng R H, Xiong A S, Zhu B, Jin X F, Gao F, Fu X Y, Hou X L, Yao Q H. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta,2010,231:1251-1260
    Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology,2006,57:781-803
    Yang A F, Su Q, An L J, Liu J F, Wu W, Qiu Z. Detection of vector-and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. Journal of Biotechnology,2009,139 (1):1-5
    Yang S D, Song J S, Hsieh Y T, Liu H W, Chan W H. Identification of the ATP-Mg-dependent protein phosphatase activator (Fa) as a synapsin I kinase that inhibits cross-linking of synapsin I with brain microtubules. Journal of Protein Chemistry,1992,11:539-546
    Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice(Oryza saliva L.). Journal of Genetics & Genomics,2008,35:531-543,S1-2
    Yang Y, Shah J, Klessig D F. Signal perception and transduction in plant defense responses. Genes & Development,1997,11:1621-1639
    Yemm E W, Willis A J. The estimation of carbohydrates in plant extracts by the anthrone. Biochemical Journal,1954,57:508-514
    Yim Y S, Moak P, Sanchez-Villeda H, Musket T A, Close P, Klein P E, Mullet J E, McMullen M D, Fang Z W, Schaeffer M L, Gardiner J M, Coe E H, Davis G L. A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics 2007,8:47
    Yoon H W, Kim M C, Shin P G, Kim J S, Kim C Y, Lee S Y, Hwang I, Bahk J D, Hong J C, Han C, Cho M J. Differential expression of two functional serine/threonine protein kinases from soybean that have an unusual acidic domain at the carboxy terminus. Molecular & General Genetics,1997, 255:359-371
    Zhai Z Y, Sooksa-nguan T, Vatamaniuk O K. Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiology,2009,149:642-652
    Zhang S J, Li N, Gao F, Yang A F, Zhang J R. Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Molecular Breeding,2010,26(3):455-465
    Zhang Y S, Yin X Y, Yang A F, Li G S, Zhang J R. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica,2005,144 (1-2):11-22
    Zhao Z Y, Gu W N, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breeding,2002,8(4):323-333
    Zhou G, Weng J, Zeng Y, Huang J, Qian S, Liu G. Introduction of exogenous DNA into cotton embryos. Methods in Enzymology,1983,101:433-481
    Zhou J M, Loh Y T, Bressan R A, Martin G B. The tomato gene Ptil encodes a serine/threonine kinase that is Phosphorylated by Pto and is involved in the hypersensitive response. Cell,1995,83:925-935
    Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol,2002,53:247-273
    Zou H W, Wu Z Y, Yang Q, Zhang X H, Cao M Q, Jia W S, Huang C L, Xiao X. Gene expression analyses of ZmPtil, encoding a maize Ptil-like kinase, suggest a role in stress signaling. Plant Science,2006,171:99-105
    Zou H W, Wu Z Y, Zhang X H, Wang Y Q, Huang C L. Over-expression of ZmPtil, a homologue to Ptil, increases salt tolerance of Arabidopsis thaliana. African Journal of Biotechnology,2010,9: 656-662
    Schonfeld M A,等.作为冬小麦抗旱指标的水分关系.国外农学一麦类作物,1989,(4):29-33
    安颖蔚,张宝石,杨立国.利用外源DNA导入玉米自交系创造变异的研究.安徽农业科学,2007,35(3):667-668
    蔡冲,吕均良,陈昆松.蛋白激酶的研究(综述).亚热带植物科学,2002,31(1):63-67
    柴晓杰,王不武,关淑艳,等.应用RNA干扰技术降低玉米支链淀粉含量.植物生理与分子生物学学报,2005,31(6):625-630
    陈军,戴俊英.干旱对不同耐性玉米品种光合作用及产量的影响.作物学报,1996,22(6):757-762
    陈志辉,邹学校.玉米抗旱机理与育种研究现状及发展趋势.湖南农业科学,2007,(5):63-66
    崔良国,刘开昌,汪黎明.谷子DNA导入玉米创造变异及其利用的研究.山东农业科学,2002,(3):18-20
    邸宏,卢翠华,王振华,等.Bar基因的玉米花粉管通道法转化.中国农学通报,2008,24(2):89-92
    丁明忠,潘光堂,荣廷昭,等.大豆总DNA直接导入法培育优质高蛋白玉米材料研究.西南农业学报,2001,(14):8-12
    丁群星,谢友菊,戴景瑞,等.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学(B辑),1993,23(7):707-713
    丁雪.干早胁迫下ABA对气孔运动的作用机制.干早地区农业研究,1993,11(2)
    董云洲,段胜军,赵连元,杨秀海,贾十荣.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学,1999,32(2):9-13
    杜建中,孙毅,王景雪,等.转基因玉米中目的基因的遗传表达及其抗病性研究.西北植物学报,2007,27(9):1720-1727
    杜娟,季静,王罡,等.基因枪在植物遗传转化中的应用.吉林农业科学,2000,25(2):38-40.
    冯世康,陈成斌,赖群珍,等.外源DNA直接导入玉米的分子育种技术研究初报.广西农学报,2001,(4):16-18
    付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究.山地农业生物学报,2004,23(6):471-474
    龚蓁蓁,沈慰芳,周光宇,等.授粉后外源DNA导入植物技术——DNA通过花粉管通道进入胚囊.中国科学:B辑,1988,6:611-614
    关淑艳,张健华,柴晓杰,等.花粉管通道法将淀粉分支酶基因反义表达载体转入玉米自交系的研究.玉米科学,2005,13(4):13-15,23
    郭光荣.人工诱变与外源DNA直接导入相结合创造遗传变异的探讨.作物研究,1994,8(2):15,34.
    何锶洁,董伟,李慧芬,谷冬梅,陈受宜,田文忠.转甜菜碱醛脱氢酶基因玉米及其耐盐性研究. 高科技通讯,1999,2:50-52
    何迎春,高必达.花粉管通道法转化水稻研究进展.福建稻麦科技,2001,19(1):33-37
    胡文明,徐翠莲,王岳光.花粉管通道介导外源DNA导入技术的研究与应用.安徽农业科学,2007,35(36):11773-11774
    黄璐,卫志明.农杆菌介导的玉米遗传转化.实验生物学报,1999,32(4):381-389
    贾文锁,王学臣.水分胁迫条件下ABA在玉米根芽间的运输及分配.植物生理学报,1996,22(4):363-367
    康宗利,杨玉红, 张立军.植物响应干旱胁迫的分子机制.玉米科学,2006,14(2):96-100
    李广敏,唐连顺,商振清,等.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系.河北农业大学学报,1994,17(2):1-5
    李慧芬,张晓明,宋凤斌,等.农杆菌及基因枪在禾谷类作物遗传转化中的应用.吉林农业科学,1998,(2):32-34,76
    李余良,胡建广,苏菁,等.子房注射法将Bt基因导入超甜玉米.玉米科学,2005,13(1):41-43.
    李余良,胡建广.转基因玉米研究进展.中国农学通报,2006,22(2):71-75
    李玉菊,李小方.植物中解密Ca2+信号转导特异性的机制.细胞生物学杂志,2005,27:414-416
    梁任繁,何龙飞,程亮.花粉管通道法在蔬菜育种中的应用.长江蔬菜,2008,(3):37-39
    刘大文,王守才,谢友菊,戴景瑞.转Zm13-Barnase基因玉米的获得及其花粉育性研究.植物学报,2000,42(6):611-615
    刘丹梅.外源DNA通过花粉管通道法导入玉米的研究.丹东纺专学报,2004,11(4):5-6,8
    刘强,张勇,陈受宜.干旱、高盐及低温诱导的植物蛋自激酶基因.科学通报,2000,45:561-566
    刘欣芳,高晓蓉,苏乔,等.转植酸酶基因玉米的获得及其后代的初步鉴定.玉米科学,2008,16(1):15-19
    刘源霞,兰进好,杜景平,等.转基因玉米研究进展.山东农业科学,2007,(6):21-24
    柳展基,单雷,徐平丽,等.禾本科作物基因枪介导遗传转化研究进展.沈阳农业大学学报,2001,32(6):465-468
    祁永红,韩玉珠,李春秋,等.玉米自交系授粉后外源DNA的导入转化及性状变异的研究初报.玉米科学,1996,4(1):19-21
    祁永红.大豆DNA直接导入玉米自交系的研究.玉米科学,2000,8(1):34-36
    权瑞党,尚梅,王兆玉,张举仁.农杆菌介导的雪花莲凝集素基因转入玉米骨干自交系.西北植物学报,2004,24(5):761-767
    任春梅,高必达,何迎春.基因枪转化技术及其在禾谷类作物遗传转化中的应用.生物学杂志,2001,18(4):29-32
    万文举,邹冬生,彭克勤.论生物诱变——外源DNA导入的双重作用.湖南农学院学报,1992,18 (4):886-891
    王罡,杜娟,张艳华.用花粉管通道法将Bt杀虫基因导入玉米自交系的研究.玉米科学,2002a,10(1):36-37
    王罡,张艳贞,魏松红,等.花粉管通道法将Bt毒蛋白基因导入优良玉米自交系.吉林农业大学学报,2002b,24(4):40-44
    王国英,杜天兵,张宏,谢友菊,戴景瑞,米景九,李太源,田颖川,乔利亚,莽克强.用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生.中国科学(B辑),1995,25(1):1-7
    王景雪,孙毅,崔贵梅,等.花粉介导法获得玉米转基因植株.植物学报,2001,43(3):275-279.
    王秀君,郎志宏,陆伟,等.利用花粉管通道法将耐草甘膦基因mG2-epsps导入玉米自交系的研究初报.中国农业科技导报,2008,10(4):56-62
    王艳杰,中家恒.花粉管通道法转基因技术的细胞胚胎学机理探讨.西北植物学报,2006,26(3):0628-0634
    王忠华,李旭晨,夏英武.作物抗旱的作用机制及其基因工程改良研究进展.生物技术通报,2002,(1):16-19
    韦献雅,付绍红,牛应泽.农杆菌介导floral-dip转基因方法研究进展.中国油料作物学报,2006,28(3):362-367
    肖雪,张秀海,杨清,等.玉米蛋白激酶在转基因拟南芥中的定位.华北农学报,2006,21(3):1-4
    徐淑平,卫志明.基因枪的使用方法介绍.植物生理学通讯,1998,34(1):41-43
    杨东歌,杨凤萍,陈绪清,等.外源脱水应答转录因子AtCBF4基因转化玉米的获得.作物学报,2009,35(10):1759-1763
    杨洪强,梁小娥.蛋自激酶与植物逆境信号转导.植物生理学通讯,2001,37(3):185-191
    杨立国,王金艳,石太渊,等.利用外源DNA导入新技术选育玉米新品系及杂交种.杂粮作物,2005,25(5):283-285
    杨奇志,赵琦,孔建强,等.基因枪技术在农作物基因转化中的应用和进展.生物技术通报,2003,(6):14-17,23
    于品,任朝阳,闵丽,等.花粉管通道法在单子叶作物遗传转化上的应用.东北农业大学学报,2006,37(1):130-134
    原亚萍,母秋华,付荣昭,孙勇如.用基因枪法将防御素基因转入玉米并再生植株初报.吉林农业大学学报,1997,19(4):113-115
    张海明,王茅雁.干旱对玉米过氧化物酶、MDA含量及SOD、CAT活性的影响.内蒙古农牧学院学报,1993,14(4):92-95
    张慧英,刘爱花,薛艳霞.甘蔗DNA导入玉米自交系性状变异的研究.湖北农业科学,2008,47(5):498-500
    张满效,安黎哲,陈拓.植物在渗透胁迫下信号转导的级联机制.兰州理工大学学报,2004,30(2):78-81
    张文英,柳斌辉,杨国航,彭海城,栗雨勤.玉米不同时期抗旱性鉴定指标的灰色关联度与聚类分析.华北农学报,2008,23(增刊):96-98
    张秀君,刘俊起,赵倩,于静娟,敖光明.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.生物技术学报,1999,(4):1-6
    张元昶,张首国,李振科,等.转基因玉米遗传转化的研究进展.重庆工商大学学报(自然科学版),2006,23(5):473-476,495
    张正斌.作物抗旱节水的生理遗传育种基础.北京:科学出版社,2003
    赵炳然.外源总DNA直接导入植物后的整合与分子验证.作物研究,1998,(4):1-3
    赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    钟希琼,叶振邦.综合评价甘蔗的抗早性及其抗旱生理指标.华南农业大学学报,1996,17(3):81-84
    周光宇,龚蓁蓁,王自芳.远缘杂交的分子基础——DNA片段杂交假设的一个论证.遗传学报,1979,6(4):405-413
    周光宇.从生物化学的角度探讨远缘杂交的理论.中国农业科学,1978,(2):16-18
    周庆红,李成琼,匡全.植物蛋白激酶研究进展.生物学杂志,2003,20:1-4
    周旭梅,高旭东,何品.利用花粉管通道法将外源DNA导入玉米的研究进展.辽宁农业科学,2008,(1):36-38
    朱旗,徐吉臣.植物抗旱分子机制研究进展.安徽农业科学,2010,38(26):14198-14202,14205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700