砷化镓材料的团簇及其光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷化镓材料作为一种直接带隙双能谷化合物半导体材料,以其优越的光电特性在微电子和光电子学领域有着广泛的应用。非掺杂半绝缘砷化镓材料的团簇深能级缺陷影响着材料和器件的光电性能,深入研究砷化镓团簇的结构和性质,不论对砷化镓纳米材料的制备和应用,还是对半绝缘砷化镓材料深能级缺陷的微观结构和光电特性的分析,都有着极其重要的意义。
     论文利用杂化密度泛函理论中的B3LYP方法对砷化镓团簇的几何结构和振动频率进行了计算,分析了团簇基态结构的稳定性规律,研究了团簇与半绝缘砷化镓深能级缺陷的关系,讨论了半绝缘砷化镓材料吸收大于本征吸收长波限激光的微观过程,取得以下成果:
     1计算了GamAsn(m=1-2,n=1-7)中性团簇和Ga2Asn(n=1-7)正负离子团簇的基态结构,结果表明团簇结构中As-As和As-Ga键比Ga-Ga键稳定,团簇得失电子成为正负离子团簇,离子团簇自身所带电荷的静电库仑作用使得团簇的结构发生畸变,并影响着团簇的性质和规律。
     2 GamAsn(m=1-2,n=1-7)中性团簇的结构稳定性随团簇的As原子数增大而呈奇偶交替变化规律,As原子为偶数的团簇比As原子为奇数的团簇的结构稳定;具有相同原子数的不同系列团簇,As原子数多的团簇比As原子数少的团簇稳定。
     3 Ga2Asn(n=1-7)中性团簇和正离子团簇的结构稳定性随团簇原子数变化的规律一致,总原子数为偶数的团簇比总原子数为奇数的团簇稳定,负离子团簇刚好相反,即总原子数为奇数的团簇比原子数为偶数的团簇稳定;原子数相同的团簇,其结构稳定性的关系为:负离子团簇>中性团簇>正离子团簇。
     4 GamAsn(m=1-2,n=1-7)团簇的能隙差随As原子数的增大呈奇偶交替变化规律,其中As原子为偶数的团簇比As原子为奇数的团簇的能隙差大,化学活性弱,化学稳定性高;具有相同As原子数的GaAsn(n=1-7)团簇和Ga2Asn(n=1-7)团簇,As原子为偶数的两个团簇比As原子为奇数的两个团簇的能隙差差值小;原子数相同的Ga2Asn(n=1-7)离子团簇与中性团簇相比,能隙差差异大,即团簇得失电子对团簇的化学稳定性的影响大。
     5 GamAsn(m=1-2,n=1-7)团簇的热稳定性随团簇总原子数的增大呈奇偶交替变化规律,其中总原子数为偶数的团簇比总原子数为奇数的团簇的热稳定性好。对于Ga2Asn(n=1-7)离子团簇,正负离子团簇热稳定性随总原子数的变化规律一致,且与中性团簇相反,即总原子数为奇数的团簇比总原子数为偶数的团簇的热稳定性好。
     6提出了半绝缘砷化镓EL2深能级缺陷的离子团簇微观构型,给出了半绝缘砷化镓材料吸收大于本征吸收限激光的微观过程。
The gallium arsenide is a compound semiconductor material with direct bandgap and two-valley; it is widely applied in the field of microelectronics and optoelectronics because of its superior electrooptical characteristics. The deep-level cluster defects of undoped semi-insulating gallium arsenide materials affects the electrooptical properties of materials and devices, the further study on the structure and properties of gallium arsenide clusters will play an extremely important role in the preparation and application of gallium arsenide nanomaterials or the analysis of microstructure and electrooptical characteristic of the deep-level defects of semi-insulating gallium arsenide materials.
     The method of B3LYP in hybrid density functional theory (DFT) was used to optimize the geometric configuration and compute the vibration frequency of gallium arsenide clusters in the paper, the stabile regularities of the ground-state structures of clusters was analyzed, the relation between the clusters and the semi-insulating gallium arsenide deep-level defects was studied, the micro-process of the semi-insulating gallium arsenide materials absorbing the lasers which wavelength is above this permits absorption of long-wave limit was discussed. The results were found as follows:
     The ground-state structures of GamAsn(m=1-2, n=1-7) neutral clusters and Ga2Asn(n=l-7) positive and negative ion clusters were obtained. The results showed that As-As and As-Ga bond was more stable than Ga-Ga bond in those clusters. The clusters advantages and disadvantages of electronic became ion clusters. The electrostatic coulomb interaction which ion cluster itself brought about by charge resulted made the clusters structures distort, and the interaction also affected the nature and patterns of clusters.
     Their structure stability show a certain degree of even/odd alternation with the number of arsenide atoms in the GamAsn(m=1-2, n=1-7) neutral clusters. The structure with even number of arsenide atoms was more stable than those with odd number of arsenide atoms, the structure with more number of arsenide atoms was more stable than those with less number of arsenide atoms in different series clusters with the same totals atoms.
     Their structure stability show the same regularity in the Ga2Asn(n=1-7) neutral and positive ion clusters, the structure with even number of total atoms was more stable than those with odd number of total atoms, on the contrary, the structure with odd number of total atoms was more stable than those with even number of total atoms in Ga2Asn- clusters. The order of structure stability with the same number atoms clusters is that anion clusters was more stable than those of neutral clusters and positive ion clusters, positive ion clusters was the worst in those clusters.
     Their energy gap show a certain degree of even/odd alternation with the number of arsenic atoms in the GamAsn(m=1-2, n=1-7) clusters, the Egap with even number of arsenic atoms was more large than those with odd number of arsenide atoms, the chemical activity of the former is relative weak, and its chemical stability is much stronger. In addition, there is relatively less Egap difference between the atoms with even number than those with odd number atoms in the GaAsn(n=1-7) and Ga2Asn (n=1-7) clusters with the same number of arsenic atoms; there is relatively large Egap difference between the Ga2Asn(n=1-7) positive and negative ions cluster and neutral clusters with the same atoms, in other words, cluster advantages and disadvantages of electronic has a large affect on its chemistry stability.
     Their thermal stability show a certain degree of even/odd alternation with total atom numbers of the clusters in the GamAsn(m=1-2, n=1-7) clusters, the thermal stability with even number of total atoms was stronger than those with odd number of total atoms. Their thermal stability show the same regularity in the Ga2Asn(n=1-7) positive and negative ion clusters, the regularity is contrary to those of the neutral clusters, namely, the thermal stability with odd number of total atoms was stronger than those with even number of total atoms.
     Ion cluster micro configuration of semi-insulating gallium arsenide EL2 deep-level defects was proposed; the micro-process of the semi-insulating gallium arsenide materials absorbing the lasers which wavelength is above this permits absorption of long-wave limit was given.
引文
[1]中国科学院.2006科学发展报告[R].Ⅱ-Ⅵ和Ⅲ-Ⅴ族半导体的光学性质研究展望.北京:科学出版社,2006.
    [2]禄来玉,程艳,王海燕.GaAs相变和热力学性质的密度泛函理论研究[J].原子与分子物理学报,2005,22:175.
    [3]孙卫忠.半绝缘砷化嫁(SI-GaAs)单晶中的杂质与缺陷[D].天津:河北工业大学,2006.
    [4]肖洪地,马洪磊,薛成山等.粒状GaN微晶的合成及其结构性能的研究[J].稀有金属材料与工程,2005,34(9):1411.
    [5]Kisailus D, Choi J H and Lange F F. GaN nanocrystals from oxygen and nitrogen-based precursors[J]. J.Crystal Growth,2003,249:106-120.
    [6]李恩玲.GaAs纳米材料的结构与制备研究[D].西安:西安交通大学,2008.
    [7]孙聂枫,周晓龙,陈秉克等.InP单晶材料现状与展望[J].电子工业专用设备,2005,10:10-14.
    [8]林泉,徐小林,金攀.Φ60mm掺碲GaP单晶的研制[J].半导体技术,2006,31(11):847-850.
    [9]赵有文,孙文荣,段满龙,董志远,杨子祥,吕旭如,王应利.高质量InAs单晶材料的制备及其性质[J].半导体学报,2006,27(08):1391-1395.
    [10]马文瑾,武海顺.AlmN2 (m=1-8)团簇结构与稳定性的DTF研究[J].物理化学学报,2004,20(3):290.
    [11]Motohisa J., Noborisaka J., Takeda J., et al.. Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates [J]. Journal of Crystal Growth,2004, 272:180-185
    [12]Lee C H. Picosecond optoelectronic switching in GaAs[J]. Appl. Phys Lett,1977,30(1): 84-86.
    [13]Mourou G. Picosecond switching in semiconductors, Picosecond optoelectronic device[M]. In Lee C H edited. Orland:Academic press,1984, Z19-23.
    [14]Nunnally W C, Hammond R B.80-W M photoconductive power switch [J]. Appl Phys Lett, 1984,44(9):980-982.
    [15]Loubriel G M, Zutavem F J. Towards pulsed power uses for photoconductive semiconductor switches:closing switches [J]. Proc the IEEE Pulsed Power Conf.1987,149-152.
    [16]Zhao H, Hur P, Gunderson M A. Lock-on effect in GaAs photoconductive switches[J]. Proc. SPIE.1992,1632:274-280.
    [17]Shi Wei, Jia Wanli, Ji Weili. Ultra-Wideband Electromagnetic Radiation from GaAs Photoconductive Switches[J]. Chinese Journal of Semiconductors,2005,26(1):11.
    [18]Shi Wei, Tian Liqiang. Mechanism analysis of periodicity andweakening surge of GaAs photoconductive semiconductor switches [J]. Appl. Phys. Lett.,2006,89(20):041511.
    [19]Shi Wei, Hou Lei. Theoretical study of field intensity of THz radiation from GaAs large-aperture photoconductive antennas [J]. Chin. Phys. Lett.,2006,23:2867.
    [20]Shi Wei, Tian Liqiang, Liu Zheng, et al..30 kV and 3 kA semi-insulating GaAs photoconductive semiconductor switch [J]. Appl. Phys. Lett,2008,92(4):043511.
    [21]Ma deming, Shi wei, Xue hong, et al. Investigation of ultra-fast accurately synchronization control GaAs photoconductive switches[J]. Proc. SPIE,2008,7135:71353S.
    [22]Shi Wei, Liang Zhenxian. Fabrication and characterization of high-voltage ultra-fast GaAs Photoconductive Switches [J]. Chin. J. Semiconductors,1998,19(6):437-441
    [23]Shi Wei, Zhang Xianbin, Li Qi, et al.. Investigation of high gain lateral semi-insulating GaAs photoconductive switch triggered by 1064nm laser pulse. Chin. Phys. Lett.,2002,19:351.
    [24]Desnica U. V., Skowronski M., Cretella M. C.. Comment on "Pair of local vibration mode absorption bands related to EL2 defects in semi-insulating GaAs"[Appl. Phys. Lett.50,1666 (1987)][J]. Appl. Phys. Lett.,1988,52:760.
    [25]Desnica U. V., Santic B.. Trap-induced photoconductivity in semi-insulating GaAs[J]. J.Appl.Phys.1990,67:1408.
    [26]Pavlovic M., Desnica U. V.. Improvement in semi-insulating GaAs material quality:A comparative study of defects with deep levels [J]. Jpn. J. Appl. Phys., Part 1.1998,37:4687.
    [27]Pavlovic M., Desnica U. V., Gladic J. Complete set of deep traps in semi-insulating GaAs[J]. J. Appl. Phys.2000,88:4563.
    [28]赵周英,吴风美SI-GaAs中EL2和EL6缺陷团簇相关性研究[J].功能材料与器件学报,1996,2(1):32-36.
    [29]李志坚.微电子技术的又一次革命—微电子机械系统(MEMS)发展展望[J].科技导报,1997,9:9-14.
    [30]吴锦雷,吴全德.几种新型薄膜材料[M].北京:北京大学出版社,1999,1-5.
    [31]张立德,解思深.纳米材料和纳米结构[M].北京:化学工业出版社,2005.
    [32]俞健,李宝兴.GaAs团簇的理论研究进展和趋势[J].杭州师范学院学报(自然科学版),2006,5(6):457-459.
    [33]王广厚.团簇物理学[M].上海:上海科学技术出版社,2003,113.
    [34]Stein G.D.. Atoms and molecules in small aggregates [J]. Phys. Teach.,1979,17(8):503-512.
    [35]王广厚.趋于统一发展的团簇科学[J].物理,1998,27(6):338-343.
    [36]Melinon P., Keghelian P., Perez A., et al.. Nanostructured SiC films obtained by neutral-cluster depositions [J]. Phys. Rev. B,1998,58(24):16481-16490. [37] Keghelian P.; Melinon, P.; Perez, A., et al. Properties of silicon-carbon-cluster-assembled films [J]. The European Physical Journal D,1998,9(1-4):639-642.[38]贾金锋,薛其坤,张绳百.完全有序的全同金属纳米点阵列的生长与研究[J].物理,2002,31(5):265-268.[39]Ping Zhang, Qi-Kun Xue, Xie X. C..Spin current through a quantum dot in the presence of an oscillating magnetic field [J]. Phys. Rev. Lett..2003,91(19):196602-196605.[40]贾金锋,窦瑞芬,李绍春.纳米团簇晶体的制备和结构研究[J].世界科技研究与发展机构,2004,26(5):40.
    [41]Roucoux A., Schulz J., Patin H.. Reduced transition metal colloids:A novel family of reusable catalysts? [J]. Chem. Rev,2002,102:3757-3778.
    [42]Schlogl R., Hamid S. B. A. Nanocatalysis:Mature science revisited or something really new? [J]. Angew. Chem. Int. Ed.,2004,43:1628-1637.
    [43]焦健,潘明虎,薛其坤,等.硅表面纳米银团簇的氧助迁移行为[J].催化学报,2003,24(6):433-436.
    [44]Hebard A. F., Rosseinsky M. J., Haddon R. C., et al.. Superconductivity at 18K in Potassium-doped C60 [J]. Nature,1991,350:600-601.
    [45]Friedman S. H., DeCamp D. L., Sijbesma R. P. et al.. Inhibition of the HIV-1 protease by fullerene derivatives:model building studies and experimental verification [J]. J. Am. Chem. Soc.,1993,115(15):6506-6509.
    [46]Toniolo C.; Bianco A.; Maggini M; et al.. A bioactive fullerene peptide [J]. J. Med. Chem., 1994,37(26):4558-4562.
    [47]陈荣,梁文平.C60团簇及高碳原子簇的化学和物理研究进展[J].自然科学进展,2001,11(11):1229-1232.
    [48]王广厚.团簇物理的新进展(Ⅰ)[J].物理学进展,1994,14(2):165-166.
    [49]王广厚.原子团簇科学[J].科技导报,1994,10:9-11.
    [50]刘凤丽.二元合金小团簇的结构和稳定性[M].哈尔滨:黑龙江大学出版社,2008.
    [51]刘红杰.超强超短激光脉冲与团簇相互作用实验研究[D].绵阳:中国工程物理研究院,2007.
    [52]Becker E. W., Bier K., Henkes W.. Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum [J]. Z. Phys.,1956,146(3):333-338.
    [53]Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F., Smalley R. E.. C(60):Buckminster fullerene, Nature,1985,318:162-163.
    [54]孙厚谦,王广厚,等.Nin (n=2-20)团簇的结构[J].原子与分子物理学报,2000,18(4):387.
    [55]Gong XG, Kumar V. Electronic structure and relative stability of icosahedral Al-transition-metal clusters [J]. Physical Review B,1994,50 (23):17701-17704.
    [56]Yao HY, Gu X, Ji M, Gong XG, Wang DS. Structures and magnetic moments of Nin (n=10-60) clusters[J].Physics Letters A,2006,360(4-5):629-631.
    [57]Cao JX, Gong XG, Wu RQ.Giant piezoresistance and its origin in Si(111) nanowires: First-principles calculations[J]. Physical Review B,2007,75(23):233302.
    [58]倪国权,周汝枋,戴明,等.一种用于激光蒸发产生团簇束的高速脉冲气阀[J].中国激光,1994,21(9):750-752.
    [59]陈光龙.飞秒强激光脉冲与氢(氘)团簇和甲烷(氘代甲烷)团簇的相互作用研究[D].上海:中国科学院上海光学精密机械研究所,2008.
    [60]王向欣,王成,李邵辉,倪国权,徐至展.飞秒强激光经氩气和氩团簇的传播,光子学报,2005,34(7):961-963.
    [61]缪竞威,杨朝文,安竹等,超短超强激光及微团簇与大尺度团簇相互作用[J].原子与分子物理学报,2007,24(2):221-224.
    [62]缪竞威,杨百方,师勉恭,等用库仑爆炸实测4HeD+的键长[J].中国科学:A辑,2000,30(12):1125
    [63]Wu Sixin,Yuan Na, Xu Hongtao, et al. Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles[J] Nanotechnology,2006,17:4713-4718
    [64]Wu Sixin, Liu Hongzeng, Liu Hongmei, et al. Preparation and oscillation of absorption bands of ZnS clusters[J] Nanotechnology,2007,18:155604.
    [65]Guo Guo-Ping, Zhang Hui, Tu Tao, Guo Guang-Can.One-step preparation of cluster states in quantum-dot molecules [J].Phys. Rev. A,2007,75(5):050301.
    [66]Zhang Hui, Guo Guo-Ping, Tu Tao, and Guo Guang-Can. Quantum computation and Bell-state measurements with double-dot molecules [J].Phys. Rev. A,2007,76(1):012335.
    [67]Li S. C., Jia J. F., Dou R. F., Xue Q. K., Batyrev I. G. and Zhang S.B.. Borderline magic clustering: The fabrication of tetravalent Pb cluster arrays on Si(111)-7×7 surfaces [J]. Phys. Rev. Lett., 2004,93:116103.
    [68]Zhang P., Xue Q. K., Xie X. C.. Spin current through a quantum dot in the presence of an oscillating magnetic field [J]. Phys. Rev. Lett.,2003,91:196602.
    [69]Wu K. H., Fujikawa Y, Nagao T., Hasegawa Y, Nakayama K. S., Xue Q. K., Wang E. Briere G, T., Kumar V., Kawazoe Y, Zhang S. B., and Sakurai T. Na adsorption on the Si(111)-7x7 surface: From two-dimensional gas to nanocluster array [J]. Phys. Rev. Lett.,2003,91:126101.
    [70]王若曦.若干半导体纳米簇材料几何结构和相关性质的理论研究[D].济南:山东大学,2006.
    [71]翟华金,倪国权,周汝枋等.混合、掺杂团簇研究进展[J].物理学进展,1997,17(3):265-288.
    [72]陈伟,王占国,林兰英,等.沸石分子筛中半导体量子纳米团簇的组装及应用前景[J].物理学进展,1997,17(1):83-117.
    [73]Ozin G. A. Nanochemistry:Synthesis in diminishing dimensions [J]. Advanced Materials,1992, 4(10):612-649.
    [74]Balasubramanian K.. Electronic structure of (GaAs)2 [J].Chemical Physics Letters,1990, 171(1-2):58-62.
    [75]Al-Laham Mohammad A., Raghavachari Krishnan. Theoretical study of small gallium arsenide clusters[J]. Chemical Physics Letters,1991,187(1-2):13-20.
    [76]Al-Laham Mohammad A., Raghavachari Krishnan. Theoretical study of Ga4As4, A14P4, and Mg4S4 clusters[J] Journal of Chemical Physics,1993,98(11):8770-8876.
    [77]Song K. M., Ray A. K., Khowash P K.On the electronic structures of GaAs clusters [J]. Journal of Physics B:Atomic, Molecular and Optical Physics,1994,27(8):1637-1648.
    [78]Lou L., Wang L., Chibante L. P. F., et al. Electronic structure of small GaAs clusters [J]. Journal of Chemical Physics,1991,94(12):8015-8020.
    [79]Vasiliev L., Ogut S., Chelikowsky J. R.. Ab initio absorption spectra of gallium arsenide clusters [J]. Physical Review B,1999,60(12):R8477-R8480.
    [80]Zhao Wei, Cao Pei-lin. Li B X, et al. Study of the stable structures of Ga4As4 cluster using FP-LMTO MD method [J]. Physical Review B,2000,62(24):17138-17143.
    [81]Zhao Wei, Cao Pei-lin.Study of the stable structures of the Ga5As5 cluster using the full-potential linear-muffin-tin-orbital molecular-dynamics method [J] Journal of Physics:Condensed Matter, 2002,14(1):33-43.
    [82]Zhao Wei, Cao Pei-lin.Study of the stable structures of Ga6As6 cluster using FP-LMTO-MD method [J] Physics Letters A,2001,288(1):53-57
    [83]Zhao Wei, Cao Pei-lin, Duan Wenhui. Study of structure characteristics of the Ga8As8 cluster [J]. Physics Letters A,2006,349(1-4):224-229.
    [84]Yi Jae-Yel. Atomic and electronic structures of small GaAs clusters [J]. Chemical Physics Letters, 2000,325 (1-3):269-274.
    [85]Karamanis P., Begue D., Pouchan C. Structure and Polarizability of Small (GaAs)n Clusters (n=2, 3,4,5,6, and 8) Computing Letters(CoLe),2006,2(4):255-258.
    [86]Karamanis Panaghiotis, Begue Didier, Pouchan Claude. Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters GanAsn (n=2-9) J. Chem. Phys., 2007,127(9):094706.
    [87]Karamanis Panaghiotis, Pouchan Claude, Maroulis George. Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations[J] Phys. Rev.A,2008,77(1):013201-013207
    [88]Gutsev G.L., O'Nea R.H., Jr., Saha B.C., Mochena, M.D., Johnson, E., Bauschlicher Jr., C.W.. Optical properties of (GaAs)n clusters (n=2-16)[J]. Journal of Physical Chemistry A,2008,112
    (43):10728-10735.
    [89]Ghosh Chanchal, Pal Sougata, Goswami Biplab, Sarkar Pranab. Theoretical studies on size-dependent properties of GanAsn clusters[J].Chemical Physics Letters,2005,407(4-6):498-503.
    [90]Ghosh Chanchal, Sarkar Pranab. Theoretical investigation of structural and electronic properties of wurtzite GanAsn clusters [J]. Journal of Physics and Chemistry of Solids,2007, 68(7):1324-1329.
    [91]Yanlin Sun, Xiaoshuang Chen, Lizhong Sun, Xuguang Guo and Wei Lu. Nanoring structure and optical properties of Ga8As8[J] Chemical Physics Letters,2003,381(3-4):397-403.
    [92]Q.L. Lu, J.C. Jiang, J.G. Wan, G.H. Wang. Density-functional study of ring-like GanAsn (3≤n≤ 14) clusters [J]. Journal of Molecular Structure:THEOCHEM,2008,851(1-3):271-276.
    [93]Balasubramanian K.. Spectroscopic constants and potential energy curves of GaAs, GaAs+, and GaAs-[J]. Journal of Molecular Spectroscopy,1990,139(2):405-423.
    [94]Meier U., Peyerimhoff S. D., Grein F.. Ab initio MRD-CI study of GaAs-, GaAs2(±), Ga2As2(±) and As4 clusters[J]. Chemical Physics,1991,150(3):331-351.
    [95]Zhu Xiaolei. Spectroscopic properties of gallium arsenide tetramers:Ga2As2, Ga2As2+ and Ga2As2-[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2005, 61(11-12):2730-2736.
    [96]Yang Jiansong, Li Baoxing and Zhan Shichang. Study of GaAs cluster ions using FP-LMTO MD method[J]. PhysicsLetters A,2006,348(3-6):416-423.
    [97]杨建宋,李宝兴.砷化镓离子团簇的稳定性研究[J].物理学报,2006,55(12):6562.
    [98]Gutsev G L., Johnson E., Mochena M. D., Bauschlicher C. W., Jr.The structure and energetics of (GaAs)n, (GaAs)n-, and (GaAs)n+-(n=2-15) [J]. Journal of Chemical Physics,2008,128(14): 144707.
    [99]Liu Y., Zhang, Q. L., Tittel F.K., Curl R.F., Smalley R.E. Photodetachment and photofragmentation studies of semiconductor cluster anions [J]. The Journal of Chemical Physics, 1986,85(12):7434-7441.
    [100]Jin C., Taylor K. J., Conceicao J., Smalley R. E.. Ultraviolet photoelectron spectra of gallium arsenide clusters [J]. Chemical Physics Letters,1990,175(1-2):17-22.
    [101]Wang Lihong, Chibante L. P. F., Tittel F. K., Curl R. F., Smalley. R. E.. Ammonia chemisorption on gallium arsenide clusters [J]. Chemical Physics Letters,1990,172(5):335-340.
    [102]Wang Lihong, Chibante L. P. F., Tittel F. K., Curl R. F., Smalley R. E. Isomers of gallium arsenide cluster ions [J]. Chemical Physics Letters,1992,194(3):217-222
    [103]Taylor Travis R., Gomez Harry, Asmis Knut R., Neumark Daniel M.. Photoelectron spectroscopy of GaX2-, Ga2X-, Ga2X2-, and Ga2X3-(X= P,As)[J]. J. Chem. Phys.,2001,115,
    (10):4620-4631. [104] K. Balasubramanian Enumeration of the isomers of the gallium arsenide clusters (GamAsn)[J]. Chemical Physics Letters,1988,150(1-2):71-77 [105] Liao M.Z., Dai D.Z., Balasubramanian K., Electronic states of the Ga3As2 and Ga2As3 clusters [J]. Chem. Phys. Lett.,1995,239 (1-3):124-130. [106] Piquini P., Canuto S., Fazzio A.. Electronic and structural trends in small GaAs clusters [J]. Nanostructured Materials,1998,10(4):635-647. [107]Piquini P., Canuto S., Fazzio A. Structural and electronic studies of Ga3As3, Ga4As3, and Ga3As4 [J]. International Journal of Quantum Chemistry,1994,52(S28):571-577.
    [108]Remi Marchal, Philippe Carbonniere, Didier Begue, Claude Pouchan. Structural and vibrational determination of small gallium-arsenide clusters from CCSD(T) and DFT calculations[J]. Chemical Physics Letters,2008,453(1-3):49-54.
    [109]Yu Jian, Li Bao-xing, Chu Qiao-yan, Zhan Shi-chang. Theoretical study on the composition dependence of Ga8-nAsn (n=0-8) clusters. Physica B:Condensed Matter,2008,403 (1):159-164.
    [110]Kwong H. H., Feng Y. P., Boo T. B.. Composition dependent properties of GaAs clusters Computer Physics Communications,2001,142(1-3):290-294.
    [111]Feng Y. P., Boo T. B., Kwong H. H., Ong C. K., Kumar V., Kawazoe Y. Composition dependence of structural and electronic properties of GamAsn clusters from first principles[J]. Phys. Rev. B, 2007,76(4):045336-045343.
    [112]Erko(?) akir, Turker Lemi. Energetics and stability of Gam, Asn, and GamAsn microclusters:PM3 calculation [J] Physica E:Low-dimensional Systems and Nanostructures,1999,5(1-2):7-15.
    [113]Joseph J., BelBruno. Bonding and energetics in small clusters of gallium and arsenic [J]. Heteroatom Chem,2003,14:189-196.
    [114]唐蕾.半绝缘砷化镓单晶中位错胞状结构和微缺陷的研究[D].河北工业大学,2003.
    [115]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:国防工业出版社,1994.
    [116]谢孟贤,刘诺.化合物半导体材料与器件[M].成都:电子科技大学出版社,2000.
    [117]Lagowski J., Gatos,H.C., Parsey J.M.,et al. Origin of 0.82eV electron trap in GaAs and its annihilation by shallow donors[J]. Appl. Phys. Lett.,1982,40(4):342-344.
    [118]Wager J. F., Van Vechten J. A. Atomic model for the EL2 defect in GaAs[J]. Phys. Rev. B,1987, 35:2330.
    [119]Zou Yuanxi, Wang Guangyu, Benakki S., Goltzene A., Schwab C. Comment on "Atomic model for the EL2 defect in GaAs"[J]. 1988, Phys. Rev. B,38:10953-10955.
    [120]Wang Guangyu, Zou Yuanxi, Benakki S., Goltzene A., Schwab C. Identification of paramagnetic AsGa and optical EL2 centers in semi-insulating gallium arsenide [J].J. Appl. Phys.,1988,
    63:2595.
    [121]Wager J. F., Van Vechten J. A. Reply to "Comment on'Atomic model for the EL2 defect in GaAs"[J]. Phys. Rev. B,1988,38:10956.
    [122]Wager J. F., Van Vechten J. A. Reply to "Comment on'Atomic model for the EL2 defect in GaAs"[J]. Phys. Rev. B,1989,39:1967.
    [123]Stievenard D., Boddaert X., Bourgoin J. C., von Bardeleben H. J. Behavior of electron-irradiation-induced defects in GaAs[J]. Phys. Rev. B,1990,41:5271-5279.
    [124]Morrow R. A. Model of EL2 formation in GaAs[J]. J. Appl. Phys,1991,70(11):6782-6789.
    [125]T Wosinski, A Makosa and Z WitczakTransformation of native defects in bulk GaAs under ultrasonic vibration[J].Semicond. Sci. Technol,1994,9(11):2047-2052.
    [126]Iijima S.. Helical Microtubules of Griphitic Carbon[J]. Nature,1991,354:56-58.
    [127]Iijima S Ichihashi T. Single-shell-carbon nanotubes of 1-nm diameter [J]. Nature,1993,363: 603-605.
    [128]Endo M., Takeuchi K., Kobori K., Takahashi K., Kroto H.W., Sarkar A.. Pyrolytic carbon nanotubes from vapor-grown carbon fibers [J]. Carbon,1995,33:873.
    [129]丁迅雷.金团簇上小分子吸附的第一性原理研究[D].合肥:中国科学技术大学,2004.
    [130]李喜波,唐晓红,吴卫东,等.磁控溅射法制备金团簇纳米颗粒及性能表征[J].强激光与粒子束,2006,18(6):1023-1026.
    [131]Seliger R.L., Ward J.W., Wnag V, Kubena R.L.. A high-intensity scanning ion probe with submicrometer spot size [J]. Appl. Phys. Lett.,1979,34:310-312.
    [132]Granqvist C. G, Buhrman R. A. Ultrafine metal particles[J]. J. Appl. Phys.,1976,47(5):2200.
    [133]Rohlfing E.A., Cox D.M., Kaldor A.. Photo ionization of isolated nickel atom clusters [J]. J.Phys.Chem.,1984,88:4497-4502.
    [134]Wilenzick R.M., Russell D.C., Morriss R.H., Marshall. S. W.. Uniform Microcrystals of Platinum and Gold [J]. J.Chem.Phys.,1967,47:533-536.
    [135]Li W. Z., Xie S. S., Qian L. X., Chang B. H., Zou B. S., Zhou W. Y., Zhao R. A., Wang G. Large-Scale Synthesis of Aligned Carbon Nanotubes [J].1996,274(5293):1701-1703.
    [136]邢小鹏,田志新,刘鹏,等.用于团簇研究的激光反射式飞行时间质谱仪[J].化学物理学报,2002,15(2):83-87.
    [137]Vager Z., Kanter E. P., Both G, Cooney P. J., Faibis A., Koenig W., Zabransky B. J., Zajfman D.. Direct Determination of the Stereochemical Structure of CH4+[J]. Phys. Rev. Lett.1986, 57(22):2793-2795.
    [138]张材荣.金属及半导体团簇结构与性质的理论研究[D].兰州:西北师范大学,2004.
    [139]于松,王崇愚,于涛.嵌入原子法研究Ni3A1中点缺陷以及Re择优占位和集团化[J].物理学
    报,2007,56(6):3212-3218.
    [140]刘爱霞,段海明.遗传算法结合不同势研究Irn(n=2-60)团簇结构特性[J].原子与分子物理学报,2008,25(3):702-710
    [141]Hartree D.R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1928,24(1):111-132.
    [142]Fock V. Naherungsmethoden zur Losung des Quantenmechanischen Mehrkorperproblems[J]. Zeit.Phys.,1930,61:126.
    [143]Slater J. C. Atomic Shielding Constants [J]. Phys. Rev.,1930,36(1):57-64.
    [144]Roothaan C.C.J. New developments in Molecular orbital Theory[J]. Rev. Mod. Phys., 1951,23:69-89.
    [145]Schleyer P.R.. Encyclopedia of Computational Chemistry[M].New York:Wiley,1998.
    [146]Thomas H. The Calculation of Atomic Fields [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1927,23:545.
    [147]Fermi R. Statistical Method for Determining Some Properties of the Atom[J]. Atti Accad Lincei, 1927,6:602.
    [148]Hohenberg P., Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev.1964,136(3B):B864-B871.
    [149]Kohn W, Sham L. J. Quantum Density Oscillations in an Inhomogeneous Electron Gas[J]. Phys. Rev.,1965,137(6A):A1697-A1705.
    [150]Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev.,1965,140(4A):A 1133-A1138.
    [151]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展[J].化学进展,2005,17(2):192-202
    [152]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A.,1988,38(6):3098-3100.
    [153]Lee C., Yang W, Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37(2):785-789.
    [154]Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [155]Becke A.D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98(7):5648.
    [156]Vosko S.H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J]. Can. J. Phys.,1980,58:1200-1211.
    [157]李恩玲,马德明,马红,等.Sin-1N 和 Sin-2N2 (n=3-8)离子团簇结构及其光电子能谱的研究.光学学报,2007,27(11):1920-1928.
    [158]Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., et al. Gaussian 03. Revision A.01, Gaussian, Inc., Pittsburgh PA,2003.
    [159]Li S., Van Zee R. J., Weltner Jr.W. Far-infrared spectra of small gallium phosphide, arsenide, and antimonide molecules in rare-gas matrixes at 4K[J]. J. Phys. Chem.,1993,97 (44): 11393-11396.
    [160]王浩,杨恢东,丁瑞钦GaAs/SiO2纳米晶镶嵌薄膜的拉曼光谱与吸收光谱研究[J].光学学报,2000,20(6):847-851.
    [161]马德明,施卫,李恩玲,等.Ga2Asn离子团簇结构及其光电子能谱研究[J].光学学报,2009,29(4):1032-1037.
    [162]马德明,李恩玲,施卫,等.密度泛函理论对GamAsn团簇的结构及稳定性的研究[J].原子与分子物理学报,2008,25(4):984-990.
    [163]陈坚邦,砷化镓材料发展和市场前景稀有金属[J].2000,24(3):208-217.
    [164]马德明.用光电导开关产生稳幅无晃动超快电脉冲的研究[D].西安:西安理工大学,2005.
    [165]宁王君,丁勇,夏冠群,等.3aAs衬底深能级EL2与电路旁栅效应的光敏特性和迟滞现象[J].半导体技术,2000,25(1):23-26.
    [166]施卫,马德明,赵卫.用光电导开关产生稳幅ps量级时间晃动超快电脉冲的研究[J].物理学报,2004,53(6):1716-1720.
    [167]Loubriel G.M., Buttram M.T., Helgeson W.D, et al.Triggering GaAs Lock-on Switches with Laser Diode Arrays [J]. SPIE Proc.,1990,1378(1):179-186
    [168]Rose A., Zutavern F.J. High Power Optical Activated Solid-State.Switches,lsted[M]. Boston:Artech House,1993,22(5):252-257
    [169]Ma deming, Shi wei, Ma xingrong, Wang xinmei, Pei tao. Investigation of GaAs photoconductive switches triggered by 900nm semiconductor lasers[J]. SPIE Proc.,2009, 7158:715809.
    [170]Shi Wei, Zhang Xianbin, Li Qi, et al. Investigation of high gain lateral semi-insulating GaAs photoconductive switch triggered by 1064nm laser pulse[J]. China Phys Lett,2002,19(3):351
    [171]Shi wei, Jia wanli. Investigation of GaAs photoconductive switch irradiated by 1553nm laser pulse [J] Chinese Journal of Semiconductors.2003,24(10):1016-1020.
    [172]姜节俭.光电物理基础[M].成都:成都电讯工程学院出版社,1986.25-26.
    [173]Kou Y.K., Huang M.F., Birnbaum M. Tunable Cr:YSOQ-switched Cr:Li CAF laser[J]. IEEE J Quant Electron,1995,31(4):657-663.
    [174]陈宜生.物理效应及其应用[M].天津:天津大学出版社,1995.
    [175]Shi Wei, Jia Wanli, Ji Weili. Ultra-Wideband Electromagnetic Radiation from GaAs Photo-conductive Switches [J]. Chinese Journal of Semiconductors,2005,26(1):11-15
    [176]Shi Wei; Xu Jingzhou; Zhang Xicheng. Terahertz generation from Si3N4 covered photoconductive dipole antenna [J]. Chinese Optics Letters,2003,1 (5):308-310.
    [177]姚建铨,路洋,张百钢等.THz辐射的研究和应用新进展[J].光电子·激光,2005,16(4):503-510.
    [178]孙博,姚建铨.基于光学方法的太赫兹辐射源[J].中国激光,2006,33(10):1349-1359.
    [179]Cai Y, Brener I, Lopata J, et al. Design and performance of singular electric field terahertz photoconducting antennas [J]. Appl Phys Lett,1997,71(15):2076.
    [180]ShiWei, DaiHuiying, SunXiaowei. Photon-activated chargedomainin high-gain photoconductive switches [J]. Chin Opt Lett,2003,1(9):55.
    [181]Verghese S, McIntosh K A, Brown E R. Highly tunable fiber-coupled photo mixers with coherent terahertz output power [J]. IEEE Trans Microwave Th Tech,1997,45:130.
    [182]Sun F G, Zhi ping Jiang, Zhang X C. Analysis of terahertz pulse measurement with chirped robe beam [J]. Appl Phys Lett,1998,73(16):2233.
    [183]Zhi ping Jiang, Zhang X C. Measurement of spatiotemporal terahertz field distribution by using chirped pulse technology [J]. IEEE J. Of Quantum Electronics,2000,36(10):1214
    [184]Darrow J.T, Zhang X C, Auston D H, et al. Saturation properties of large aperture photo conducting antennas [J]. IEEE Quant. Electron,1992,28(6):1607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700