人参真空冷冻干燥工艺参数试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空冷冻干燥技术是集真空科学、低温工程、流体技术、控制工程、传热传质和动力工程于一体的综合技术工艺,在食品、药品、生物制品等领域得到了广泛应用。由于真空冷冻干燥过程是在低温和真空条件下进行的传热传质过程,因此干燥过程时间长,能耗大,干燥速率低,生产成本高。本论文在分析真空冷冻干燥机理的基础上,以人参为研究对象,探讨真空冷冻干燥过程中工艺参数对干燥特性的影响,为采用真空冷冻干燥技术对人参进行干燥加工提供指导。
     在对已有研究成果进行总结和对真空冷冻干燥特点深入分析的基础上,建立了考虑因素较为全面的新二维真空冷冻干燥模型,使模型的理论计算更接近实际真空冷冻干燥过程,为真空冷冻干燥的机理分析和热控制提供了理论参考。
     采用美国产Q200DSC差示扫描量热仪,在升温速率和降温速率为10℃/min的条件下测得常压状态下人参的共晶点温度和共熔点温度分别为-16℃和-0.05℃。利用电阻测定法测量了真空状态下人参共晶点温度为-15℃,与差示扫描量热法测得的共晶点温度吻合。测量结果为真空冷冻干燥过程工艺参数的选择提供了参考依据。
     利用FLUENT软件模拟分析了干燥室加热板与物料上表面之间的空间温度场分布,物料离上加热板越近,获得的热能就越多,干燥所需的时间就越少。物料边缘的温度梯度较中心部位大,所以物料的边缘部分获得的能量相对于中心部分来说更多,因此更容易干燥。
     利用ANSYS软件模拟分析了人参切片在预冻过程中温度的变化,结果表明温度场模拟数据与试验实测数据基本相符,为准确判断冻结结束时间提供了参考。
     研究了平行平板间辐射传热的过程及状态,推导辐射传热过程中有效能和最大有效能热传输效率时的最佳接收温度的计算公式。结果表明在稳态传热时接收板温度最佳值与材料表面性质无关,两平行板间空间的温度场分布不均匀,接收板中心点的温度高于边缘处的温度,温度梯度随两平行板辐射距离的减小而增加。因此,为提高物料受热均匀性,应增加冻干物料与加热板间的距离。
     应用ANSYS软件模拟分析了在分段函数加热曲线、抛物线型加热函数、指数型加热函数、有理函数加热曲线四种不同加热方式下人参切片内部各点温度随时间的变化规律,结果表明分段型加热函数使人参切片升温最快。分析结论为加速干燥速率以达到节能目的提供了依据。
     应用二次回归通用旋转组合试验建立了人参切片厚度、加热温度和干燥室压强与干燥速率、生产率和面积收缩率之间关系的回归方程,利用非线性优化方法,对三个回归方程分别进行优化求解,得出优化工艺参数。
     当人参切片厚度取值为4.8mm、加热板温度取值为50.4℃、干燥室压强取值为48.7Pa时,干燥速率具有最大值1.56h~(-1)。当人参切片厚度取值为3mm、加热板温度取值为60℃、干燥室压强取值为80Pa时,单位面积干燥生产率具有最大值111.7g/h·m~2。当人参切片厚度取值为12mm、加热板温度取值为40℃、干燥室压强取值为40Pa时,切片面积收缩率具有最小值9﹪。
     利用BP神经网络理论对真空冷冻干燥过程进行了模拟研究,结果表明,BP神经网络能较精确的模拟真空冷冻干燥过程。采用人参切片干燥正交试验结果对BP神经网络进行训练后,对真空冷冻干燥工艺条件进行了预测和优化,预测值与试验实测值的相对误差较小,表明用BP神经网络理论模拟真空冷冻干燥过程具有较高的准确性。
Vacuum freeze-drying is a comprehensive technology integrated with vacuum science, cryogenicsengineering, fluid technique, control engineering, heat and mass transfer and dynamic engineering, whichhas been applied widely in food engineering, medicine engineering and biological product engineering. Thefreeze-drying is a procedure of heat and mass transfer under lower temperature and high vacuum, thedrying process needs long time and much energy because of lower drying velocity, so the production costsare relative high. The objectives of the study were to investigate the impact of vacuum freeze-dryingprocess, and to provide practical guidance for application of vacuum freeze-drying for ginseng processing.
     On the basis of summary of research results and analysis of vacuum freeze-drying, a comprehensivenew tow-dimension model had been established, and the theoretical values of the model was close identicalwith experiment data, which provided theoretical references for thermal control of vacuum freeze-drying.
     The eutectic point temperature and melting point temperature of ginseng were measured respectivelyusing differential scanning calorimetry (DSC). The DSC analysis indicated that the eutectic temperatureand melting point temperature were-16℃and-0.05℃respectively at heating and cooling rates of10℃/min. The eutectic point temperature of ginseng was-15℃measured by electric resistivity method,which was equal to DSC method. The measured results could be used for determination of technologicalparameters for vacuum freeze-drying procedure.
     Using FLUENT software the temperature field of the space between heating plate and the materialupper surface was simulated in the drying chamber, and the material could obtain much heating energy as itwas nearer to the heating plate, which led to a shorter drying time. As the temperature gradient of the fringeis higher than that of the center, so the material in the fringe section can get more energy and be dried morequickly.
     The procedure and state of thermal radiation between two parallel plates was studied, and calculationformula for effective and maximum effective transmission efficiency of heat receiving by plates duringradiation procedure was developed. The results showed that optimum temperature of receiving plate wasnot affected by material surface properties during the steady heat transfer process, and the temperaturebetween two parallel plates was nonconformity, the temperature of the receiver center was higher than that of the edge, the temperature gradient increased with the decrease of the radiation distance. Therefore, inorder to improve the uniformity of temperature within the material, the distance of the two plates should beenlarged.
     The change of temperature in ginseng in the frozen process was analyzed with ANSYS software, andthe results showed that simulation temperature field consistent with experimental data which provided ofaccurate judgment for frozen ending time.
     The temperature change in each point in Ginseng slice with time was analyzed in four differentheating modes by means of the ANSYS software; the heating modes were separable heating function,parabolic heating function, and exponential heating function, power heating function. The results showedthat separable heating function made the ginseng slice warming fastest. The result provided theoreticalreferences for increasing drying velocity and saving energy for freeze-drying process.
     Using quadratic regression experiment with general rotary combination design, regression equationsdescribing relations of criteria with ginseng slice, heating temperature and drying cabinet pressure, dryingvelocity, productivity and the area contraction ratio were developed. Based on regression equations andusing the method of nonlinear optimization, three optimal drying parameters were obtained as follows: Thehighest drying velocity was1.56h~(-1)with ginseng slice thickness4.8mm, heating temperature50.4℃anddrying cabinet pressure48.7Pa; the maximum drying productivity was111.7g/h·m~2with ginseng slicethickness3mm, heating temperature60℃and drying cabinet pressure80Pa; the minimum area contractionratio was9﹪with ginseng slice thickness12mm, heating temperature40℃and drying cabinet pressure40Pa.
     Using BP neural network, vacuum freeze-drying process was simulated. The result showed that the BPneural network could precisely simulate vacuum freeze-drying process. After training of BP neural networkwith results of ginseng slice in orthogonal experiment, drying process conditions was predicted andoptimized, and the simulation results fitted well with experiment data. The results showed that the BPneural network had higher accuracy for prediction of drying procedure.
引文
1.卜召辉,胡庆国,陆宁.2011.真空微波与真空冷冻联合干燥金针菇的研究[J].包装与食品机械,29(3):16-19.
    2.曹有福,李树君,赵凤敏,等.2009.红枣冻干工艺参数的优化[J].农产品加工,(10):64-67.
    3.曾军.2001.冷冻干燥的设备性能选择以及配方研究、冻干工艺经验[J].海峡药学,13(1):99-100.
    4.车刚,万霖,李成华,等.2008.蕨菜真空冷冻干燥工艺参数的优化试验[J].农业机械学报,39(2):98-102.
    5.陈孟林.1998.瓶装物料的冷冻干燥机理与方法的研究[D].华南理工大学博士论文.
    6.陈孟林,涂伟萍,杨卓如,等.2001.冷冻干燥瓶装物料的二维模型研究[J].华南理工大学学报(自然科学版),29(9):77-81.
    7.陈孟林,何星存,杨卓如,等.2002.结合水对冷冻干燥过程影响的研究[J].化学工业与工程,19(5):360-365,379.
    8.陈雪峰,刘爱香,罗仓学,等.2003.大蒜冷冻干燥工艺研究[J].食品与发酵工业,29(3):59-62.
    9.陈仪男.2008.龙眼真空冷冻干燥工艺优化[J].农业工程学报,24(9):244-248.
    10.陈仪男,郭树松,郭建辉,等.2011.荔枝真空冷冻干燥关键技术[J].中国农学通报,27(4):356-360.
    11.程远霞,陈素芝,谢秀英.2004.食品共晶点和共熔点试验研究[J].食品工业,(1):49-50.
    12.崔彩云,卢根昌,高东江,等.2009.哈密瓜真空冷冻干燥工艺[J].食品研究与开发,30(11):100-102.
    13.崔清亮,贺宝峰.2009.大葱真空冷冻干燥工艺试验[J].包装与食品机械,27(5):46-49.
    14.崔清亮,郭玉明,程正伟.2008.冷冻干燥物料共晶点和共熔点的电阻法测量[J].农业机械学报,39(5):65-69.
    15.催春芳,童忠良.2009.干燥新技术及应用[M].北京:化学工业出版社.
    16.戴飞,姜梅,陈海燕.2008.香葱冻干过程中影响因素的研究[J].江西农业学报,20(4):81-82.
    17.戴锅生.2003.传热学[M].高等教育出版社.
    18.杜卫华,孙金才,吴根苗,等.2003.真空冷冻干燥大蒜粉的工艺[J].无锡轻工大学学报,22(3):18-20,31.
    19.杜小泽,齐锡龄,王补宣.1997.加热方式对真空冷冻干燥热质传递机理的影响[J].工程热物理学报,18(5):612-615.
    20.方芳,毕金峰,李宝玉,等.2010.不同干燥方式对哈密瓜干燥产品品质的影响[J].食品与发酵工业,36(5):68-72.
    21.房星星,肖旭霖.2008.猕猴桃片真空冷冻干燥工艺研究[J].食品工业科技,29(1):186-187,190.
    22.冯洪庆,李惟毅,林林,等.2003.常压吸附流化冷冻干燥影响因素的实验研究[J].天津大学学报,36(3):387-390.
    23.付晓玲.2003.食品冷冻干燥速率分析[J].四川食品与发酵,39(1):50-53.
    24.傅荟璇,赵红.2010.Matlab神经网络应用设计[M].机械工业出版社.
    25.龚皓,万金庆.2009.猕猴桃果浆冻干工艺研究[J].安徽农业科学,37(1):368-370.
    26.关柏鹤.2008.食品真空冷冻干燥技术应用状况与发展前景分析[J].肉类工业,(2):24-26.
    27.郭秉印,张仲欣.2011.响应面法优化冬枣冻干工艺参数[J].食品科学,32(4):135-138.
    28.韩占忠,王敬,兰小平.2005. FLUENT:流体工程仿真计算实例与应用[M].北京理工大学出版社.
    29.韩占忠.2009. FLUENT:流体工程仿真计算实例与分析[M].北京理工大学出版社.
    30.贺素艳,李云飞.2002.冻干工艺中升华结束点和残余水分测量方法简述[J].真空与低温,8(3):135-139.
    31.华泽钊.2006.冷冻干燥新技术[M].科学出版社.
    32.黄传伟,梁晓会,范晓逶.2010.冻干物料共晶点、共熔点测定仪的设计[J].医疗卫生装备,31(4):15-17,20.
    33.黄建立,黄艳,郑宝东,等.2010.不同干燥方式对银耳品质的影响[J].中国食品学报,10(2):167-173.
    34.黄瑶,黄翠姬,廖兰,等.2010.真空冻干过程对谷氨酸短杆菌的影响[J].广西工学院学报,21(4):69-71.
    35.江家伍,徐伟君.2002.提高真空冷冻干燥速率的研究[J].包装与食品机械,20(2):4-8.
    36.江庆.2003.运用变频技术的真空冷冻干燥系统的研究[J].包装与食品机械,21(4):17-19.
    37.江水泉,张海东,刘木华.2003.真空冷冻干燥技术在三七加工中的应用[J].粮食与食品工业,(1):36-38.
    38.金昌范,蔡英姬,崔官国.1993.人参冻干曲线与导热系数[J].延边医学院学报,16(4):285-287.39孔凡真.2002.食品真空冷冻干燥技术[J].食品与机械,(5):41-41.
    40.兰伟,孙起梦,董高飞.2008.玫瑰花瓣的真空冷冻干燥试验[J].陕西科技大学学报,26(5):63-67.
    41.黎先发.2003.食品真空冷冻干燥节能措施探讨[J].西南科技大学学报,18(1):61-64.
    42.李爱玲,翟文俊.2009.冻干光皮木瓜超微粉的加工工艺[J].食品科学,30(18):222-224.
    43.李崇高,黄建初.2008.红葱真空冷冻干燥工艺技术的初步研究[J].食品科学,29(3):220-224.
    44.李范英,孙成贺.2010.中、韩人参产业的比较分析[J].特产研究,(1):73-75.
    45.李共国,马子骏.2003.草莓真空冷冻干燥研究[J].食品与机械,(3):18-19.
    46.李宏.2001.冷冻干燥过程计算机监控系统[J].医药工程设计,22(4):39-43.
    47.李莉,巴吐尔,李远.2009.响应面法优化羊油脂粉末工艺条件研究[J].新疆农业大学学报,33(1):61-65.
    48.李琴,翟晓瑞.2011.真空冷冻低糖山药枸杞保健速溶粉的研究[J].陕西农业科学,(1):20-23.
    49.李惟毅,冯洪庆,郑宗和,等.2001.粒状物料常压吸附流化床冷冻干燥的传热研究[J].工程热物理学报,22(6):740-742.
    50.李晓斌,王海波.2010.真空冷冻干燥温度的智能预测控制[J].计算机工程与应用,46(30):241-244.
    51.李心刚,胡桂秋.2002.常压吸附流化冷冻干燥技术的研究与探索[J].化工技术经济,20(4):42-44.
    52.李艳聪,李书环.2003.真空冷冻干燥技术及其在食品加工中的应用[J].天津农学院学报,10(1):42-45.
    53.李远志,罗树灿,薛子光,等.2003.真空冷冻干燥荔枝果肉工艺研究[J].食品与机械,(2):17-18.
    54.刘学浩.2003.食品冷冻干燥技术的研究[J].冷藏技术,(1):17-22.
    55.刘永忠.2002.冷冻干燥速率强化技术[J].现代化工,22(4):59-62,64.
    56.刘永忠.2002.冷冻干燥过程的神经网络预测模型[J].农业机械学报,33(4):129-130.
    57.刘永忠,冯霄.2003.复叠热泵冷冻干燥系统制冷剂的选择[J].华北电力大学学报,30(5):105-108.
    58.刘玉环,杨德江,冯九海等.2008.西兰花真空冷冻干燥的加工工艺及机理[J].食品与发酵工业,34(10):110-112.
    59.刘远军.2002.真空冷冻干燥数学模型的解析解的求解[J].佳木斯大学学报,20(2):144-147.
    60.隆江,黄悦刚.2001.冷冻干燥在糖品深加工上的应用展望[J].广西蔗糖,(4):20-22,34.
    61.卢安根,张兴龙,鞠馨,等.2008.冷冻干燥海蓬子的品质分析[J].食品研究与开发,29(1):120-123.
    62.罗瑞明,董平,李亚蕾,等.2009.干切牛肉冷冻干燥中解析干燥过程的动态模拟及优化[J].农业工程学报,25(7):271-278.
    63.罗曦芸,陈大勇.2002.饱水文物的真空冷冻干燥研究[J].实验室研究与探索,21(5):56-58.
    64.吕开斌.2010.香椿芽真空冷冻干燥工艺条件的研究[J].食品与发酵工业,46(6):60-62.
    65.马文平,秦垦.2002.枸杞色素的分离及其冷冻干燥技术的初步研究[J].食品科技,(9):48-49,44.
    66.莫松平.2009.辐射热力学的基础理论及其应用研究论文[D].中国科学技术大学博士论文.
    67.彭润玲.2007.几种生物材料冻干过程传热传质特性的研究[D].东北大学博士论文.
    68.齐锡龄,邓霄燕,方承超,等.1995.液状制品循环压力真空冷冻干燥的实验研究[J].制冷学报,(4):35-37.
    70.齐锡龄,方承超,赵军,等.1996.工作压力对真空冷冻干燥速率的影响[J].工程热物理学报,17:151-154.
    71.钱炳俊,程美蓉,邓云.2010.青鱼片真空冷冻干燥工艺研究[J].现代农业科技,(3):360,362.
    72.钱和,张添,刘长虹.2002.芦荟凝胶冷冻干燥粉生产技术的研究[J].食品与发酵工业,28(6):49-52.
    73.乔建芬.2002.浅谈真空冷冻干燥食品[J].山西食品工业,(1):32-33.
    74.秦红平,沈健.2008.真空冷冻干燥过程参数对玫瑰的冻干过程影响的试验研究[J].真空,45(3):14-17.
    75.任迪峰,毛志怀,和丽.2001.真空冷冻干燥在中草药加工中的应用[J].中国农业大学学报,6(6):38-41.
    76.任迪峰,毛志怀,王建中.2002.真空冷冻干燥在中药材加工中的应用及质量控制[J].农业工程学报,18(5):198-201.
    77.苏秀榕,徐静,向怡卉,等.2008.水发刺参的冷冻干燥技术研究[J].食品科学,29(10):277-280.
    78.孙汉巨,陈从贵,刘明.2003.蕨菜冷冻干燥的工艺研究[J].食品科技,(5):44-46.
    79.孙企达.2006.冷冻干燥超细粉体技术及应用[M].北京:化学工业出版社.
    80.孙小红,关志强,覃惠芳,等.2008.贝肉真空冷冻干燥过程的数值计算[J].制冷学报,27(1):21-26.
    81.陶菲.2006.真空预冷处理延长白蘑菇贮藏期的研究[D].江南大学博士论文.
    82.滕有寿,陈惠兴,刘金贵,等.2002.快速冷冻干燥技术的研究[J].中国兽药杂志,36(11):23-26,16.
    83.田景文,高美娟.2006.人工神经网络算法研究及应用[M].北京理工大学出版社.
    84.汪廷彩,苏平,祝水兰.2002.真空冷冻干燥技术在食品加工中的应用及展望[J].粮油加工与食品机械,(12):31-34.
    85.汪喜波,毛志怀.2002.生姜真空冷冻干燥过程影响因素的试验研究[J].中国农业大学学报,7(6):39-43.
    86.王朝晖,施明恒.1997.加热方式对真空冷冻干燥过程的影响[J].工程热物理学报,18(3):336-341.
    87.王德喜,徐成海,张世伟,等.2002.兔角膜真空冷冻干燥工艺及冻干角膜活性检测[J].东北大学学报:自然科学版,23(11):1066-1069.
    88.王继先,徐伟君.2001.真空冷冻干燥工艺及其在农产品加工中的应用[J].包装与食品机械,19(2):26-28.
    89.王金莲,谭志华,董君英.2003.真空冷冻干燥活性初乳素设备与工艺[J].食品与机械,(1):30-31.
    90.王丽萍,胥义,钟彦骞,等.2010.冷冻干燥免泡大豆的开发[J].食品科学,31(22):521-524.
    91.王弢,孙宁,黄成.2002.冷冻干燥设备的组成及电气控制[J].甘肃科技纵横,31(4):20-21.
    92.王学辉,张明辉.2002.MATLAB6.1最新应用详解[M].北京:中国水利水电出版社,67-108.
    93.王亚辉,邓红,张瑛.2008.生姜真空冷冻干燥工艺条件优化[J].农产品加工,(4):73-77.
    94.王益强,孙萍,刘鲁建.2003.真空冷冻干燥对食品质量的影响[J].莱阳农学院学报,20(2):149-153.
    95.王宇伟.2002.国内冷冻干燥食品发展状况[J].粮油食品科技,10(1):21-22.
    96.王宇伟.2002.国内冷冻干燥食品发展状况浅析[J].粮食流通技术,(1):19-21.
    97.王玉玲,李海滨.2011.柠檬片真空冷冻干燥工艺初探[J].保鲜与加工,(4):23-26.
    98.温海骏.2004.真空冷冻干燥加工工艺过程模拟分析及预测[D].山西农业大学硕士论文.
    99.文怀兴,苏宇锋,夏田.2002.食品冷冻干燥过程温度的模糊控制[J].轻工机械,(1):12-14.
    100.吴亚丽,郭玉明.2010.高压脉冲电场预处理对土豆真空冷冻干燥的影响[J].山东农业大学学报,30(5):464-467.
    101.夏鹏,王勤,杨文钊,等.2010.低温真空冷冻干燥室内温度特性的研究[J].低温与超导,38(11):74-76.
    102.夏业鲍,曾海彬,陆宁.2009.胡萝卜真空冷冻干燥工艺的研究[J].包装与食品机械,27(4):30-32.
    103.谢国山,王立业.2002.海蛎子真空冷冻干燥的工艺探讨[J].食品科技,(12):46-47,39.
    104.谢国山,王立业.2002.真空冷冻干燥技术在食品工业上的应用[J].化工装备技术,23(5):1-4.
    105.谢国山,王立业.2002.真空冷冻干燥时间的计算[J].冷饮与速冻食品工业,8(4):1-3.
    106.谢国山,王立业.2003.真空冷冻干燥过程的模拟研究[J].化工装备技术,24(1):6-9.
    107.谢振文,张帮奎,涂雪令,等.2010.真空冷冻干燥柠檬片工艺参数优化研究[J].食品与发酵科技,46(3):51-54.
    108.徐成海,李春清.1994.人参真空冷冻干燥工艺的研究[J].真空,(1):6-11.
    109.徐成海,邹惠芬,张世伟,等.2001.角膜真空冷冻干燥实验的传热传质分析[J].真空,(5):13-17.
    110.徐成海,王德喜,关奎之,等.2002.真空冷冻干燥技术在若干高新科技领域中的应用与发展[J].真空科学与技术,22(B12):30-32,43.
    111.徐成海,刘军,王德喜.2003.发展中的真空冷冻干燥技术[J].真空,(5):1-7.
    112.徐成海,张世伟,关奎之.2004.真空干燥[M].北京:化学工业出版社.
    113.徐成海,张世伟,彭润玲,等.2008.真空冷冻干燥的现状与展望(一)[J].真空,45(2):1-11.
    114.徐成海,张世伟,彭润玲,等.2008.真空冷冻干燥的现状与展望(二)[J].真空,45(3):1-13.
    115.徐瑛,陈天及,谢堃.2008.黄蚬真空冷冻干燥工艺及模型研究[J].包装与食品机械,29(6):235-237
    116.徐泽敏,殷涌光,吴文福,等.2008.稻谷真空干燥中工艺参数对降水幅度的影响[J].吉林大学学报(工学版),38(2):493-496.
    117.许敦复,郑效东.2005.冷冻干燥技术与冻干机[M].北京:化学工业出版社.
    118.许韩山,张慜,孙东风,等.2008.真空冷冻干燥在食品中的应用[J].干燥技术与设备,6(2):102-106.
    119.许牡丹,张瑞花,高红芳,等.2011.枣片的预处理及干燥方式研究[J].食品工业科技,32(3):244-246.
    120.许牡丹,张瑞花.2011.枣片真空干燥方式的比较研究[J].食品科技,36(2):108-110.
    121.燕晓辉.2007.微波真空干燥人参工艺特性及装置的试验研究[D].中国农业机械化科学研究院硕士论文.
    122.杨媚,刘宝林.2010.红烧肉的冷冻干燥工艺研究[J].安徽农业科学,38(26):14781-14783.
    123.杨颖,李夔宁,童明伟.2002.小麦种子的真空冷冻干燥处理[J].重庆大学学报(自然科学版),25(8):61-64.
    124.姚开,何强,贾冬英,等.2001.牦牛肉冷冻干燥过程的研究.食品与发酵工业,27(10):46-48.
    125.殷锦捷.2003.绿叶蔬菜真空冷冻干燥实验研究[J].吉林大学学报(工学版),33(3):110-112.
    126.于华宁,时玉强,贾署花,等.2008.黑加仑真空冷冻干燥工艺研究[J].干燥技术与设备,6(1):24-27.
    127.袁文鹏,刘昌衡,王小军,等.2010.仿刺参真空冷冻干燥工艺的研究[J].山东科学,23(2):67-70.
    128.詹丽茵.2008.冷冻干燥技术的中药应用研究[J].中国医药导报,5(22):26-28.
    129.张朝晖.2010. ANSYS12.0热分析工程应用实战手册[M].中国铁道出版社.
    130.张国智,胡仁喜,陈继刚.2007.ANSYS10.0热力学有限元分析实例指导教程[M].机械工业出版社.
    131.张建龙,董铁有,朱文学.2002.微波冷冻干燥技术的特点及发展前景[J].食品工业科技,23(12):88-90.
    132.张敬如,黄复生,王昆.2006.蛋白质药品的真空冷冻干燥技术及研究进展[J].中国药业,15(13):25-27.
    133.张俊艳,文连奎,王治同.2004.蕨菜真空冷冻干燥加工工艺研究[J].中国林副特产,(6):37-38.
    134.张茜.2006.GLZ-0.4型实验室用冻干机的性能研究[D].东北大学硕士论文.
    135.张伟,史伟勤,楼唯.2007.真空冷冻干燥机控制系统研制的最新进展[J].干燥技术与设备,5(2):97-100.
    136.张新毅.2002.冷冻干燥技术在食品工业上的应用[J].中外食品,(9):59-60.
    137.张力伟.2010.香菇真空冷冻干燥工艺研究[D].黑龙江八一农垦大学硕士论文.
    138.郑立静,关志强,李敏.2010.扇贝真空冷冻干燥过程中变温变压工艺的研究[J].制冷学报,31(2):53-56.
    139.郑文利.2000.真空冷冻干燥理论及实验研究[D].东北大学博士论文.
    140.郑贤德,林秀诚,赵鹤皋.2003.我国冷冻干燥技术进展[J].制冷技术,(1):13-15,20.
    141.郑宗和,李惟毅,齐锡龄.2002.物料浸没在吸附剂流化床中的冷冻干燥实验[J].太阳能学报,23(2):171-174.
    142.周恒良,秦红平.2009.浅谈食品的真空冷冻干燥[J].中国科技信息,(5):114-115.
    143.朱春泗.2003.真空冷冻干燥食品HACCP质量控制体系的研究[J].山东食品科技,(1):27-29.
    144.朱文学,程远霞,谢秀英.2002.大蒜冷冻干燥工艺的试验研究[J].农业机械学报,33(2):67-69.
    145.邹惠芬,徐成海,苏永升,等.2004.眼角膜在冻干过程中的传热传质模型[J].华东理工大学学报,30(1):91-95.
    146.Carapeue A, Henrist M, Rabecki F.2001.A study of vacuum freeze-drying of frozen wet papers[J]. DryingTechnology,19(6):1113-1124.
    147.Chauhan A K S, Srivastava A K. Optimizing drying conditions for vacuum-assisted microwave drying ofgreen peas (Pisum sativum L.)[J]. Drying Technology,2009,27(6):761-769.
    148.Clary C D,Mejia-Meza E,Wang S,et al.2007.Improving grape quality using microwave vacuum dryingassociated with temperature control[J].Journal of Food Science,72(1):23-28.
    149.Crank J. Free and moving boundary problems[M]. Oxford: Clarendon Press,1984.
    150.Devahastin S, Suvarnakuta P, Soponronnarit S, et al.2004.A comparative study of low-pressure superheatedsteam and vacuum drying of a heat-sensitive material[J]. Drying Technology,22(8):1845-1867.
    151.Edinara A B, Filho R M.2004.Freeze drying process: real time model and optimization[J]. ChemicalEngineering and Processing,43:1475-1485.
    152.Fan L P, Zhang M, Tao Q, et al.2005. Sorption isotherms of vacuum-fried carrot chips[J]. DryingTechnology,23(7):1569-1579.
    153.Fathima A,Begum K,Rajalakshimi D.2001.Microwave drying of selected greens and their sensorycharacteristics[J].Plant fields for human nutrition,56:303-311.
    154.Georg W O.1999. Freeze-Drying[M]. New York: Wiley-VCH:58-109.
    155.Jacob Lopes E, Zepka L Q, Pinto L A, et al.2007. Characteristics of thin-layer drying of thecyanobacterium aphanothece microscopica n geli [J].Chemical Engineering and Processing,46(1):63-69.
    156.Mc Donald K, Sun Dawen.2001. Effect of evacuation rate on the vacuum cooling process of a cooked beefproduct [J]. Journal of Food Engineering,48:195-202.
    157.Krokida M K, Karathanos V T,Maroulis Z B.1998.Effect of freeze-drying conditions on shrinkage andporosity of dehydrated agricultural products[J].Journal of Food Engineering,35:369-381.
    158.Lichtfield R J, Liapis A I.1979. An absorption-sublimation model for a freeze dryer[J].Chem Eng Sci,34(9):1085-1090.
    159.McLoughlin C M,McMinn W A M,Magee T R A.2003.Microwaves-vacuum drying of pharmaceuticalpowders[J].Drying Technology,21(9):1719-1733.
    160.Mujumdar A S.2006.Handbook of industrial drying[M].New York:CRC Press:622-623.
    161. Millman.M.J,Liapis.A.I and Marchello.J.M.1985.An analysis of the lyophilization proeess using asorption-sublimation model and various operation polices[J] AICHE Journal,31:1594-1604.
    162.Nastaj J F, Ambrozek B.2007.Modeling of vacuum desorption of mutilcomponent moisture in freezedrying[J]. Transp Porous Med,66(10):201-218.
    163.Natale M F,Tarzia D A.2000.Explicit solutions to the two phase stefan problem for storm type materials[J].J Phys,33:395-404.
    164.Ogbonda K H, Aminigo R E, Abu G O.2007.Influence of temperature and pH on biomass production andprotein biosynthesis in a putative Spirulina sp[J].Bioresource Technology,98(11):2207-2211.
    165.Perry H R, Green D, Maloney J O.1992. Perry’s Chemical Engineering Handbook,6th Edition[M]. NewYork: McGraw-Hill:101-189.
    166.Prothon F.2002.Combined dehydration methods from fresh fruit to high-quality ingredients[J].SwedishInstitute for Food and Biotechnology,704(3):58-60.
    167.Rennie T J, Vigeault C, Raghavan G S V, et al.2001.Effects of pressure reduction rate on vacuum cooledlettuce quality during storage [J]. Canadian Biosystems Engineering,43(3):339-343.
    168.Sadikoglu H, Liapis A I.1997.Mathematical modeling of the primary and secondary drying stages of bulksolution freeze-drying in trays: parameter estimation and model discrimination by comparison of theoreticalresults with experimental data[J]. Drying Technology,15(3/4):791-810.
    169.Skulinova M.2002.Microwave treatment and drying of germinated pea[J].Czech Journal of FoodScience,20(1):23-30.
    170.Soni B, Trivedi U, Madamwar D.2008.A novel method of single step hydrophobic interactionchromatography for the purification of phycocyanin from phormidium fragile and its characterization forantioxidant property[J].Bioresource Technology,99(1):188-194.
    171.Sun Dawen, Wang Lijun.2000.Heat transfer characteristics of cooked meats using different cooling methods[J]. International Journal of Refrigeration,23:508-516.
    172.Sunjka P S,Rennie T J,Beaudry C,et al.2004.Microwave-convective and microwave-vacuum drying ofcranbetries:a comparative study[J].Drying Technology,22(5):1217-1231.
    173.Tanbunan A H, Yudistira, Kisdiyani.2001.Freeze drying characteristics of medicinal herbs[J]. DryingTechnology,19(2):325-331.
    174.Tayfun Menlik, Mustafa Bahad r Ozdemir, Volkan Kirmaci.2010. Determination of freeze-dryingbehaviors of apples by artificial neural network[J].37:7669–7677.
    175.Xu Yanyang,Zhang Min,Mujumdar A S,et al.2004.Studies on hot air and microwave vacuum drying of wildcabbage[Y].Drying Technology,22(9):2201-2209.
    176.Yasuguki Sugara.2001.Structural models related to transport properties for the dried layer of food materialsundergoing freeze-drying[J]. Drying Technology,19(2):281-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700