VHF-PECVD技术沉积高生长率微晶硅薄膜及薄膜的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
降低微晶硅太阳能电池的成本最直接有效的方法是提高沉积速率,这使微晶硅薄膜的高速沉积问题成为太阳能电池产业化进程中一个必须攻克的难题。本文采用高压高功率结合VHF-(甚高频)PECVD的技术路线,实现了微晶硅薄膜材料的高速沉积,并对影响微晶硅薄膜材料沉积速率的因素和影响高速沉积微晶硅薄膜质量的原因进行分析研究。论文主要研究内容和创新工作如下:
     系统研究了气压、功率、硅烷浓度、衬底温度、气体流量以及电极间距等因素对微晶硅生长速率的影响,并结合OES谱分析了影响生长速率的原因。提出增加反应气压和电极间距能够提高微晶硅生长速率。增加气压使硅烷分解增加,反应活性基团扩散到生长表面的几率增加,使沉积速率随着气压增加迅速提高。增大电极间距使等离子体反应空间增加,反应活性基团到衬底的通量增加,令沉积速率随电极间距增大而提高。本文通过调整气压和电极间距的方法将沉积速率从传统低压技术下的1~2?/s提高到23?/s以上。
     研究了高速沉积下微晶硅薄膜质量的影响因素,发现气体总流量是影响高速沉积薄膜缺陷态密度的关键因素。想在高速沉积情况下得到高质量的微晶硅薄膜,必须通过调整流量保证反应气维持适宜的气体滞留时间。本文制备了生长速率在23?/s以上,晶化率在40%以上,μτ乘积在10-4cm2/V左右,具有<220>晶相择优的高速高质量微晶硅薄膜样品。研究了不同沉积速率下制备的微晶硅薄膜特性的差异。结果发现,与低速沉积的微晶硅薄膜相比,高速沉积的微晶硅薄膜具有非晶孵化层较厚、纵向结构均匀性较差、晶粒尺寸较大、薄膜致密性较差及薄膜表面粗糙度较大的特点。
     研究了微晶硅薄膜材料稳定性的问题。进行光衰退试验的样品包括了从低晶化率至高晶化率微晶硅的不同晶化率范围,发现材料晶化率大小决定着电池光衰退的多少。光照一段时间后微晶硅电池在光照100小时以前几乎不衰退,100小时后逐渐衰退,且2000小时不饱和。
     综上所述,本论文采用高压高功率与VHF-PECVD相结合的方法实现了器件质量级微晶硅的高速沉积,并且研究了影响微晶硅沉积速率及其质量的关键因素,为大幅度降低硅薄膜太阳能电池成本奠定了实验基础。研究了不同沉积速率下制备的微晶硅薄膜的异同,找到了导致高速沉积微晶硅薄膜材料性能降低的影响因素。对微晶硅薄膜材料的稳定性进行了初步研究,发现材料的结构特性尤其是晶化率大小决定着材料的光衰退,微晶硅材料中的非晶硅组分是导致光衰退的主要原因。
High-rate deposition process plays an important role in reducing production cost of microcrystalline silicon (μc-Si) solar cells. It is also an access to industrialize the amorphous/microcrystalline silicon tandem solar cells. High-rate deposition of microcrystalline silicon films and solar cells were realized in this paper using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique combined with high pressure. After a series of experiments and analyses, impact factors on deposition rate and material quality ofμc-Si films and solar cells were discussed in detail. Research contents and main innovations were described follow.
     The influences of factors including pressure, power, silane concentration, temperature, total flow rate and the distance space between the cathode and the substrate to the deposition rate ofμc-Si:H were systematically investigated. On-line optical emission spectra (OES) measuring was used to detect the growth rate changes. It can be concluded that high pressure and a large distance space between the cathode and the substrate contribute to increasing the deposition rate of the microcrystalline silicon films. Increasing pressure can not only accelerate the silane decomposition, but also be in favor of ions diffusion from bulk plasma to the growth surface and simultaneously decrease the bombardment of electrons with high energy on the silicon films. As a result, the deposition rate is increased. A large space between the cathode and the substrate will enlarge the reaction space, more reactive ions could reach the growth surface, and therefore the deposition rate is increased. By increasing pressure and raising the space distance, highest deposition rate of over 23?/s was achieved in our experiments.
     Then factors that affect the material quality were investigated and the following conclusions were obtained. Our experiments demonstrated for the first time that the long resident time has great effect on the defect density of the silicon films. When the pressure or the electrode space is increased without changing the total flow rate, the gas residence time will be prolonged, which will lead to poor film quality with high defect density. So the total gas flow rate should be increased as well as a high pressure and a large distance space between the cathode and the substrate were applied to prepare high quality materials with a high deposition rate. Accordingly, device-qualityμc-Si:H films with crystalline fractions over 40%,μτaround 10-4cm2/V, and the <220> preferential orientation have been obtained at high deposition rate of 23?/s by optimizing the deposition conditions.
     The influence of different deposition rates on the properties ofμc-Si:H thin films and the profermance of their solar cells was studied carefully. Compared with the low deposition rate materials, the high deposition rate ones have a thicker amorphous incubation layer, worse uniformity of vertical (growth direction) structure, larger grains, looser microstructure and a rougher surface on top.
     The magnitude of relative light induced degradation is closely related to material structure. Amorphous fraction is the key determining factor to light induced degradation. The results showed clearly that the magnitude of relative efficiency degradation is increase with amorphous fraction. The more amorphous fraction located in material, the more degradation was been found. With better structure and optical properties, Microcrystalline silicon with transition region is more suitable for the manufacturing of stable Microcrystalline silicon solar cells due to the structure and optical properties.
     In summary, device-quality high-rate depositionμc-Si:H films and solar cells have been realized in this dissertation. Various methods to improve the deposition rate and material quality were investigated in detail. All these results will be valuable for the reduction of production cost of theμc-Si:H solar cells in the future. Amorphous fraction is the key determining factorto light induced degradation.,the magnitude of relative efficiency degradation is increase with amorphous fraction.
引文
[1] Goetzberger. A, Heblinga. C, Schock H W. Photovoltaic materials, history, status and outlook. Mat Sci Eng R, 2003, 40: 1.
    [2] Gordijn A. Microcrystalline silicon for thin-film solar cells: [Doctor]. Utrecht University, 2005.
    [3]翁端.环境材料学.北京:清华大学出版社, 2001.
    [4]任家生.太阳能的利用与发展.电子器件, 1996, 19 (4):292-297.
    [5]中国可再生能源发展项目办公室.中国光伏产业发展研究报告. 2004.
    [6]李俊峰,王仲颖.中华人民共和国可再生能源法解读. 2005.
    [7] Green, M.A., Third Generation Photovoltaics: Advanced Solar Energy Conversion. 2003: Springer
    [8] Chahn, D.M., C.S. Fuller, and G.L. Pearson, A New silicon p-n junction photocell for converting solar radiation into electrical power [J]. J Appl Phys, 1954. 25(5): p. 676-680.
    [9] Zhao, J., et al., 19.8% Efficient‘‘Honeycomb’’Textured Multicrystalline and 24.4%Monocrystalline Silicon Solar Cells. Applied Physics Letters, 1998. 73: p. 1991.
    [10] Green, M.A., Solar Cell Efficiency Tables (Version 28). Progress in Photovoltaics: Research and Applications, 2006. 14: p. 455.
    [11] Chittick, R.C., J.H. Alexander, and H.F. Sterling, The Preparation and Properties of Amorphous Silicon. Journal of The Electrochemical Society, 1969. 116: p. 77.
    [12] Spear, W.E., et al., Amorphous silicon pn junction. Applied Physics Letters, 1976. 28(2): p. 105-107.
    [13] Spear, W.E. and P.G. LeComber, Electronic Properties of Substitutionally Doped Amorphous Si and Ge. Philosophical Magazine, 1976. 33(6): p. 935-949.
    [14] Carlson, D.E. and C.R. Wronski, Amorphous Silicon Solar Cell. Applied Physics Letters, 1976.28(11): p. 671.
    [15] Staebler, D.L. and C.R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters, 1977. 31: p. 292.
    [16] Meier, J., et al., Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Applied Physics Letters, 1994. 65: p. 860.
    [17] Meier, J., et al., Intrinsic microcrystalline silicon (μc-Si: H)-a promising newthin film solar cell material. Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth; IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on, 1994.1.
    [18] Meier, J., et al., Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films, 2004. 451: p. 518-524.
    [19] Mai, Y., et al., Structure adjustment during high-deposition-rate growth of microcrystalline siliconsolar cells. Applied Physics Letters, 2004. 85: p. 2839.
    [20] Yamamoto, K., et al. Novel Hybrid thin film silicon Cell and Module. in 3rd WCPEC, May 11-18, 2003, Osaka Japan, p. 2789.
    [21]雷永泉,万群,等主编,“新能源材料”,天津大学出版社,2002,P233
    [22] D. E.Carlson and C. R.Wronski,“Amorphous silicon solar cells”, Appl. Phys. Lett.,1976, 28: 671-673
    [23] T Repmann, B Sehrbrock, C Zahren, et al. Microcrystalline silicon thin film solar modules on glass. Solar Energy Materials and Solar Cells, In Press.
    [24] Y Hamakawa. A technological evolution from bulk crystalline age to multilayers thin film age in solar photovoltaics. Renewable Energy, 1998, 15 (1-4): 22-31.
    [25] C J Zhong, H Tanaka, S Sugawa, et al. Effect of power density on the structure properties of microcrystalline silicon film prepared by high-density low-ion-energy microwave plasma. Thin Solid Films, 2005, 493 (1-2): 54-59.
    [26] X D Zhang, Y Zhao, Y T Gao, et al. Fabrication of intrinsic microcrystalline silicon thin films used for solar cells and its structure. Acta Physica Sinica, 2005, 54 (10): 4874-4878.
    [27] T Wada, M Kondo, A Matsuda. Improvement of Voc using carbon added microcrystalline Si p-layer in microcrystalline Si solar cells. Solar Energy Materials and Solar Cells, 2002, 74 (1-4): 533-538.
    [28] R Terasa, M Albert, H Gruger, et al. Investigation of growth mechanisms of microcrystalline silicon in the very high frequency range. Journal of Non-Crystalline Solids, 2000, 266-269 (Part 1): 95-99.
    [29] A Shah, E Vallat-Sauvain, P Torres, et al. Intrinsic microcrystalline silicon (μc-Si : H) deposited by VHF-GD (very high frequency-glow discharge): a new material for photovoltaics and optoelectronics. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2000, 69: 219-226.
    [30] R E I Schropp. Chemical vapor deposition of silicon thin films. Current Opinion in Solid State & Materials Science, 2002, 6 (5): 423-424.
    [31] Y Mai, S Klein, X Geng, et al. Differences in the structure composition of microcrystalline silicon solar cells deposited by HWCVD and PECVD: Influence on open circuit voltage. Thin Solid Films, 2006, 501 (1-2): 272-275.
    [32] A Madan. Flexible displays and stable high efficiency four terminal solar cells using thin film silicon technology. Surface and Coatings Technology, 2005, 200 (5-6): 1907-1912.
    [33] M Kondo, T Matsui, Y Nasuno, et al. Key issues for fabrication of high quality amorphous and micro crystalline silicon solar cells. Thin Solid Films, 2006, 501 (1-2): 243-246.
    [34] A Gordijn, J K Rath, R E I Schropp. Microcrystalline silicon growth in the presence of dopants: effect of high growth temperatures. Journal of Non-Crystalline Solids, 2004, 338-40: 110-114.
    [35] T Fujibayashi, T Matsui, M Kondo. Improvement in quantum efficiency of thin film Si solar cells due tothe suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating. Applied Physics Letters, 2006, 88 (18): -.
    [36] A G Aberle. Fabrication and characterisation of crystalline silicon thin-film materials for solar cells. Thin Solid Films, 2006, 511-512: 26-34.
    [37] S Klein, F Finger, R Carius, et al. Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films, 2003, 430 (1-2): 202-207.
    [38] T Roschek, T Repmann, J Muller, et al. High rate deposition of microcrystalline silicon solar cells using 13.56 MHz PECVD. presented at the Photovoltaic Specialists Conference, 2000, 150-153.
    [39] O Vetterl, F Finger, R Carius, et al. Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells, 2000, 62 (1-2): 97-108.
    [40] C Droz. Thin Film Microcrystalline Silicon Layers and Solar Cells: Microstructure and Electrical Performances: [Doctor]。Universite De Neuchatel, 2003.
    [41] A Goetzberger, J Luther, G Willeke. Solar cells: past, present, future. Solar Energy Materials and Solar Cells, 2002, 74 (1-4): 1-11.
    [42] A. Shah, P.T., R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic Technology: The Case for Thin-Film Solar Cells. SCIENCE, 1999. 285.
    [43] B Rech, T Roschek, T Repmann, et al. Microcrystalline silicon for large area thin film solar cells. Thin Solid Films, 2003, 427 (1-2): 157-165.
    [44] S Suzuki, M Kondo, A Matsuda. Growth of device gradeμc-Si film at over 50 ?/s using PECVD. Solar Energy Materials and Solar Cells, 2002, 74 (1-4): 489-495.
    [45] A Madan, S Morrison. High deposition rate amorphous and polycrystalline silicon materials using the pulsed plasma and "Hot-Wire" CVD techniques. Solar Energy Materials and Solar Cells, 1998, 55 (1-2): 127-139.
    [46] B P Nelson, E Iwaniczko, A H Mahan, et al. High-deposition rate a-Si:H n-i-p solar cells grown by HWCVD. Thin Solid Films, 2001, 395 (1-2): 292-297.
    [47] Y Nakano, S Goya, T Watanabe, et al. High-deposition-rate of microcrystalline silicon solar cell by using VHF PECVD. Thin Solid Films, 2006, 506-507: 33-37.
    [48] R B Bergmann, L Oberbeck, T A Wagner. High-quality and low-temperature epitaxial Si films deposited at very high deposition rate. Journal of Crystal Growth, 2001, 225 (2-4): 335-339.
    [49] H Matsumura. Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon. Journal of Applied Physics, 1989, 65 (11): 4396-4402.
    [50] N Shibata, K Fukuda, H Ohtoshi, et al. Preparation of Polycrystalline Silicon by Hydrogen-Radical-Enhanced Chemical Vapor Deposition Japanese Journal of Applied Physics Part 2-Letters,1987, 26 (1): 10-13.
    [51] K Prasad, F Finger, S Dubail, et al. Deposition of phosphorus doped microcrystalline silicon below 70 [deg]C at 70 MHz. Journal of Non-Crystalline Solids, 1991, 137-138 (Part 2): 681-684.
    [52] L Guo, M Kondo, M Fukawa, et al. High Rate Deposition of Microcrystalline Silicon Using Conventional Plasma-Enhanced Chemical Vapor Deposition Japanese Journal of Applied Physics Part 2-Letters, 1998, 37 (10A): 1116-1118.
    [53] Y Nasuno, M Kondo, A Matsuda. Effects of Substrate Surface Morphology on Microcrystalline Silicon Solar Cells. Japanese Journal of Applied Physics Part 2-Letters, 2001, 40 (4A): 303-305.
    [54] M Kondo. Microcrystalline materials and cells deposited by RF glow discharge. Solar Energy Materials and Solar Cells, 2003, 78 (1-4): 543-566.
    [55] K Yamamoto, M Yoshimi, Y Tawada, et al. Thin film Si solar cell fabricated at low temperature. Journal of Non-Crystalline Solids, 2000, 266-269 (Part 2): 1082-1087.
    [56] B Yan, G Yue, A Banerjee, et al. Large-Area Hydrogenated Amorphous and Microcrystalline Silicon Double-Junction Solar Cells. presented at the Proc. Materials Research Society Symp, 2004, 6.
    [57] T Roschek, T Repmann, J Muller, et al. Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2002, 20 (2): 492-498.
    [58] G Ambrosone, U Coscia, S Lettieri, et al. Microcrystalline silicon thin films grown at high deposition rate by PECVD. Thin Solid Films, 2006, 511: 280-284.
    [59] J Meier, R Fluckiger, H Keppner, et al. Complete microcrystalline p-i-n solar cell---Crystalline or amorphous cell behavior? Applied Physics Letters, 1994, 65 (7): 860-862.
    [60] J K Rath. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Solar Energy Materials and Solar Cells, 2003, 76 (4): 431-487.
    [61]杨恢东,吴春亚,黄君凯, et al. VHF-PECVD法高速率沉积氢化微晶硅薄膜.太阳能学报, 2004, 25 (2): 127-133.
    [62]张晓丹,赵颖,朱锋, et al. VHF-PECVD低温高速生长的硅薄膜材料特性研究.光电子.激光, 2004, (5): 3-7.
    [63] M Luysberg, P Hapke, R Carius, et al. Structure and growth of hydrogenated microcrystalline silicon : investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies. Philosophical Magazine A, 1997, 75 (1): 31.
    [64] M Goerlitzer, P Torres, N Beck, et al. Structural properties and electronic transport in intrinsic microcrystalline silicon deposited by the VHF-GD technique. Journal of Non-Crystalline Solids, 1998, 227-230 (Part 2): 996-1000.
    [65] A Shah, J Meier, E Vallat-Sauvain, et al. Material and solar cell research in microcrystalline silicon.Solar Energy Materials and Solar Cells, 2003, 78 (1-4): 469-491.
    [66] H Yang, C Wu, Y Mai, et al. Fabrication of hydrogenated microcrystalline silicon thin films at low temperature by VHF-PECVD. Chinese Journal of Semiconductors, 2002, 23: 902.
    [67] M Kondo, A Matsuda. Low temperature growth of microcrystalline silicon and its application to solar cells. Thin Solid Films, 2001, 383 (1-2): 1-6.
    [68] C Niikura, M Kondo, A Matsuda. Preparation of microcrystalline silicon films at ultra high-rate of 10 nm/s using high-density plasma. Journal of Non-Crystalline Solids, 2004, 338-340: 42-46.
    [69] T Matsui, M Kondo, A Matsuda. Origin of the Improved Performance of High-Deposition-Rate Microcrystalline Silicon Solar Cells by High-Pressure Glow Discharge Japanese Journal of Applied Physics Part 2-Letters, 2003, 42 (8A): 901-903.
    [70] M Kondo, S Suzuki, Y Nasuno, et al. Recent developments in the high growth rate technique of device-grade microcrystalline silicon thin film. Plasma Sources Science & Technology, 2003, 12 (4): S111-S116.
    [71] M Kondo, A Matsuda. An approach to device grade amorphous and microcrystalline silicon thin films fabricated at higher deposition rates. Current Opinion in Solid State & Materials Science, 2002, 6 (5): 445-453.
    [72] Y Yamauchi, H Takatsuka, Y Yonekura, et al. High Efficiency Large Area Solar Module in Mitsubishi Heavy Industries. Technical Review, 2004, 41 (5): 1-4.
    [73] S Takashima, M Hori, T Goto, et al. Behavior of hydrogen atoms in ultrahigh-frequency silane plasma. Journal of Applied Physics, 2001, 89 (9): 4727-4731.
    [74] Y Mai, S Klein, R Carius, et al. Microcrystalline silicon solar cells deposited at high rates. Journal of Applied Physics, 2005, 97 (11): -.
    [75] A Shah, J Meier, E Vallat-Sauvain, et al. Microcrystalline silicon and“micromorph”tandem solar cells. Thin Solid Films, 2002, 403-404: 179-187.
    [76] L Feitknecht, O Kluth, Y Ziegler, et al. Microcrystalline n-i-p solar cells deposited at 10 ?/s by VHF-GD. Solar Energy Materials and Solar Cells, 2001, 66 (1-4): 397-403.
    [77] U Graf, J Meier, U Kroll, et al. High rate growth of microcrystalline silicon by VHF-GD at high pressure. Thin Solid Films, 2003, 427 (1-2): 37-40.
    [78] A Gordijn, J Francke, L Hodakova, et al. Influence of pressure and plasma potential on high growth rate microcrystalline silicon grown by VHF PECVD. presented at the Proc. Materials Research Society Symp, 2005,
    [79]张晓丹.器件质量级微晶硅薄膜及高效微晶硅太阳能电池制备的研究: [博士],天津:南开大学, 2005.
    [80] R E I Schropp. Status of Cat-CVD (Hot-Wire CVD) research in Europe. Thin Solid Films, 2001, 395(1-2): 17-24
    [81] J Lossen, S Klein, F Finger. Optimization of the filament arrangement at constant radiant heat in HW-CVD for the preparation of compactμc-Si : H at high deposition rates. Thin Solid Films, 2004, 451-52: 531-535.
    [82] Z H Hu, X B Liao, H W Diao, et al. AMPS modeling of light J-V characteristics of a-Si based solar cells. Acta Physica Sinica, 2005, 54 (5): 2302-2306.
    [83] M Liehr, M Dieguez-Campo. Microwave PECVD for large area coating. Surface and Coatings Technology, 2005, 200 (1-4): 21-25.
    [84] M Kupich, D Grunsky, P Kumar, et al. Preparation of microcrystalline silicon nip solar cells and amorphous-microcrystalline nipnip tandem solar cells entirely by hot-wire CVD. Thin Solid Films, 2006, 501 (1-2): 268-271.
    [85] E Iwaniczko, Y Xu, R E I Schropp, et al. Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD. Thin Solid Films, 2003, 430 (1-2): 212-215.
    [86] E Iwaniczko, A H Mahan, B Yan, et al. Deposition of device qualityμc-Si films and solar cells at high rates by HWCVD in a W filament regime where W/Si formation is minimal. presented at the MRS Symp. Proc., 2003, 643.
    [87] R E I Schropp. Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost. Thin Solid Films, 2002, 403-404: 17-25.
    [88] R E I Schropp. Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition. Thin Solid Films, 2004, 451-452: 455-465.
    [89] S Klein, F Finger, R Carius, et al. Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance. Journal of Applied Physics, 2005, 98 (2): -.
    [90] S Klein, F Finger, R Carius, et al. Improved deposition rates forμc-Si:H at low substrate temperature. Thin Solid Films, 2006, 501 (1-2): 43-46.
    [91] K Nakahata, A Miida, T Kamiya, et al. Carrier transport, structure and orientation in polycrystalline silicon on glass. Thin Solid Films, 1999, 337 (1-2): 45-50.
    [92] H Shirai, K Yoshino, G Ohkawara, et al. Novel high-density microwave plasma utilizing an internal spoke antenna for fast deposition of microcrystalline silicon films. Japanese Journal of Applied Physics Part 2-Letters, 2001, 40 (7A): L701-L704.
    [93] K Yoshino, G Ohkawara, H Ueyama, et al. Microcrystalline silicon film growth using a high-density microwave plasma of SiH4-and-D-2 mixture. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41 (12): 7307-7311.
    [94] G Ohkawara, M Nakajima, H Ueyama, et al. Relationship between microstructure and photovoltaicperformance in microcrystalline silicon film solar cells fabricated by a high-density microwave plasma. Thin Solid Films, 2003, 427 (1-2): 27-32.
    [95] H Jia, J K Saha, N Ohse, et al. High-density microwave plasma of SiH4/H-2 for high rate growth of highly crystallized microcrystalline silicon films. European Physical Journal-Applied Physics, 2006, 33 (3): 153-159.
    [96] H Jia, H Shirai. In situ study on the growth of microcrystalline silicon film using the high-density microwave plasma for Si thin film solar cells. Thin Solid Films, 2006, 506-507: 27-32.
    [97] C Smit, A Klaver, B A Korevaar, et al. High-rate deposition of microcrystalline silicon with an expanding thermal plasma. Thin Solid Films, 2005, 491 (1-2): 280-293.
    [98] U K Das, S Morrison, A Madan. Deposition of microcrystalline silicon solar cells via the pulsed PECVD technique. Journal of Non-Crystalline Solids, 2002, 299-302 (Part 1): 79-82.
    [99] A Hammad, E Amanatides, D Mataras, et al. PECVD of hydrogenated silicon thin films from SiH4+H2+Si2H6 mixtures. Thin Solid Films, 2004, 451-452: 255-258.
    [100] A. Matsuda, Formation kinetics and control of microcrystallite inμc-Si:H from glow discharge plasma, J. Non-Cryst. Solids, 1983,59&60: 767-770
    [101] S. Vep?ek, Z. Iqbal, R. O. Kühne, et al. Properties of microcrystalline silicon: IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption, J. Phys. C: Solid State Phys. 1983, 16: 6241
    [102] B. Chapman, Glow discharge processes, John Wiley & Sons, New York, 1980.
    [103] L. Guo, M. Kondo, M. Fukawa, et al. High Rate Deposition of Microcrystalline Silicon Using Conventional Plasma Enhance Chemical Vapour Deposition, Jpn. J. Appl. Phys. 1998, 37, L1116.
    [104] M. Kondo, M. Fukawa, L. Guo, et al, High rate growth of microcrystalline silicon at low temperature, J. Non-Cryst. Solids, 2000, 84, 266-269
    [105] T. Roschek, T. Repmann, J. Müller, et al, Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition, J. Vac. Sci. Technol. 2002,A 20, 492-496
    [106] R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1991.
    [107] Solar Energy Materials & Solar Cells 78 (2003) 493–512
    [108] M. Tzolov, F. Finger, R. Carius, et al, Optical and transport studies on thin microcrystalline silicon films prepared by very high frequency glow discharge for solar cell applications, J. Appl. Phys. 1997, 81: 7376
    [109] R. W. Collins, A. S. Ferlauto, G. M. Ferreira, et al. Evolution of microstructure andphase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry, Sol. Energ. Mat. Sol. C. 2003, 78, 143
    [110] M. Kondo, Y. Toyoshima, A. Matsuda, et al, Substrate dependence of initial growth of microcrystallinesilicon in plasma-enhanced chemical vapor deposition, J. Appl. Phys. 1996, 80, 6061
    [111] T. Brammer, H. Stiebig, A. Lambertz, et al, Temperature dependent transport in microcrystalline PIN diodes, Mat. Res. Soc. Symp. Proc. 2000, 609, A32.3
    [112] H. Stiebig, T. Brammer, J. Zimmer, O. Vetterl, and H. Wagner, Investigation of the optoelectronic properties ofμc-Si:H pin solar cells, J. Non-Cryst. Solids, 2000, 266-269, 1104
    [113] O. Vetterl, On the physics of microcrystalline silicon thin film solar cells - From the material to devices with high conversion efficiencies. Ph.D. thesis, Heinrich-Heine-Universit?t Düsseldorf, 2001.
    [114] S. Klein, F. Finger, R. Carius, et al, Light-induced degradation of microcrystalline silicon thin film solar cells prepared by hot-wire CVD, in Proceedings 19th European Photovoltaic Solar Energy Conference, 2004, p. 1579.
    [115] T. Roschek, Microcrystalline silicon solar cells prepared by 13.56 MHz PECVD - Prerequisites for high quality material at high growth rate, Ph.D. Thesis, Heinrich-Heine Universit?t Düsseldorf, 2003
    [116] B. Yan, G. Yue, J. M. Owens, et al, Light-induced metastability in hydrogenated nanocrystalline silicon solar cells, Appl. Phys. Lett. 2004, 85, 1925
    [117] S. Vep?ek, Z. Iqbal, R. O. Kühne, et al, Properties of microcrystalline silicon: IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption, J. Phys. C: Solid State Phys. 1983, 16, 6241
    [118] F. Finger, R. Carius, T. Dylla, et al, Stability of microcrystalline silicon for thin film solar cell applications, IEE Proc.-Circuits Devices Syst. 2003, 150, 300
    [119] B. Yan, K. Lord, J. Yang, et al, Hydrogenated microcrystalline silicon solar cells made with modified very-high-frequency glow discharge, Mat. Res. Soc. Symp. Proc. 2002, 715, A26.4
    [120] T. Matsui, A. Matsuda and M. Kondo, High-rate plasma process for microcrystalline silicon: over 9% efficiency single junction solar cells, Mat. Res. Soc. Symp. Proc. 2004, 808, A8.11
    [121] M. Sendova-Vassileva, S. Klein, A. Lambertz, et al, Stability of microcrystalline solar cells under treatment in water, air and vacuum, in Proc. of 19th European Photovoltaic Solar Energy Conference, 7-11 June 2004, Paris, France, p. 1423.
    [122] F. Finger, R. Carius, T. Dylla, et al, Stability of microcrystalline silicon for thin film solar cell applications, IEE Proc.-Circuits Devices Syst. 2003, 150, 300
    [123] M. Sendova-Vassileva, S. Klein, A. Lambertz, et al, Stability of microcrystalline solar cells under treatment in water, air and vacuum, in Proc. of 19th European Photovoltaic Solar Energy Conference, 7-11 June 2004, Paris, France, p. 1423.
    [124]何宇亮,陈光华,张仿清《非晶态半导体物理学》高等教育出版社1989 43
    [125] [日]菅井秀郎编著,张海波,张丹译.等离子体电子工程学.北京:科学出版社, 2002, 159.
    [126]钱振型.固体电子学中的等离子体技术.北京:电子工业出版社, 2001.
    [127]吴自勤,王兵.薄膜生长.北京:科学出版社, 2001.
    [128]杨邦朝,王文生.薄膜物理与技术.西安:电子科技大学出版社, 1994.
    [129] Matsuda A. Formation kinetics and control of microcrystallite inμc-Si:H from glow discharge plasma. Journal of Non-Crystalline Solids, 1983, 59-60:767.
    [130] Veprek S. Chemistry and solid state physics of microcrystalline silicon. Mat Res Soc Symp Proc, 1990, 164:39.
    [131] Tsai C C, Anderson G B, Thompson R, et al. Control of silicon network structure in plasma deposition. Journal of Non-Crystalline Solids, 1989, 114:151.
    [132] Nakamura K, Yoshino K, Takeoka S, et al. Roles of atomic hydrogen in chemical annealing. Jpn J Appl Phys, 1995, 34: 442.
    [133] Shirai H, Hanna J, Shimizu I. Role of atomic hydrogen during growth of hydrogenated amorphous silicon in the“Chemical Annealing”. Jpn J Appl Phys, 1991, 30: L679.
    [134] Cabarrocas P R. New approaches for the production of nano-, micro-, and polycrystalline silicon thin films. physica status solidi (c), 2004, 1 (5): 1115-1130.
    [135] Yang Y H, Katiyar M, Feng G F, et al. Subsurface hydrogenated amorphous silicon toμc-hydrogenated silicon transformation during magnetron sputter deposition determined by spectroscopic ellipsometry. Applied Physics Letters, 1994, 65 (14): 1769-1771.
    [136] Kalache B, Kosarev A I, Vanderhaghen R, et al. Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties. Journal of Applied Physics, 2003, 93 (2): 1262-1273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700