300mm硅片超精密磨床设计与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅片的超精密磨削技术主要用于硅片制备中的硅片平整化和IC后道制程中的背面减薄。随着硅片直径的增大和厚度的减小,硅片超精密磨削技术及设备面临新的挑战:大的进给速度调速范围和高的进给稳定性,对磨床进给系统的结构特性和运动性能提出了较高要求;硅片在磨削中容易翘曲变形,磨削面型精度难以保证;硅片原始厚度的增大和芯片磨后厚度的减小趋势,使硅片表面磨削的材料去除量增大,提高加工效率成为一个亟待解决的问题;硅片减薄后,其表面质量和加工变形对磨削力的变化更加敏感,监控磨削力以提高成品率的问题亟待解决。面向大尺寸薄硅片的超精密磨削技术及设备的需求,针对表面质量和磨削效率这对突出矛盾问题,以提高硅片表面质量、面型精度和加工效率为目的,作者深入研究了精密进给、面型控制和磨削力监控等关键技术,设计开发了300mm硅片超精密磨床。
     主要研究内容和结论如下:
     (1)研究了基于控制力和工件旋转磨削原理的大尺寸硅片超精密磨削技术,提出了Ф300mm硅片全自动超精密磨床设计方案,该磨床采用双主轴三工位的布局结构,具有在线测量硅片厚度、在线测量磨削力等功能,可完成硅片的传输、定心、浸润、粗磨、精磨、清洗和干燥等工序,实现了硅片全自动磨削。
     (2)建立了硅片超精密磨床的三维虚拟样机,并对硅片磨床整机和各主要零部件进行了结构静力学分析及动力学有限元分析,完成了对各部分结构的优化设计及设计方案定型。建立了进给系统的刚柔耦合模型,分析了进给系统的运动学特性。创建了进给伺服系统的机电协同仿真模型,并推导了进给系统各环节的传递函数。对硅片磨床进给系统的位移、静态和动态等特性进行了实验验证研究。
     (3)针对双主轴三工位超精密硅片磨床的结构特点,研究了砂轮主轴与工件主轴相对夹角对磨削面型的影响规律,分别建立了粗磨单元和精磨单元的硅片磨削面型的数学模型;提出了双主轴三工位硅片磨床主轴倾角的调整方法,并研制了主轴倾角调整装置。通过吸盘修整和硅片磨削试验,验证了磨削面型的数学模型,实现了硅片面型精度的精确控制。
     (4)分析了磨削硅片过程中三向磨削力的特点,研制了基于石英晶体压电效应的三向磨削力在线测量系统,并实现了与硅片超精密磨床的集成。对所研制的三向磨削力在线测量系统进行了静态标定、动态性能测定以及在线标定,获得了三向磨削力在线测量系统的灵敏度、线性和重复性等静态及动态性能指标。以兼顾加工效率和表面质量为目标,提出了分阶段控制力磨削的工艺策略,并在所研制的硅片超精密磨床上通过控制力磨削硅片试验对上述工艺策略进行了验证。
     (5)与企业合作研制出国内首台0300mm硅片全自动超精密磨床,磨削后硅片的TTV值<4μm,#4800金刚石砂轮磨削后硅片的表面粗糙度值Ra<1.4nm,亚表面损伤层深度<0.25μm,实现了0300mm硅片的高效低损伤超精密磨削。
During the process to turn silicon ingot into the integrated circuits (IC) chips, ultra-precision grinding is mainly used in planarization for planarization in silicon wafer preparation and back thinning in the backend of semiconductor manufacturing process. The ultra-precision grinding technology of the large size silicon wifer with ultra-smooth damage-free surface is facing many new challenges:first, the large size ground wafer is easy to warp so that it is difficult to achieve the high accuracy grinding surface shape. Second, the high machining efficiency is required because the material removal amount of the wafer with increasing of wafer diameter and decreasing of IC chip thicknes is increasing. Finally, as the wafer surface quality and processing efficiency is more sensitive to the grinding force, it is essential to monitor grinding force during grinding thinning wafer. Demand on ultra-precision grinding technology and equipment, aiming at improving wafer surface quality, the processing efficiency and precision, the key technologies of precision feeding, surface shape control and grinding force monitoring have been studied. Then the ultra-precision grinder for 300mm wafer is designed and developed.
     The main research contents and conclusions are as follows:
     (1)Based on the principle of the infeed grinding and control forces, the ultra-precision grinding technology for large-sized wafer was studied, and the ultra-precision automatic wafer grinder for silicon wafer with maximum diameter of 0300mm was developed. The layout structure of the wafer grinder, which has the characteristics of compact structure and high automation, etc., is constructed into one with double-spindle and triple-workstation. The wafer grinder has many functions including on-line measurement of the thickness and grinding force. All the process are performed automatically, such as wafer transmission, centering, soakage, rough grinding, fine grinding, cleaning and drying, etc.
     (2)The three-dimensional virtual prototyping of the ultra-precision wafer grinder is established, and then the static and dynamic analysis of the major components and grinding unit are carried out in order to perfect the design. The rigid-flexible coupling model of the infeed system is established, and kinematic characteristic of the infeed system is analyzed. The co-simulation with mechanical and electric model of the infeed system is established and the transfer function of the infeed system is derived. At last, the displacements, static and dynamic characteristics of the infeed system are verified by experiments.
     (3)According to the structural features of the ultra-precision grinder with double-spindle and triple-workstation, the influence law of the obliquity between wheel spindle and workpiece spindle on the grinding surface shape is studied, and then the mathematical model of the grinding surface shape for rough grinding unit and fine grinding unit are established. The adjustment method of the spindle obliquity for wafer grinder with double-spindle and triple-workstation is proposed, and the obliquity adjustment devices of the rough grinding spindle, fine grinding spindle are developed. At last, the model of the surface shape control is verified by self-grinding chuck and wafer grinding experiments.
     (4)The main grinding force Fc, Cut-in force Fp, Feeding force Ff in the process of the wafer grinding are analyzed. The piezoelectric quartz crystal-based dynamometer, integrated in 0300mm silicon ultra-precision grinder, is developed for measuring grinding force in three directions. The sensitivity, linearity, repeatability and other static and dynamic characteristics of the dynamometer are obtained by performing static calibration, dynamic performance measurement and on-line calibration. Aiming at processing efficiency and surface quality, an innovative process, which combines wheel feeds step by step and grinding based on force control, is put forward. At last, a series of the grinding experiments, which the grinding wheel feed rate is controlled by grinding force feedback, are conducted.
     (5)The ultra-precision automatic wafer grinder for silicon wafer with maximum diameter of 0300mm was developed, which is first in domestic. The results show that the total thickness variation of the ground wafer, the surface roughness of the wafer ground by #4800 grinding wheel and the thickness of the sub-surface damage layer are less than 4μm,1.4nm, 0.25μm, respectively. The ultra-precision grinding with high efficiency and low damage can be realized.
引文
[1]张厥宗.硅单晶抛光片的加工技术[M].北京:化学工业出版社,2005.
    [2]郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术[J].世界制造技术与装备市场,2003(1):35-40.
    [3]廉子丰.大直径硅片加工技术[J].电子工业专用设备.1997,26(3):5-9.
    [4]杨杰.硅晶圆制造业导读[R].中国:元富证券(香港)有限公司上海代表处,2003.
    [5]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程[M].北京:冶金工业出版社,2002.
    [6]阙端麟,陈修治.硅材料科学与技术[M],杭州:浙江大学出版社,2000.
    [7]国家标准局信息分类编码研究所.GB/T 1031-1995表面粗糙度,参数及其数值;GB/T 1555半导体单晶晶向测定方法;GB/T 6618硅片厚度和总厚度变化测试方法;GB/T 6619硅片弯曲度测试方法;GB/T 6620硅片翘曲度非接触式测试方法;GB/T 6621硅抛光片表面平整度测试方法:GB/T 6624硅单晶抛光片表面质量目测检验方法;GB/T 14264-1993半导体材料术语.[S]//国家标准化管理委员会.北京:国家技术监督局,1995.
    [8]Tonshoff H K, Schmieden W V, et al. Abrasive Machining of Silicon [C]. Annals of CIRP,1990, 39(2):621-634.
    [9]Corbett J, Morantz P, Stephenson D J, et al. An advanced ultra-precision face grinding machine [J]. The International Journal of Advanced Manufacturing Technology,2002,20(9):639-648.
    [10]王文瑞.晶圆超精密输磨技衍探讨[J].機械工業雜誌(台湾),2004(255):115-122.
    [11]Hahn P O. The 300 mm silicon wafer-A cost & technology challenge [J], Microelectronic Engineering, 2001(56):3-13.
    [12]黄弘毅.硅片超精密磨削的研究[D].台湾:国立台湾大学,2003.
    [13]Quirk M.,Serda J.半导体制造技术[M].韩郑生等译.北京:电子工业出版社,2004.
    [14]Shayne L F. Meeting market Requirements through innovation:The new DBC Process [J], TAP technology,2001:71-73.
    [15]Front End Processes [EB/OL], International Technology Roadmap for Semiconductors (ITRS 2005 Edition). [2005,12]. http://public.itrs.net/reports.html.
    [16]康仁科,田业冰,郭东明等.大直径硅片超精密磨削技术的研究与应用现状[J].金刚石与磨料磨具工程,2003(04):13-18.
    [17]董志刚,田业冰,康仁科等.硅片超精密磨床的发展现状[J].电子工业专用设备,2004(06):54-59.
    [18]Pei Z J, Strasbaugh A. Grinding induced subsurface crack in silicon wafers [J], International Journal of Machine Tools & Manufacture,1999(39):1103-1116.
    [19]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers [J]. International Journal of Machine Tools & Manufacture,2001(41):659-672.
    [20]Pei Z J. A study on surface grinding of 300mm silicon wafers [J], International Journal of Machine Tools & Manufacture,2002(42):385-393.
    [21]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers:designed experiments [J], International Journal of Machine Tools & Manufacture,2002(42):395-404.
    [22]Gaulhofer E. Wafer Thinning and Strength Enhancement to Meet Emerging Packaging Requirements [C], Europe:IEMT 2000,2000,06,07.
    [23]苏建修.1C制造中硅片化学机械抛光材料去除机理研究[D].大连:大连理工大学,2006.
    [24]Van Zant, P. Microchip fabrication [M],5th ed., McGraw-Hill, New York,2004.
    [25]康仁科,郭东明,霍凤伟等.大尺寸硅片背面磨削技术的应用与发展[J].半导体技术,2003,28(9):33-40.
    [26]王彩玲.化学机械抛光机机械本体设计[D].大连:大连理工大学.2006.
    [27]郭东明,康仁科,苏建修等.超大规模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报,2003,39(10):100-105.
    [28]陈杨,陈建清,陈志刚.超光滑表面抛光技术[J],江苏大学学报(自然科学版),2003,24(5):55-59.
    [29]魏听,杜宏伟,袁慧等.晶片材料的超精密加工技术现状[J],组合机床与自动化加工技术,2004(3):75-79.
    [30]王彩铃.300mm硅片化学机械抛光设备及其关键技术研究[D].大连:大连理工大学,2011.
    [31]朱祥龙,康仁科,董志刚,郭东明.单晶硅片超精密磨削技术与设备.中国机械工程,2010,21(18):2156-2164.
    [32]李忠信.硅片自旋转磨削试验台关键技术的研究[D].大连:大连理工大学,2005.
    [33]Kulkarni M, Desai A. Silicon wafering process flow:US,6294469[P],2001,09,25.
    [34]关旭东.硅集成电路工艺基础[M].北京:北京大学出版社,2003.
    [35]Oh H S, Lee H L. A comparative study between total thickness variance and site flatness of polished silicon wafer [J]. Japanese J. of App. Phy. Part 1,2001,40(9A):5300-5301.
    [36]Donalson P R, Patterson S R. Design and Construction of a Large Vertical Axis Diamond Turning Machine [R], Proc. SPIE 433. USA,1983.
    [37]高尚.超精密磨削硅片的软磨料砂轮的研制[D].大连:大连理工大学,2009.
    [38]何雅全,吴明根.超精密加工的技术基础和创新[J].超精密加工技术,2006(5):7-10.
    [39]Geng H著.赵树武,陈松,赵水林等译.半导体集成电路制造手册[M].北京:电子工业出版社,2006.
    [40]Nishiguchi M, Sekiguchi T, Miyoshi I, et al. Surface grinding machine:US,5035087[P].1991,07,30.
    [41]GTI Grinder:GTI G-500DS [EB/OL]. GTI Technologies, Inc. [2009,08,01]. http://www.gti-usa.com/ pages/semi_gti_grinder.aspx.
    [42]Matsui S, An experimental study on the grinding of silicon wafer to the wafer rotation grinding method [R]. Bull. Japan Soc. Prec. Eng.1988(22)4:295-300.
    [43]Matsui S, Horiuchi T, Parallelism improvement of ground silicon wafers [J], Journal of Engineering for industry,1991(113):25-28.
    [44]Liu W J, Pei Z J, Xin X J. Finite element analysis for grinding and lapping of wire-sawn silicon wafers [J]. Journal of Materials Processing Technology,2002,129(1-3):2-9.
    [45]Tricard M, Subramanian K. Overview of abrasive finishing process in the electronics industry[R], Abrasive Magazine,1998,04.
    [46]Takada K, yamagishi H, Minami H, et al. Research and development of super silicon wafer [C], Proceedings of the 7th Int. Symposium on Silicon Materials Science and Technology, The Electrochemical Society, Inc., Pennington,1998:376-395.
    [47]SEMI-CONDUCTOR Machines [EB/OL], OKAMOTO Machine Tool Works. Ltd. [2009,08,01]. http://www.okamotocorp.com/product/prodsemcond.html.
    [48]Yamazaki J. Introduction of Wafer Surface Grinding Machine Model GCG300[R]. Komatsu Technical Report.2006,52(158):1-6.
    [49]Corbett J, Morantz P, Stephenson D J, et al. Read An advanced ultra precision face grinding machine [C]. VI International Conference on Monitoring and Automatic Supervision in Manufacturing,2001.
    [50]Eda H, Zhou L, Nakano H, et al. Development of single step grinding system for large scale 0300 Si wafer:A total integrated fixed-abrasive solution [C]. Annals of CIRP.2001,50(1):225-228.
    [51]Wafer Backgrinding-7AF Intelligent Wafer Grinder [EB/OL], STRASBAUGH. Ltd. [2009,09,09] http://www.strasbaugh.com/products/wafer/7af.cfm.
    [52]Semiconductor Equipment-Grinding [EB/OL], OKAMOTO Machine Tool Works. Ltd., [2009,08,01]. http://www.okamoto-sed.com/products/grinder-e.html.
    [53]Nanorinder/4 fully automatic wafer grinding machine [EB/OL], G&N Genauigkeits Maschinenbau Nurnberg GmbH, [2009,08,01]. http://www.grinders.de/cms/NANOGRINDER-4.90.0.html.
    [54]Xin X J, Liu W J. Modeling of waviness reduction in silicon wafer grinding by finite element method [C]. The International Conference on Modeling and Analysis of Semiconductor Manufacturing. Tempe, AZ. USA,2002:10-12.
    [55]Sun X K, Pei Z J, Xin X J. Waviness removal in grinding of wire-sawn silicon wafers:3D finite element analysis with designed experiments [J]. International journal of machine tools & manufacture. 2004(44):11-19.
    [56]Pei Z J, Kassir S, Bhagavat M. An experimental investigation into soft-pad grinding of wire-sawn silicon wafers [J]. International Journal of Machine Tools & Manufacture.2004(44):299-306.
    [57]Hasegawa F, Kobayashi M. Method of manufacturing semiconductor wafers and process of and apparatus for grinding used for the same method of manufacture:US,5700179[P],1997,12,23.
    [58]Pietsch G J, Kerstan M. Simultaneous double-disk grinding machining process for flat, low-damage and material-saving silicon wafer substrate manufacturing[C]. The 2nd Euspen International Conference. Turin. Italy,2001:27-31.
    [59]葛钟,闫志瑞等.砂轮粒径对300mm Si片双面磨削影响的研究[J]. Semiconductor Technology,2008,33(4):289-291.
    [60]Pietsch G J, Kerstan M. Understanding simultaneous double disk grinding:operation principle and material removal kinematics in silicon wafer planarization [J]. Precision Engineering,2005, 29(2):189-196.
    [61]关家一马.硅片及其加工方法:日本,200610077170.5[P],2006,11,1.
    [62]张胜利.超精密磨削硅片表层损伤检测的试验研究[D].大连:大连理工大学,2005.
    [63]Zhang X H, Pei Z J, Graham R F. A grinding-based manufacturing method for silicon wafers: generation mechanisms of central dimples on ground wafers [J]. International Journal of Machine Tools & Manufacture.2006(46):397-403.
    [64]Hashii T, Watanabe T. Method of manufacturing semiconductor wafer:US,6753256[P].2004,06,22.
    [65]霍凤伟.硅片延性域磨削机理研究[D].大连:大连理工大学,2006.
    [66]Shimokohbe A, Dynamics and Control of Precision positioning Systems Using Lead Screws [C], Proceeding of 1999 International Conference on Advanced Manufacturing Technology, Xi'an, China, 1999,06.
    [67]Montanari L, GDuduch J, Rubio J C C, Design of an Angular Positioner for Precision Machines [C], l'st International Conference and General Meeting of the European society for Precision Engineering and Nano-technology, Bremen Germany,1999,06.
    [68]Kanai M, Ishihara S. Air Bearing Lead Screw and Nut Using Porous Ceramic Material [J], Journal of the Japan Society of Precision Engineering,1990,56(12):2201-2207.
    [69]Tachikawa H. Precision Positioning Using Air Bearing Lead Screw [C], Proceedings of International Conference on Micro-mechatronics for Information and Precision Equipment, Tokyo,1997:238-243.
    [70]Suzuki E, Hashimoto S, Hoshina N, Magnetic Lead Screw and its Application [J], Science and Machine,197628(2):27-30.
    [71]Hual-Te, Huang T, Ravani B, Contact Stress Analysis in Ball Screw Mechanism Using the Tubular Medial Axis Representation of Contacting Surface [J], Transaction of ASME, Journal of Mechanical Design,1997,119(4):8-14.
    [72]Cuttino J F, Dow T A. Knight B F, Analytical and Experimental Identification of Nonlinearities in a Single-Nut Preloaded Ball Screw[J], Transaction of ASME, Journal of Mechanical Design,1997, 119(4)15-19.
    [73]Fukada S, Microscopic Behavior of Preloaded Ball Screw for Ultra-precise Position with Nano-metric Resolution [C], Proc.of 2nd euspen International Conference, Italy,2001,05.
    [74]Chen J S, Dwang L C, A Balls crew Drive Mechanism with Piezo-electric Nut for Preload and Motion Control [J], International Journal of Machine Tools&Manufacture,2000(40):513-526.
    [75]Park C H, Lee E S, Lee H, A Review on Reserch in Ultra Precision Engineering at KIMM [J]. International Journal of Machine Tools&Manufacture,1999(39):1793-1805.
    [76]Hubbel P L, Ro P I. Lyapunov Based Adaptive Control of the Nonlinear Microdynamics of a Ball Screw Driven Slide for Nano-positioning [C], American Control Conference, USA,1992.
    [77]Teeter J T, Chow M, Brickley J J. A Novel Fuzzy Friction Compensation Approach to Improve the Performance of a DC Motor Control System [J], IEEE Trans. on Industrial Electronics,1996,1(43): 113-120.
    [78]Ge P, Jouaneh M. Modeling Hysteresis in Piezoceramic Actuators [J], Precision Engineering,1995, 17(3):211-21.
    [79]Pratt P, Downing C J. Practical Robust Adaptive Control on a Fixed Point Digital Signal Processor [J], Trans Inst MC,1993,15(2):69-79.
    [80]Asao T, Mizugaki Y, Sakamoto M. Precision Turning by Means of a Simplified Predictive function of Machining Error [C], Annals of the CIRP.1992,41(1):447-450.
    [81]Cetinkunt S, Yu W L, Filliben J, et al. Friction Characterization Experiments for Precision Machine Tools Control at Very Low Speeds [C], American Control Conference,1992.
    [82]Younkin G W. Modeling Machine Tool Feed Servo Drives Using Simulation Techniques to Predict Performance [J], IEEE Trans. on Industry Applications,1991,27(2):268-274.
    [83]Cetinkunt S, Yu W L, Filliben J, et al. Friction Characterization Experiments on a Single Point Diamond Turing Machine Tool [J], International Journal of Machine Tools & Manufacture,1993, 34(l):19-32.
    [84]杨利军.大尺寸硅片真空夹持系统的研究[D].大连:大连理工大学,2005.
    [85]Abe K, Okawa S, Koma Y, et al. Development of an ultraprecision grinding machine for super-large and super-flat silicon wafers-proposal of trigonal prism type pentahedral ructure [C]. Proceedings of Silicon Machining-Spring Topical Meeting,1998(4):13-16, Carmel-by-the-sea. CAAmerican Society for Precision Engineering,1998:113-116.
    [86]Matsui S. An experimental study on the grinding of silicon wafers-the wafer rotation grinding method (1st report) [R], Bulletin of the Japan Society of Precision Engineering,1988,22(4),295-300.
    [87]Karpuschewski B, Lehnicke S. Rotation grinding of silicon-wafers [J], Abrasives Magazine, 1999(4):25-31.
    [88]Fukami T, Masumura H, Suzuki K, et al. Method of manufacturing semiconductor mirror wafers: European, EP0782179A2 [P],1997,07,02.
    [89]Tian Y B, Kang R K, Guo D M, et al. Investigation on Ground Wafer Shape in Rotational Grinding [C]. The 2nd International Student Conference, At Ibaraki University, Ibaraki, Japan,2006,10,05.
    [90]Chen C C, Hsu L S. A process model of wafer thinning by diamond grinding [J]. Journal of materials processing technology,2008(201):606-611.
    [91]Sun W P, Pei Z J. Fisher G R. Fine grinding of silicon wafers:a mathematical model for the wafer shape [J]. International Journal of Machine Tools & Manufacture,2004,44(7-8):707-716.
    [92]Chidambaram S, Pei Z J, Kassir S. Fine grinding of silicon wafers:a mathematical model for the chuck shape [J]. International Journal of Machine Tools & Manufacture,2003(43):739-746.
    [93]Tso P L, Teng C C.A study of the total thickness variation in the grinding of ultra-precision substrates [J]. Journal of Materials Processing Technology,2001(116):182-188.
    [94]Zhou L B, Shimizu J. Shinohara K, et al. Three-dimension kinematical analyses for surface grinding of large scale substrates [J], Precision Engineering,2003(27):175-184.
    [95]Zhou L B, Eda H, Shimizu J. State-of-the-art technologies and kinematical analysis for one-stop finishing of 0300mm Si wafer [J]. Journal of Materials Processing Technology,2002(129):34-40.
    [96]Sun W P, Pei Z J, Fisher G R. Fine grinding of silicon wafers:machine configurations for spindle angle adjustments [J]. International Journal of Machine Tools & Manufacture,2005,45(1):51-61.
    [97]田业冰.大尺寸硅片自旋转磨削相关理论及关键工艺技术研究[D].大连:大连理工大学,2007.
    [98]Ohmori H, Nakagawa T. Mirror surface grinding of silicon wafers with electrolytic in-process dressing [C]. Annals of CIRP,1990(39):329-332.
    [99]Zhou L B, Eda H, Shimizu J. State-the-art technologies and kinematical analysis for one-stop finishing of 0300mm Si wafer [J]. Materials Processing Technology,2002,129(06):34-40.
    [100]Zhou L B, Shimizu J, Shinohara K, et al. Three-dimension kinematic analyses for surface grinding of large scale substrates [J]. Precision Engineering,2003,27(04):175-184.
    [101]Couey J A, Eric R. Marsh, et al. In-process force monitoring for precision grinding semiconductor silicon wafers [J]. Int. J. Manuf. Technol. Manag.2005,7(5/6):430.
    [102]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers:designed experiments [J]. International Journal of Machine Tools & Manufacture,2002,42(08):395-404.
    [103]Pei Z J, Strasbaugh A. Fine grinding of silicon wafers [J], International Journal of Machine Tools & Manufacture,2001,41(06):659-672.
    [104]钱敏,孙宝元,张军.整体式三维压电测力平台的研制[J].大连理工大学学报,2000,40(5):570-572.
    [105]吴涧彤.压电晶体扭转效应的研究[D].大连:大连理工大学,2000.
    [106]高长银.压电石英晶片扭转效应研究及新型扭矩传感器的研制[D].大连:大连理工大学,2005.
    [107]付志刚.晶圆磨床磨削力在线测量系统的研究与设计[D].大连:大连理工大学,2007.
    [108]唐克岩.硅片自旋转磨削面型仿真与实验研究[D].大连:大连理工大学,2005.
    [109]田业冰.硅片超精密磨削表面质量和材料去除率的研究[D].大连:大连理工大学,2008.
    [110]李伟健.超精密磨床监控系统的设计与开发[D].大连:大连理工大学,2005.
    [111]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [112]王国强,张进平.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [113]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用:建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2003.
    [114]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [115]朱锦益.基于虚拟样机技术的超精密磨床进给系统设计[D].大连:大连理工大学,2008.
    [116]黄金伟.基于虚拟样机的硅片磨床进给系统机电协同仿真[D].大连:大连理工大学,2010.
    [117]袁哲俊,周明,韩向利.超精密机床的新发展[J].机械工艺师,1994(11):40-42.
    [118]吕洪明,郭东明,朱祥龙等.一种改进的半导体硅片磨削砂轮对刀装置:中国,200920234112.8[P].2010,08,25.
    [119]李圣怡,戴一帆等.精密和超精密机床设计理论与方法[M].湖南:国防科技大学出版社,2009.
    [120]吴宗泽.机械设计师手册(下)[M].北京:机械工业出版社,2002.
    [121]吴宗泽.机械设计师手册(上)[M].北京:机械工业出版社,2002.
    [122]Cheng H W, Yu T K. Thermal analysis for the feed drive system of a CNC machine center [J]. International Journal of Machine Tools & Manufacture,2003 (43):1521-1528.
    [123]郭仁生.基于Matlab和Pro/Engineer优化设计实例解析[M].北京:机械工业出版社,2009.
    [124]李圣怡,戴一帆等.精密和超精密机床精度建模技术[M].湖南:国防科技大学出版社,2007.
    [125]李圣怡,戴一帆等.精密和超精密机床控制技术[M].湖南:国防科技大学出版社,2008.
    [126]李国纯,李书富,聂恒敬.机械量仪与光学量仪[M].北京:中国计量出版社,1987.
    [127]李圣怡,戴一帆等.精密和超精密加工在位检测与误差分离技术[M].湖南:国防科技大学出版社,2007.
    [128]康仁科,朱祥龙,董志刚等.一种晶片磨床的倾角调整方法和装置:中国,201110147179.X[P].2011,06,02.
    [129]朱祥龙,郭东明,康仁科.一种砂轮主轴倾角调整结构:中国,200910217228.5[P].2010,07,14.
    [130]蔡英,朱祥龙,顾荣军.一种工作台倾角调整结构:中国,200910206225.1[P].2010,04,07.
    [131]Malkin.S著.蔡光起译.磨削技术理论与应用[M].沈阳:东北大学出版社,2002.
    [132]康仁科,朱祥龙,金洙吉等.一种半导体硅片磨削力在线测量装置及控制力磨削方法:中国,201010553691.X[P].2010,11,22.
    [133]刘博.压电式三向磨削测力仪的研制[D].大连:大连理工大学,2010.
    [134]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700