泛函分析基础命题的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闭图象定理、开映射定理和等度连续定理(蕴涵一致有界原理即共鸣定理)是泛函分析理论的三大基本原理。泛函分析非常依赖Baire纲定理和Hahn-Banach延拓定理,但前者是一般拓扑学的命题而后者则正如W. Orlicz与我国学者夏道行所明确指出,是纯代数的。
     经典的泛函分析三大基本原理有一个共同点就是所处理的映射只限于过分理想的线性算子,所以三大基本原理不适用于非线性映射。这就使三大基本原理的理论价值与应用都受到了很大的限制。于是人们推广和改进三大基本原理的艰苦努力持续了60多年之久,然而泛函分析的三大基本原理虽经60多年的推广与改进但就其本质而言至今仍停留在经典命题的理论水平上。本论文对泛函分析的三大基本原理作出了实质性的全面改进。事实上,本论文对三类很大的映射族分别建立了三大基本原理,这三类映射族每个都包含经典原理所处理的全部线性算子特别是每个类中的非线性映射不少于线性算子。从此泛函分析三大基本原理被提升为将线性分析作为特例的更具普遍意义的所谓泛线性分析的基本原理,从而使三大基本原理的理论价值与应用范围分别提升和扩大到新的高度。在新三大基本原理的基础上线性对偶理论已开拓成为泛线性对偶理论,特别是泛线性广义函数理论给出了一些颇具新意的结论,新的开映射定理也给出了一些颇有理论价值与现实意义的结果。
     本研究的指导思想是:尽可能地反映现实生活。例如,线性算子作绝对的精确解剖:f(x + tz) = f(x) + tf(z), (?)x, z∈X, t∈C,这里绝对性指“(?)x, z∈X, (?)t∈C”,精确性则指x + tz中的系数1与t准确无误地出现在解剖结果上。但现实中的解剖现象往往不是如此的绝对精确。为反映这不理想的现实,我们界定了解剖映射:对每个x∈X, f(x + tu) = rf(x) + sf(u),其中u只限于在某一0点邻域中变动,t只限于|t|≤1,|r-1|与|s-t|则受到|t|的简单控制。因此解剖映射族是线性算子族的非常自然的大扩充,新的等度连续定理正是对解剖映射族建立的。又如线性算子具有绝对精确的可加性:f(x)+f(z) = f(x+z),这也是非常理想的。而f(x)+f(z) = f(u)其中的情形则相当普遍。正是由这个事实出发我们得到了新的开映射定理。新的闭图象定理也是以类似的思路得到的。
     新三大基本原理的建立不仅使三大原理的理论水平得到明显提高,也扩大了三大原理的应用范围。对此本论文在最后一章给出了新三大基本原理在对偶理论、广义函数理论和Banach空间理论中的一些应用。
Closed graph theorem, open mapping theorem and equicontinuity theorem (imply-ing uniform boundedness principle, i.e., resonance theorem) are the three basic principlesof the theory of functional analysis. Functional analysis greatly depends on Baire cate-gory theorem and Hahn-Banach extension theorem. But the former is a proposition of thetheory of general topology and the latter, as W. Orlicz and a scholar of our country XiaDaoxing explicitly say, belongs to pure algebra.
     There is a common property among classical three basic principles of functionalanalysis, that is, treated mappings are only linear operators which are too ideal. So thethree basic principles are not applicable to nonlinear mappings. This greatly makes thetheoretical value and applications of three basic principles limited. So there have beenmore than sixty years for our hard work to generalize and improve the three basic prin-ciples. However, the three basic principles are still as before with extensions and im-provements of more than sixty years. In this dissertation, we substantially give all-aroundimprovements of the three basic principles of functional analysis. In fact, we establish thenew three basic principles for three very large families of mappings respectively. Each ofthe three families of mappings includes all linear mappings handled in the classical prin-ciples. Especially, the number of nonlinear mappings in each of the three families are notfewer than that of linear mappings. Henceforth, the three basic principles of functionalanalysis are promoted to the basic principles of pan-linear analysis with general mean-ing which make linear analysis to be a special case. The theoretical value and field ofapplications of three basic principles are promoted and expanded to a new level. The lin-ear dual theory, based on the new three basic principles, has been extended to pan-lineardual theory. Especially, the theory of pan-linear distributions has given some very newresults, and new open mapping theorem also yields some results which have very strongtheoretical value and practical significance.
     Our guided thought is to try to reflect real life. For example, each of linear operatorsmakes absolutely precise dissection: f(x + tz) = f(x) + tf(z), (?)x, z∈X, t∈C,where absoluteness means“(?) x, z∈X, (?)t∈C”and precision means that the coeffi- cients 1 and t accurately appear in the dissecting result. But dissecting phenomenons inreal life are not often so absolutely precise. To re?ect this unideal real life, we definitedissecting mappings: for each x∈X, f(x + tu) = rf(x) + sf(u), where u belongsto a neighborhood of 0, t satisfies |t|≤1, and |r - 1| and |s - t| are simply controlledby |t|. Hence, the family of dissecting mappings is a very natural large extension of thefamily of linear operators. The new equicontinuity theorem is just established for thefamily of dissecting mappings. And each of linear operators has absolutely precise addi-tivity: f(x) + f(z) = f(x + z). This is very ideal too. But f(x) + f(z) = f(u) where is fairly common. Following this fact, we obtain the new openmapping theorem. The new closed graph theorem is obtained as the same idea.
     New three basic principles not only greatly promote the theoretical level, but alsoexpand the field of applications of three basic principles. In the last chapter, we give someapplications of new basic principles in dual theory, distributions and the theory of Banachspaces.
引文
1关肇直,张恭庆,冯德兴.线性泛函分析入门[M].上海:上海科技出版社,1979:2~3 65~66.
    2吉田耕作.泛函分析[M].孙顺华等译.北京:人民教育出版社, 1980:59.
    3 W. Orlicz.线性泛函分析[M].北京:科学出版社, 1963:60.
    4夏道行,吴卓人,严绍宗,等.实变函数论与泛函分析[M].北京:人民教育出版社, 1979:60.
    5 J. Thomas. The Axiom of Choice[M]. Amsterdam: North-Holland, 1973:28.
    6谢邦杰.超穷数与超论法[M].长春:吉林人民出版社, 1979:62~63.
    7 N. Dunford, J. Schwartz. Linear Operators I[M]. New York: Interscience, 1958:49.
    8 N. Bourbaki. Espaces Vectoriels Topologiques[M]. Paris: Hermann, 1955:92 126.
    9 A. Wilansky. Modern Methods in Topological Vector Spaces[M]. New York:McGraw-Hill, 1978:19 205~206 205 206 137~138 137 137~138 140 15 15 5655 35 68 128 92 129 112 114 84 85.
    10 S. Banach. The′orie des Ope′rations Line′ares[M]. Warszawa: Monografje Matem-atyczne, 1932.
    11 A. P. Robertson, W. J. Robertson. On the Closed Graph Theorem[J]. Proc. GlasgowMath. Assoc., 1956, 3:9~12.
    12 V. Pta′k. Completeness and the Open Mapping Theorem[J]. Bull. Soc. Math. France,1958, 86:41~74.
    13 N. J. Kalton. Some Forms of the Closed Graph Theorem[J]. Proc. CambridgePhilos. Soc., 1971, 70:401~408.
    14 J. Dieudonne′, L. Schwartz. La Dualite′dans les Espaces (F) et (LF)[J]. Ann. Inst.Fourier. Grenoble, 1950, 1:61~101.
    15 G. Ko¨the. U¨ber zwei Sa¨tze von Banach[J]. Math. Z., 1950, 53(1):203~209.
    16 A. Grothendieck. Produits Tensoriels Topologiques et Espaces Nucle′aires[J]. Mem.Amer. Math. Soc., 1955, 16.
    17 T. Husain. The Open Mapping and Closed Graph Theorems in Topological VectorSpaces[M]. Oxford Math. Monographs. Oxford: Clarendon Press, 1965:42~4342~43 42~43.
    18 L. Waelbroeck. Topological Vector Spaces and Algebras[M]. Lecture Notes inMath. Vol. 639. Berlin: Springer-Verlag, 1971:15 15.
    19 N. Adasch, B. Ernst, D. Keim. Topological Vector Spaces[M]. Lecture Notes inMath. Vol. 639. Berlin: Springer-Verlag, 1978:44~45 44 45 46 49 39.
    20 J. H. Qiu. A General Version of Kalton’s Closed Graph Theorem[J]. Acta Math.Sci., 1995, 15(2):161~170.
    21 M. Mahowald. Barrelled Spaces and the Closed Graph Theorem[J]. J. LondonMath. Soc., 1961, 36(1):108~110.
    22 A. McIntosh. On the Closed Graph Theorem[J]. Proc. Amer. Math. Soc., 1969,20(2):397~404.
    23 M. D. Wilde. Ultrabornological Spaces and the Closed Graph Theorem[J]. Bull.Soc. Roy. Sci. Lie`ge, 1971, 40:116~118.
    24 W. J. Robertson. On the Closed Graph Theorem and Spaces with Webs[J]. Proc.London Math. Soc., 1972, 24(4):692~738.
    25 B. J. Pettis. Closed Graph and Open Mapping Theorems in Certain TopologicallyComplete Spaces[J]. Bull. London Math. Soc., 1974, 6(1):37~41.
    26 S. M. Khaleelulla. A Closed Graph Theorem for Ordered Topological AbelianGroups[J]. Tamkang J. Math., 1976, 7(1):31~35.
    27 J. O. Popoola, I. Tweddle. On the Closed Graph Theorem[J]. Glasgow Math. J.,1976, 17(2):89~97.
    28 M. Valdivia. On the Closed Graph Theorem in Topological Spaces[J]. ManuscriptaMath., 1978, 23(2):173~184.
    29 G. M. M. Obi. Closed Graph Theorem for Quadratic Spaces[J]. J. London Math.Soc., 1980, 22(2):245~250.
    30 S. O. Iyahen. A Note on B?complete Spaces and the Closed Graph Theorem[J].Math. Ann., 1988, 282(4):615~619.
    31 L. M. S. Ruiz. On the Closed Graph Theorem between Topological Vector Spacesand Fre′chet Spaces[J]. Math. Japan, 1991, 36(2):271~275.
    32 E. Pap, C. Swartz. An Elementary Proof of a Closed Graph Theorem on NormedK ?space[J]. Rend. Accad. Sci. Fis. Mat. Napoli., 1991, 58(4):101~104.
    33丘京辉.一类闭图象定理[J].数学学报, 1992, 35(5):704~709.
    34 R. Beattie. Continuous Convergence and Functional Analysis[J]. Topology Appl.,1996, 70(2-3):101~111.
    35 R. Beattie, H. P. Butzmann. Ultracomplete Convergence Vector Spaces and theClosed Graph Theorem[J]. Topology Appl., 2001, 111(1-2):59~69.
    36 W. B. Moors. Closed Graph Theorems and Baire Spaces[J]. New Zealand J. Math.,2002, 31(1):55~62.
    37 H. R. Ameziane, A. Blali, A. Bouziani. The′ore′me du Graphe Ferme dans lesG?espaces Topologiques[J]. Extracta Math., 2004, 19(2):163~170.
    38 J. Z. Xiao, X. H. Zhu. Some Basic Theorems for Linear Operators between FuzzyNormed Spaces[J]. J. Univ. Sci. Tech. China, 2004, 34(4):414~430.
    39 S. K. S. T. Bag. Fuzzy Bounded Linear Operators[J]. Fuzzy Sets and Systems,2005, 151(3):513~547.
    40 F. Gach. A Note on Closed Graph Theorems[J]. Acta Math. Univ. Comenian, 2006,75(2):209~218.
    41 C. H. Yan. Linear Operators in Fuzzying Topological Linear Spaces[J]. Fuzzy Setsand Systems, 2006, 157(14):1983~1994.
    42成波,曹怀信.次范整线性空间中的拟算子定理和闭图像定理[J].西南师范大学学报, 2006, 31(4):35~39.
    43黄利忠.关于Q(Qr、Q(ζ))空间上的开映射定理与闭图象定理[D].呼和浩特:内蒙古大学, 2007:20.
    44 C. H. Yan, J. X. Fang. Continuity of Linear Operators in L?fuzzifying TopologicalVector Spaces[J]. Fuzzy Sets and Systems, 2007, 158(9):937~948.
    45 M. Frank. Characterizing C??algebras of Compact Operators by Generic Categor-ical Properties of Hilbert C??modules[J]. J. K-Theory, 2008, 2(3):453~462.
    46 O. Valero. Closed Graph and Open Mapping Theorems for Normed Cones[J]. Proc.Indian Acad. Sci. (Math. Sci.), 2008, 118(2):245~254.
    47 I. V. Orlov. Principles of Functional Analysis in Scales of Spaces: Hahn-BanachTheorem, Banach Theorem on Homomorphisms, and Theorems on Open Mappingsand Closed Graphs[J]. J. Math. Sci., 2008, 150(6):2563~2577.
    48 P. Q. Khanh. An Induction Theorem and General Open Mapping Theorems[J]. J.Math. Anal. Appl., 1986, 118(2):519~534.
    49黄绍标,黄继岭.集值线性算子的闭图性质[J].天津大学学报, 1994,27(6):799~803.
    50 C. S. Fernandez. The Closed Graph Theorem for Multilinear Mappings[J]. Internat.J. Math. Sci., 1996, 19(2):407~408.
    51 A. Tineo. The Closed Graph Theorem for Nonlinear Maps[J]. J. Math. Anal. Appl.,1999, 233(1):77~85.
    52 Q. Lei, R. L. Li. An Improved Nonlinear Closed Graph Theorem[J]. Appl. Math.J. Chinese Univ. Ser. B., 2007, 22(2):226~228.
    53 M. Matejdes. Continuity Properties of Cluster Multifunctions and Closed GraphTheorems[J]. Tatra Mt. Math. Publ., 2008, 40:81~89.
    54 A. P. Robertson, W. J. Robertson. Topological Vector Spaces[M]. New York: Cam-bridge Univ. Press, 1964.
    55 S. O. Iyahen. Barrelled Spaces and the Open Mapping Theorem[J]. J. LondonMath. Soc., 1975, 11(2):421~422.
    56 S. Koshi, M. Takesaki. An Open Mapping Theorem on Homogeneous Spaces[J].J. Austral. Math. Soc. Ser. A., 1992, 53(1):51~54.
    57 L. M. S. Ruiz. On some Topological Vector Spaces Related to the General OpenMapping Theorem[J]. Acta Math. Hungar., 1993, 61(3-4):235~240.
    58 D. A. Xavier, M. Jose, M. L. Santiago. Open Mapping Theorem in Fuzzy NormedSpaces[J]. J. Fuzzy Math., 1998, 6(4):1009~1013.
    59 S. Priess-Crampe. Remarks on some Theorems of Functional Analysis[J]. Ultra-metric Functional Anal., 2005, 384:235~246.
    60刘秋凤,阮颖彬.关于开映射算子与闭映射算子[J].福建师范大学学报, 2007,23(5):11~14.
    61 K. H. Hofmann, S. A. Morris. An Open Mapping Theorem for pro-Lie Groups[J].J. Aust. Math. Soc., 2007, 83(1):55~77.
    62 D. Reem. The Open Mapping Theorem and the Fundamental Theorem of Alge-bra[J]. Fixed Point Theory, 2008, 9(1):259~266.
    63 H. Tateishi. An Open Mapping Theorem for Young Measures[J]. Proc. Amer. Math.Soc., 2008, 136(11):4027~4032.
    64 V. Brattka. A Computable Version of Banach’s Inverse Mapping Theorem[J]. Ann.Pure Appl. Logic, 2009, 157(2-3):85~96.
    65 F. H. Clarke. On the Inverse Function Theorem[J]. Pacific J. math., 1976,64(1):97~102.
    66 J. Warga. An Implict Function Theorem without Differentiability[J]. Proc. Amer.Math. Soc., 1978, 69(1):65~69.
    67 P. G. Dixon. Generalized Open Mapping Theorems for Bilinear Maps with an Ap-plication to Operator Algebras[J]. Proc. Amer. Math. Soc., 1988, 104(1):106~110.
    68 B. Rodrigues. An Open Mapping Theorem Using Lower Semicontinuous Func-tions[J]. Optimization, 1989, 20(4):397~400.
    69 Z. Sodkowski. An Open Mapping Theorem for Analytic Multifunctions[J]. StudiaMath., 1997, 122(2):117~122.
    70 D. Aze′, J. N. Corvellec. Variational Methods in Classical Open Mapping Theo-rems[J]. J. Convex Anal., 2006, 13(3-4):477~488.
    71 J. H. Qiu. General Open Mapping Theorems for Linear Topological Spaces[J].Acta. Math. Sci., 1998, 18(3):241~248.
    72 E. Beckenstein, L. Narici. An Open Mapping Theorem for Basis SeparatingMaps[J]. Topology Appl., 2004, 137(1-3):39~50.
    73 S. Banach, H. Steinhaus. Sur le Principle de la Condensation de Singularite′s[J].Fund. Math., 1927, 9:50~61.
    74 C. Swartz. Infinite Matrices and the Gliding Hump[M]. Singapore-London: WorldSci., 1996:44~45 44~45.
    75 G. Ko¨the. Topological Vector Spaces I[M]. New York: Springer-Verlag, 1969:380.
    76 P. Antosik. A Diagonal Theorem, Uniform Boundedness and Equicontinuity The-orems for Triangle Set Functions[J]. Serdica, 1977, 3(3):198~205.
    77宋明亮,方锦暄.模糊赋范线性空间中准齐性算子族的等度连续性[J].模糊系统与数学, 2008, 22(2):107~116.
    78定光桂.关于一类算子族的“共鸣定理”[J].数学学报, 1977, 20(2):153~156.
    79定光桂.关于凸泛函族的共鸣定理[J].数学学报, 1981, 24(6):851~856.
    80朱继生,李虹.关于共鸣定理[J].数学学报, 1988, 31(2):192~200.
    81卢广存.一类非线性算子族的共鸣定理[J].数学杂志, 1991, 11(2):155~160.
    82刘佳,罗跃虎.加性泛函族的共鸣定理[J].数学研究与评论, 1996,16(2):285~290.
    83丘京辉.准齐性算子族的共鸣定理[J].数学年刊, 2004, 25A(3):389~396.
    84丘京辉.有序拓扑向量空间中的共鸣定理[J].数学杂志, 2005, 25(4):389~393.
    85丘京辉.取值于拓扑向量空间的准齐性算子族的共鸣定理[J].数学研究与评论, 2005, 25(1):134~138.
    86王国俊,白永成.平移空间的线性结构[J].数学学报, 2005, 48(1):1~10.
    87宋明亮. F~?空间中的共鸣定理与算子空间[D].南京:南京师范大学,2006:10~55.
    88苏永福,李素红.随机赋范空间中算子随机范数与共鸣定理及应用[J].应用泛函分析学报, 2006, 8(2):184~192.
    89袁国常,崔平昌,黄德荣.关于Banach空间上非线性Lipschitz算子的几个结果[J].三峡大学学报, 2006, 28(5):475~477.
    90 M. L. Song, J. X. Fang. Resonance Theorems for Family of Quasi-homogeneousOperators in Fuzzy Normed Linear Spaces[J]. Fuzzy Sets and Systems, 2008,159(6):708~719.
    91 J. Kupka. Uniform Boundedness Principles for Regular Borel Vector Measures[J].J. Austral. Math. Soc. Ser. A., 1980, 29(2):206~218.
    92 C. Swartz. The Uniform Boundedness Principle for Order Bounded Operators[J].Internat. J. Math. Math. Sci., 1989, 12(3):487~492.
    93 R. L. Li, C. Swartz. Equicontinuity and Uniform Boundedness[J]. Rend. Istit. Mat.Univ. Trieste., 1989, 21(1):91~96.
    94 M. H. Cho, R. L. Li, C. Jin. A Basic Principle of Topological Vector Space The-ory[J]. J. Korean Math. Soc., 1989, 26(2):223~229.
    95郭铁信,林熙,龚怀云.概率赋范线性空间中的一致有界原理[J].西安交通大学学报, 1990, 24(1):65~70.
    96 R. L. Li, C. Swartz. Spaces for Which the Uniform Boundedness Principle Holds[J].Studia Sci. Math. Hungar., 1992, 27(3-4):379~384.
    97 C. A. Faure, A. Frolicher. The Uniform Boundedness Principle for BornologicalVector Spaces[J]. Arch. Math., 1994, 62(3):270~277.
    98 L. Vesely. Local Uniform Boundedness Principle for Families of ?monotone Op-erators[J]. Nonlinear Anal., 1995, 24(9):1299~1304.
    99宣恒农.两类泛函族一致有界原理的统一与推广[J].数学进展, 1996,25(5):449~455.
    100 W. Roth. A Uniform Boundedness Theorem for Locally Convex Cones[J]. Proc.Amer. Math. Soc., 1998, 125(7):1973~1982.
    101 G. G. Ding. The Uniform Boundedness Principle in some Topological VectorGroups[J]. Systems Sci. and Math. Sci., 2000, 13(3):292~301.
    102 J. D. Wu, C. R. Cui, M. H. Cho. The Abstract Uniform Boundedness Principle[J].Southeast Asian Bull. Math., 2000, 24(4):655~660.
    103 D. Naguard. A Strong Boundedness Principle in Banach Spaces[J]. Proc. Amer.Math. Soc., 2000, 129(3):861~863.
    104 J. Z. Xiao, X. H. Zhu. The Uniform Boundedness Principles for Fuzzy NormedSpaces[J]. J. Fuzzy Math., 2004, 12(3):543~560.
    105 A. Bourass, B. Ferrahi, B. M. Schreiber, et al. A Random Multivalued UniformBoundedness Principle[J]. Set-Valued Anal., 2005, 13(2):105~124.
    106刘玉波,刘宜.赋准范空间上可加算子族的一致有界性的一个注记[J].天津师范大学学报, 2005, 25(2):42~44.
    107刘玉波.广义等度连续算子族的一致有界性原理[J].天津师范大学学报,2005, 25(4):54~57.
    108 I. G. Ganiev, K. K. Kudaibergenov. The Banach-Steinhaus Uniform BoundenessPrinciple for Operators in Banach-Kantorovich Spaces over L0[J]. Mat. Tr., 2006,9(1):21~33.
    109 U. Kohlenbach. A Logical Uniform Boundedness Principle for Abstract Metricand Hyperbolic Spaces[J]. Electronic Notes in Theoretical Computer Sci., 2006,165:81~93.
    110 C. Swartz. The Uniform Boundedness Principle for Abitrary Locally ConvexSpaces[J]. Proyecciones, 2007, 26(3):245~251.
    111 R. Henrion, A. Seeger. Uniform Boundedness of Norms of Convex and NonconvexProcesses[J]. Numerical Functional Anal., 2008, 29(5-6):551~573.
    112 A. D. Arvanitakis, J. D. Stein. A Generalization of Uniform Boundedness Princi-ple[J]. Internat. J. Pure Appl. Math., 2008, 43(4):507~528.
    113 S. Rolewicz. Metric Linear Spaces[M]. Warszawa: PWN, 1984:2 12.
    114 J. Diestel, J. Uhl. Vector Mearures[M]. Math. Surveys no. 15. Providence: Amer.Math. Soc., 1977:2.
    115 J. L. Kelley.一般拓扑学[M].吴从炘,吴让泉译.北京:科学出版社, 1985:214.
    116 A. Wilansky. Topology for Analysis[M]. New York: John Wiley, 1970:288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700