TGM6转基因小鼠模型的构建和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓小脑型共济失调(spinocerebellar ataxia, SCA)是一种具有高度临床和遗传异质性的神经系统退行性疾病,多呈常染色体显性遗传。随着分子遗传学的研究进展,陆续鉴定出新的致病基因。到目前已发现了33个不同的基因亚型,其中23个亚型的致病基因已被克隆出来。2010年,我们实验室应用Exome sequencing技术在两个无关的常染色体显性遗传家系中发现两个不同位置的突变:TGM6基因10号外显子的c.1550T-G(L517W)突变和7号外显子c.980A-G (D327G)突变。从而鉴定出一个新的SCA致病基因TGM6,该SCA新亚型被人类基因命名委员会正式命名为SCA35。
     SCA各亚型致病基因的分子发病机制并不完全一样。TGM6基因本身的生物学功能目前国内外尚无研究报道。为了探讨TGM6的基本生物学功能以及突变引起SCA35的发病机制,我们构建两种突变型和野生型TGM6基因的转基因小鼠模型,使小鼠表达人类突变和野生的TG6蛋白。此外,目前缺乏TGM6基因在中枢神经系统内的细胞水平表达谱的资料,而这些资料对于了解其功能是必需的。因此,本论文采用免疫组化方法调查了TGM6基因在中枢神经系统内的分布情况及其阳性神经元的化学神经解剖学特征。
     为了构建携带人类L517W突变、D327G突变和野生型TGM6基因的转基因小鼠模型,首先构建了pCAGGS-TGM6wt-Myc-GFP、 pCAGGS-TGM6L517W-Myc-GFP和pCAGGS-TGM6D327G-Myc-GFP三个转基因表达载体。转基因表达载体上带了Myc和GFP两个标签。这些载体在培养细胞进行了验证。
     在此基础上,我们制备了以上表达人TGM6的三种转基因小鼠:即L517W突变、D327G突变和野生型TGM6。以上小鼠通过PCR和测序验证。应用Western Blot检测GFP和Myc,在蛋白水平证实了转基因的表达。通过TG6和GFP(或Myc)免疫双重染色,在细胞水平显示转基因TG6确实表达于中枢神经系统内。转基因小鼠的成功制备,为后续在整体动物水平研究TGM6及其突变体的功能提供了工具。
     TGM6在野生型小鼠中枢神经系统表达模式的研究发现,TG6蛋白主要表达在小鼠的间脑、脑干和小脑,表达在神经元而非神经胶质细胞。TG6阳性细胞主要分布在包括苍白球、底丘脑核、黑质、小脑等与运动调节功能密切的脑区。在黑质网状部,TG6主要表达在抑制性的GABA能神经元中。
The spinocerebellar ataxias (SCAs) are a heterogeneous group of inherited neurodegenerative disorders. To date, classical genetic studies have revealed33distinct genetic forms of spinocerebellar ataxias, and23causative genes have been cloned. In2010, our group identified two missense mutations in the TGM6gene in two Chinese SCA families, c.1550T>G transition (p.L517W) and c.980A>G transition (p.D327G), suggesting a novel causative gene for SCA, which has been named as SCA35.
     The molecular pathogenesis among the SCA subtypes may be different. To explore the mechanism of SCA35and the function of TGM6, we generate the transgenic mice carrying the L517W and D327G mutation and wild-type of human TGM6gene. In addition, there has been no report concerning the cellular distribution of TG6in the adult brain, we thus set out to investigate TGM6gene expression in the central nervous system. This data is the basis for further dissecting the physiological function of TGM6.
     The molecular pathogenesis of the SCA subtypes may be different. There isn't the report about the physiological function of TGM6gene at home and abroad. To explore the function of TGM6and the mechanism of SCA35, we construct the transgenic mice which carry the L517W and D327G mutation and wild-type of human TGM6gene. In addition, there is few data about TGM6gene expression patterns in the central nervous system. These data is necessary to learn the function of TGM6. Therefore, the thesis investigated the expression patterns in the central nervous system of TGM6and the chemical neuroanatomical characteristics of positive neurons.
     To generate transgenic mice carrying the mutations of L517W and D327G, and wild-type human TGM6gene, we constructed pCAGGS-TGM6wt-Myc-GFP, pCAGGS-TGM6L517W-Myc-GFP and pCAGGS-TGM6D327G-Myc-GFP transgenic expression vectors, with Myc and GFP tag. These vectors expressed the transgenes effectively in eukaryocytes.
     The three transgenesic mice expressing human TGM6mutations of L517W and D327G, and the wild-type TGM6were obtained. The three transgenic mice were confirmed by PCR and sequencing, and by detecting expression of GFP and Myc with Western blot, which indicated the expression of transgenes at the protein level. In addition, to show expression of transgenes at the cellular level, we performed double immunological staining of TG6with GFP (or Myc). It showed that TG6immunoreactivity was co-localized with GFP or Myc in the brain. Thus, we have made the transgenic mice carrying human TGM6(wild type and two mutations), which provided a good tool for investigating the function of human TG6in vivo.
     Immunohistochemistry of TG6in adult brains showed that TG6was abundantly expressed in the diencephalon, brainstem and cerebellum. TG6was located in neurons but not glia cells. Notably, numerous TG6-positive neurons were distributed in the key brain regions involved in regulating locomotion activity including the globus pallidus, subthalamic nucleus, substantia nigra and cerebellum. In addition, we found that the vast majority of TG6-positive cells in the reticular part of substantia nigra were GABAergic inhibitory neurons.
引文
[1]Rossant J. Manipulating the mouse genome:implications for neurobiology[J]. Neuron,1990,4(3):323-334.
    [2]Matilla-Duenas A, Sanchez I, Corral-Juan M, et al. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias[J]. Cerebellum, 2010,9(2):148-166.
    [3]Yamada M, Sato T, Tsuji S, et al. CAG repeat disorder models and human neuropathology:similarities and differences [J]. Acta Neuropathol,2008,115(1):71-86.
    [4]Liu Y T, Tang B S, Wang J L, et al. Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population[J]. Neurosci Lett,2012, 528(1):51-54.
    [5]Kobayashi H, Abe K, Matsuura T, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement[J]. Am J Hum Genet,2011,89(1):121-130.
    [6]Koob M D, Moseley M L, Schut L J, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8)[J]. Nat Genet,1999,21(4): 379-384.
    [7]Matsuura T, Yamagata T, Burgess D L, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10[J]. Nat Genet,2000, 26(2):191-194.
    [8]Holmes S E, O'Hearn E E, Mcinnis M G, et al. Expansion of a novel CAG trinucleotide repeat in the 5'region of PPP2R2B is associated with SCA12[J]. Nat Genet,1999,23(4):391-392.
    [9]Sato N, Amino T, Kobayashi K, et al. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n[J]. Am J Hum Genet,2009,85(5):544-557.
    [10]Ranum L P, Schut L J, Lundgren J K, et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11 [J]. Nat Genet,1994,8(3):280-284.
    [11]Durr A. Autosomal dominant cerebellar ataxias:polyglutamine expansions and beyond[J]. Lancet Neurol,2010,9(9):885-894.
    [12]Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11[J]. Nat Genet,2007,39(12):1434-1436.
    [13]Novak M J, Sweeney M G, Li A, et al. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16:a genetic, clinical and radiological description[J]. Mov Disord,2010,25(13):2176-2182.
    [14]Waters M F, Minassian N A, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes[J]. Nat Genet,2006,38(4):447-451.
    [15]Yabe I, Sasaki H, Chen D H, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma[J]. Arch Neurol,2003,60(12):1749-1751.
    [16]Bakalkin G, Watanabe H, Jezierska J, et al. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23[J]. Am J Hum Genet,2010,87(5):593-603.
    [17]Di Bella D, Lazzaro F, Brusco A. et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28[J]. Nat Genet,2010,42(4):313-321.
    [18]Wang J L, Yang X, Xia K, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing[J]. Brain,2010,133(Pt 12):3510-3518.
    [19]Li M, Pang S, Song Y, et al. Whole exome sequencing identifies a novel mutation in the transglutaminase 6 gene for spinocerebellar ataxia in a Chinese family[J].Clin Genet,2012.
    [20]Fesus L, Piacentini M. Transglutaminase 2:an enigmatic enzyme with diverse functions[J]. Trends Biochem Sci,2002,27(10):534-539.
    [21]Shleikin A G, Danilov N P. [Evolutionary-biological peculiarities of transglutaminase. Structure, physiological functions, application] [J]. Zh Evol Biokhim Fiziol,2011,47(1):3-14.
    [22]Martin A, Giuliano A, Collaro D, et al. Possible involvement of transglutaminase-catalyzed reactions in the physiopathology of neurodegenerative diseases[J]. Amino Acids,2011.
    [23]Ricotta M, Iannuzzi M, Vivo G D, et al. Physio-pathological roles of transglutaminase-catalyzed reactions [J]. World J Biol Chem,2010,1(5):181-187.
    [24]Pinkas D M, Strop P, Brunger A T, et al. Transglutaminase 2 undergoes a large conformational change upon activation[J]. PLoS Biol,2007,5(12):e327.
    [25]Casadio R, Polverini E, Mariani P, et al. The structural basis for the regulation of tissue transglutaminase by calcium ions[J]. Eur J Biochem,1999, 262(3):672-679.
    [26]Zhang J, Lesort M, Guttmann R P, et al. Modulation of the in situ activity of tissue transglutaminase by calcium and GTP[J]. J Biol Chem,1998,273(4):2288-2295.
    [27]Dolge L, Aufenvenne K, Traupe H, et al. Beta-actin is a target for transglutaminase activity at synaptic endings in chicken telencephalic cell culture s[J]. J Mol Neurosci,2012,46(2):410-419.
    [28]Tabolacci C, Lentini A, Provenzano B, et al. Evidences for a role of protein cross-links in transglutaminase-related disease[J]. Amino Acids,2012,42(2-3): 975-986.
    [29]Caccarno D, Condello S, Ferlazzo N, et al. Transglutaminase 2 interaction with small heat shock proteins mediate cell survival upon excitotoxic stress[J]. Amino Acids,2011.
    [30]Grosso H, Mouradian M M. Transglutaminase 2:biology, relevance to neurodegenerative diseases and therapeutic implications [J]. Pharmacol Ther,2012, 133(3):392-410.
    [31]Rossin F, D'Eletto M, Macdonald D, et al. TG2 transamidating activity acts as a reostat controlling the interplay between apoptosis and autophagy[J]. Amino Acids,2012,42(5):1793-1802.
    [32]Martin A, De Vivo G, Gentile V. Possible role of the transglutaminases in the pathogenesis of Alzheimer's disease and other neurodegenerative diseases [J]. Int J Alzheimers Dis,2011,2011:865432.
    [33]Appelt D M, Kopen G C, Boyne L J, et al. Localization of transglutaminase in hippocampal neurons:implications for Alzheimer's disease[J]. J Histochem Cytochem,1996,44(12):1421-1427.
    [34]Miller M L, Johnson G V. Transglutaminase cross-linking of the tau protein[J]. J Neurochem,1995,65(4):1760-1770.
    [35]Citron B A, Santacruz K S, Davies P J, et al. Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer's disease[J]. J Biol Chem,2001,276(5):3295-3301.
    [36]Abdalla S, Lother H, El M A, et al. Dominant negative AT2 receptor oligomers induce G-protein arrest and symptoms of neurodegeneration[J]. J Biol Chem,2009,284(10):6566-6574.
    [37]Citron B A, Suo Z, Santacruz K, et al. Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration[J]. Neurochem Int,2002,40(1):69-78.
    [38]Junn E, Ronchetti R D, Quezado M M, et al. Tissue transglutaminase-induced aggregation of alpha-synuclein:Implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies [J]. Proc Natl Acad Sci U S A,2003,100(4):2047-2052.
    [39]Lai T S, Tucker T, Burke J R, et al. Effect of tissue transglutaminase on the solubility of proteins containing expanded polyglutamine repeats [J]. J Neurochem,2004,88(5):1253-1260.
    [40]Munsie L, Caron N, Atwal R S, et al. Mutant huntingtin causes defective actin remodeling during stress:defining a new role for transglutaminase 2 in neurodegenerative disease[J]. Hum Mol Genet,2011,20(10):1937-1951.
    [41]Dedeoglu A, Kubilus J K, Jeitner T M, et al. Therapeutic effects of cystamine in a murine model of Huntington's disease[J]. J Neurosci,2002,22(20): 8942-8950.
    [42]Mastroberardino P G, Iannicola C, Nardacci R, et al.'Tissue' transglutaminase ablation reduces neuronal death and prolongs survival in a mouse model of Huntington's disease[J]. Cell Death Differ,2002,9(9):873-880.
    [43]Dai Y, Dudek N L, Li Q, et al. Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease[J]. J Neurosci,2009,29(37):11550-11559.
    [44]Bailey C D, Johnson G V. The protective effects of cystamine in the R6/2 Huntington's disease mouse involve mechanisms other than the inhibition of tissue transglutaminase [J]. Neurobiol Aging,2006,27(6):871-879.
    [45]Zemaitaitis M O, Kim S Y, Halverson R A. et al. Transglutaminase activity, protein, and mRNA expression are increased in progressive supranuclear palsy [J]. J Neuropathol Exp Neurol,2003,62(2):173-184.
    [46]Festoff B W, Santacruz K, Arnold P M, et al. Injury-induced "switch" from GTP-regulated to novel GTP-independent isoform of tissue transglutaminase in the rat spinal cord[J]. J Neurochem,2002,81(4):708-718.
    [47]Nagata Y, Fujita K, Yamauchi M, et al. Neurochemical changes in the spinal cord in degenerative motor neuron diseases[J]. Mol Chem Neuropathol, 1998,33(3):237-247.
    [48]Jeitner T M, Muma N A, Battaile K P, et al. Transglutaminase activation in neurodegenerative diseases[J]. Future Neurol,2009,4(4):449-467.
    [49]Kuo T F, Tatsukawa H, Kojima S. New insights into the functions and localization of nuclear transglutaminase 2[J]. FEBS J,2011,278(24):4756-4767.
    [50]D'Souza D R, Wei J, Shao Q, et al. Tissue transglutaminase crosslinks ataxin-1:possible role in SCA1 pathogenesis[J]. Neurosci Lett,2006,409(1):5-9.
    [51]Vig P J, Wei J, Shao Q, et al. Role of tissue transglutaminase type 2 in calbindin-D28k interaction with ataxin-1 [J]. Neurosci Lett,2007,420(1):53-57.
    [52]Sato K, Murakami T, Hamakawa Y, et al. Selective colocalization of transglutaminase-like activity in ubiquitinated intranuclear inclusions of hereditary dentatorubral-pallidoluysian atrophy[J]. Brain Res,2002,952(2):327-330.
    [53]Igarashi S, Koide R, Shimohata T. et al. Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch[J]. Nat Genet,1998,18(2):111-117.
    [54]Tsuji S. Dentatorubral-pallidoluysian atrophy (DRPLA)[J]. J Neural Transm Suppl,2000(58):167-180.
    [55]Hadjivassiliou M, Aeschlimann P, Strigun A, et al. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase [J]. Ann Neurol,2008,64 (3):332-343.
    [56]Thomas H, Beck K, Adamczyk M, et al. Transglutaminase 6:a protein associated with central nervous system development and motor function[J]. Amino Acids,2013,44(1):161-177.
    [57]Stamnaes J, Dorum S, Fleckenstein B, et al. Gluten T cell epitope targeting by TG3 and TG6; implications for dermatitis herpetiformis and gluten ataxia[J]. Amino Acids,2010,39(5):1183-1191.
    [58]Boscolo S, Lorenzon A, Sblattero D, et al. Anti transglutaminase antibodies cause ataxia in mice[J]. PLoS One,2010,5(3):e9698.
    [59]Meyer Z H G, Nave K A. Animal models of inherited neuropathies [J]. Curr Opin Neurol,2006,19(5):464-473.
    [60]Miyazaki J, Takaki S, Araki K, et al. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5[J]. Gene,1989,79(2):269-277.
    [61]Hino H, Araki K, Uyama E, et al. Myopathy phenotype in transgenic mice expressing mutated PABPN1 as a model of oculopharyngeal muscular dystrophy [J]. Hum Mol Genet,2004,13(2):181-190.
    [62]Galbiati F, Volonte D, Chu J B, et al. Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype[J]. Proc Natl Acad Sci U S A,2000,97(17):9689-9694.
    [63]Sharp P, Krishnan M, Pullar O, et al. Heat shock protein 27 rescues motor neurons following nerve injury and preserves muscle function[J]. Exp Neurol,2006,198(2):511-518.
    [64]Cubitt A B, Heim R, Adams S R, et al. Understanding, improving and using green fluorescent proteins[J]. Trends Biochem Sci,1995,20(11):448-455.
    [65]Giepmans B N, Adams S R, Ellisman M H, et al. The fluorescent toolbox for assessing protein location and function[J]. Science,2006,312(5771):217-224.
    [66]Walker D, Htun H, Hager G L. Using inducible vectors to study intracellular trafficking of GFP-tagged steroid/nuclear receptors in living cells[J]. Methods,1999, 19(3):386-393.
    [67]Baens M, Noels H, Broeckx V, et al. The dark side of EGFP:defective polyubiquitination[J]. PLoS One,2006,1:e54.
    [68]Zwicker N, Adelhelm K, Thiericke R, et al. Strep-tag II for one-step affinity purification of active bHLHzip domain of human c-Myc[J]. Biotechniques,1999, 27(2):368-375.
    [69]Rowan A J, Bodmer W F. Introduction of a Myc reporter tag to improve the quality of mutation detection using the protein truncation test[J]. Hum Mutat.1997, 9(2):172-176.
    [70]张付峰.HSP22转基因小鼠模型的建立[D].长沙:中南大学,2008.
    [71]Grenard P, Bates M K, Aeschlimann D. Evolution of transglutaminase genes:identification of a transglutaminase gene cluster on-human chromosome 15qd5: Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z[J]. J Biol Chem,2001,276(35):33066-33078.
    [72]Jeitner T M, Pinto J T, Krasnikov B F, et al. Transglutaminases and neurodegeneration[J]. J Neurochem,2009,109 Suppl 1:160-166.
    [73]Guan W J, Wang J L, Liu Y T, et al. Spinocerebellar ataxia type 35 (SCA35)-associated transglutaminase 6 mutants sensitize cells to apoptosis[J]. Biochem Biophys Res Commun,2013,430(2):780-786.
    [74]Konakova M, Pulst S M. Immunocytochemical characterization of torsin proteins in mouse brain[J]. Brain Res,2001,922(1):1-8.
    [75]Villarejo-Balcells B, Guichard S, Rigby P W, et al. Expression pattern of the FoxO1 gene during mouse embryonic development[J]. Gene Expr Patterns,2011,11(5-6):299-308.
    [76]Ireland D D, Reiss C S. Expression of IL-12 receptor by neurons[J]. Viral Immunol,2004,17(3):411-422.
    [77]Akita K, von Holst A, Furukawa Y, et al. Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance [J]. Stem Cells,2008,26(3):798-809.
    [78]Giordano G, Cole T B, Furlong C E, et al. Paraoxonase 2 (PON2) in the mouse central nervous system:a neuroprotective role?[J]. Toxicol Appl Pharmacol,2011,256(3):369-378.
    [79]Biggs C S, Starr M S. Dopamine and glutamate control each other's release in the basal ganglia:a microdialysis study of the entopeduncular nucleus and substantia nigra[J]. Neurosci Biobehav Rev,1997.21(4):497-504.
    [80]Brazhnik E, Shah F, Tepper J M. GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo[J]. J Neurosci,2008,28(41):10386-10398.
    [81]van Gaalen J, Giunti P, van de Warrenburg B P. Movement disorders in spinocerebellar ataxias[J]. Mov Disord,2011,26(5):792-800.
    [82]Coesmans M, Weber J T, De Zeeuw C I, et al. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control[J]. Neuron,2004,44(4): 691-700.
    [83]Devor A. Is the cerebellum like cerebellar-like structures?[J]. Brain Res Brain Res Rev,2000,34(3):149-156.
    [84]Bostan A C, Strick P L. The cerebellum and basal ganglia are interconnected[J]. Neuropsychol Rev,2010,20(3):261-270.
    [85]杨期明,唐北沙,伍赶球,等.脊髓小脑变性患者脑脊液中兴奋性和抑制性氨基酸改变[J].卒中与神经疾病,1999(1).
    [86]Bonelli R M, Aschoff A, Niederwieser G, et al. Cerebrospinal fluid tissue transglutaminase as a biochemical marker for Alzheimer's disease [J]. Neurobiol Dis,2002,11(1):106-110.
    [87]Verities I, Steur E N, Jirikowski G F, et al. Elevated concentration of cerebrospinal fluid tissue transglutaminase in Parkinson's disease indicating apoptosis[J]. Mov Disord,2004,19(10):1252-1254.
    [1]Schols L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis[J]. Lancet Neurol,2004,3(5):291-304.
    [2]Duenas A M, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias[J]. Brain,2006,129(Pt 6):1357-1370.
    [3]Burright E N, Clark H B, Servadio A, et al. SCA1 transgenic mice:a model for neurodegeneration caused by an expanded CAG trinucleotide repeat[J]. Cell,1995,82(6):937-948.
    [4]Orr H T, Chung M Y, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1[J]. Nat Genet,1993,4(3):221-226.
    [5]Sanpei K, Takano H, Igarashi S, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT[J]. Nat Genet,1996,14(3):277-284.
    [6]Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats [J]. Nat Genet,1996,14(3):285-291.
    [7]Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1[J]. Nat Genet,1994,8(3): 221-228.
    [8]Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4):clinical description and genetic localization to chromosome 16q22.1[J]. Am J Hum Genet,1996, 59(2):392-399.
    [9]Ranum L P, Schut L J, Lundgren J K, et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11[J]. Nat Genet,1994,8(3):280-284.
    [10]Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1 A-voltage-dependent calcium channel[J]. Nat Genet,1997,15(1):62-69.
    [11]David G, Abbas N, Stevanin G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion[J]. Nat Genet,1997,17(1):65-70.
    [12]Koob M D, Moseley M L, Schut L J, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8)[J]. Nat Genet,1999,21(4): 379-384.
    [13]Matsuura T, Yamagata T, Burgess D L, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10[J]. Nat Genet,2000,26(2):191-194.
    [14]Worth P F, Giunti P, Gardner-Thorpe C, et al. Autosomal dominant cerebellar ataxia type Ⅲ:linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3[J]. Am J Hum Genet,1999,65(2):420-426.
    [15]Holmes S E, O'Hearn E E, Mcinnis M G, et al. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12[J]. Nat Genet,1999,23(4):391-392.
    [16]Waters M F, Minassian N A, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes[J]. Nat Genet,2006,38(4):447-451.
    [17]Yamashita I, Sasaki H, Yabe I, et al. A novel locus for dominant cerebellar ataxia (SCAM) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter[J]. Ann Neurol,2000,48(2):156-163.
    [18]Chen D H, Brkanac Z, Verlinde C L, et al. Missense mutations in the regulatory domain of PKC gamma:a new mechanism for dominant nonepisodic cerebellar ataxia[J]. Am J Hum Genet,2003,72(4):839-849.
    [19]Yabe I, Sasaki H, Chen D H, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma[J]. Arch Neurol,2003,60(12):1749-1751.
    [20]Gardner R J, Knight M A, Hara K, et al. Spinocerebellar ataxia type 15 [J]. Cerebellum,2005,4(1):47-50.
    [21]Miyoshi Y, Yamada T, Tanimura M, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1[J]. Neurology,2001,57(1):96-100.
    [22]Dudding T E, Friend K, Schofield P W, et al. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus[J]. Neurology,2004, 63(12):2288-2292.
    [23]Novak M J, Sweeney M G, Li A, et al. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16:a genetic, clinical and radiological description[J]. Mov Disord,2010,25(13):2176-2182.
    [24]Nakamura K, Jeong S Y, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein[J]. Hum Mol Genet,2001,10(14):1441-1448.
    [25]Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA):Linkage to chromosome 7q22-q32[J]. Am J Med Genet,2002,114(4):450-457.
    [26]Verbeek D S, Schelhaas J H, Ippel E F, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21[J]. Hum Genet,2002,111(4-5):388-393.
    [27]Chung M Y, Lu Y C, Cheng N C, et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome lp21-q23[J]. Brain,2003,126 (Pt 6):1293-1299.
    [28]Schelhaas H J, Verbeek D S, Van de Warrenburg B P, et al. SCA19 and SCA22:evidence for one locus with a worldwide distribution[J]. Brain,2004,127(Pt 1):E6, E7.
    [29]Knight M A, Gardner R J, Bahlo M, et al. Dominantly inherited ataxia and dysphonia with dentate calcification:spinocerebellar ataxia type 20[J]. Brain,2004, 127(Pt5):1172-1181.
    [30]Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1[J]. Ann Neurol,2002,52(5):666-670.
    [31]Verbeek D S, van de Warrenburg B P, Wesseling P, et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3[J]. Brain,2004,127(Pt 11):2551-2557.
    [32]Bakalkin G, Watanabe H, Jezierska J, et al. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23[J]. Am J Hum Genet,2010,87(5):593-603.
    [33]Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p[J]. Ann Neurol.2004,55 (1):97-104.
    [34]Yu G Y, Howell M J, Roller M J, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6[J]. Ann Neurol,2005,57(3):349-354.
    [35]van Swieten J C, Brusse E, de Graaf B M, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected][J]. Am J Hum Genet,2003,72(1):191-199.
    [36]Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2[J]. Brain,2006,129(Pt 1):235-242.
    [37]Storey E, Bahlo M, Fahey M, et al. A new dominantly inherited pure cerebellar ataxia, SCA 30[J]. J Neurol Neurosurg Psychiatry,2009,80(4):408-411.
    [38]Edener U, Bernard V, Hellenbroich Y, et al. Two dominantly inherited ataxias linked to chromosome 16q22.1:SCA4 and SCA31 are not allelic[J]. J Neurol,2011,258(7):1223-1227.
    [39]Sakai H, Yoshida K, Shimizu Y, et al. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan[J]. Neurogenetics,2010,11 (4):409-415.
    [40]Sato N, Amino T, Kobayashi K, et al. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n[J]. Am J Hum Genet,2009,85(5):544-557.
    [41]Wang J L, Yang X, Xia K, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing[J]. Brain,2010,133(Pt 12):3510-3518.
    [42]Kobayashi H, Abe K, Matsuura T, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement[J]. Am J Hum Genet,2011,89(1):121-130.
    [43]Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA)[J]. Nat Genet,1994, 6(1):9-13.
    [44]Nagafuchi S, Yanagisawa H, Ohsaki E, et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA)[J]. Nat Genet,1994,8(2):177-182.
    [45]Jackson J F, Currier R D, Terasaki P I, et al. Spinocerebellar ataxia and HLA linkage:risk prediction by HLA typing[J]. N Engl J Med,1977,296 (20): 1138-1141.
    [46]Moller E, Hindfelt B, Olsson J E. HLA-determination in families with hereditary ataxia[J]. Tissue Antigens,1978,12(5):357-366.
    [47]Nino H E, Noreen H J, Dubey D P, et al. A family with hereditary ataxia: HLA typing[J]. Neurology,1980,30(1):12-20.
    [48]Banfi S, Servadio A, Chung M Y, et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia[J]. Nat Genet,1994,7(4):513-520.
    [49]Servadio A, Koshy B, Armstrong D, et al. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals [J]. Nat Genet,1995,10(1):94-98.
    [50]Servadio A, Mccall A, Zoghbi H, et al. Mapping of the Scal and pcd genes on mouse chromosome 13 provides evidence that they are different genes[J]. Genomics,1995,29(3):812-813.
    [51]Kaytor M D, Burright E N, Duvick L A, et al. Increased trinucleotide repeat instability with advanced maternal age[J]. Hum Mol Genet,1997,6(12):2135-2139.
    [52]Klement I A, Skinner P J, Kaytor M D, et al. Ataxin-1 nuclear localization and aggregation:role in polyglutamine-induced disease in SCA1 transgenic mice[J]. Cell,1998,95(1):41-53.
    [53]Lorenzetti D, Watase K, Xu B, ct al. Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Scal locus[J]. Hum Mol Genet,2000,9(5):779-785.
    [54]Cummings C J, Sun Y, Opal P, et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice[J]. Hum Mol Genet,2001,10(14):1511-1518.
    [55]Okuda T, Hattori H, Takeuchi S, et al. PQBP-1 transgenic mice show a late-onset motor neuron disease-like phenotype[J]. Hum Mol Genet,2003,12 (7): 711-725.
    [56]Watase K, Venken K J, Sun Y, et al. Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1[J]. Hum Mol Genet,2003,12(21):2789-2795.
    [57]Xia H, Mao Q, Eliason S L, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia[J]. Nat Med,2004,10 (8): 816-820.
    [58]Serra H G, Duvick L, Zu T, et al. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice[J]. Cell.2006,127(4): 697-708.
    [59]Gatchel J R, Watase K, Thaller C, et al. The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7[J]. Proc Natl Acad Sci U S A,2008,105(4):1291-1296.
    [60]Fryer J D, Yu P, Kang H, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua[J]. Science,2011,334(6056):690-693.
    [61]Cvetanovic M, Patel J M, Marti H H, et al. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1[J]. Nat Med,2011,17(11):1445-1447.
    [62]Gispert S, Twells R, Orozco G, et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1 [J]. Nat Genet,1993,4(3):295-299.
    [63]Orozco D G, Nodarse F A, Cordoves S R, et al. Autosomal dominant cerebellar ataxia:clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba[J]. Neurology,1990,40(9):1369-1375.
    [64]Pulst S M, Nechiporuk A, Nechiporuk T, et-al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2[J]. Nat Genet,1996,14(3):269-276.
    [65]Shan D E, Soong B W, Sun C M, et al. Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism[J]. Ann Neurol,2001,50 (6):812-815.
    [66]Huynh D P, Figueroa K, Hoang N, et al. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human[J]. Nat Genet,2000,26(1):44-50.
    [67]Liu J, Tang T S, Tu H, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2[J]. J Neurosci,2009,29 (29):9148-9162.
    [68]Damrath E, Heck M V, Gispert S, et al. ATXN2-CAG42 Sequesters PABPC1 into Insolubility and Induces FBXW8 in Cerebellum of Old Ataxic Knock-In Mice[J]. PLoS Genet,2012,8(8):e1002920.
    [69]Kasumu A W, Hougaard C, Rode F, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2[J]. Chem Biol,2012,19(10):1340-1353.
    [70]Hansen S T, Meera P. Otis T S, et al. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2[J]. Hum Mol Genet,2013,22(2):271-283.
    [71]Stevanin G, Le Guern E, Ravise N, et al. A third locus for autosomal dominant cerebellar ataxia type I maps to chromosome 14q24.3-qter:evidence for the existence of a fourth locus[J]. Am J Hum Genet,1994,54(1):11-20.
    [72]Takiyama Y, Nishizawa M, Tanaka H, et al. The gene for Machado-Joseph disease maps to human chromosome 14q[J]. Nat Genet,1993,4(3):300-304.
    [73]Schols L, Vieira-Saecker A M, Schols S, et al. Trinucleotide expansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients[J]. Hum Mol Genet,1995,4(6):1001-1005.
    [74]Ikeda H, Yamaguchi M, Sugai S, et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo[J]. Nat Genet,1996,13(2):196-202.
    [75]Cemal C K, Carroll C J, Lawrence L, et al. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit[J]. Hum Mol Genet,2002,11(9):1075-1094.
    [76]Goti D, Katzen S M, Mez J, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration[J]. J Neurosci,2004,24(45):10266-10279.
    [77]Bichelmeier U, Schmidt T, Hubener J, et al. Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3:in vivo evidence [J]. J Neurosci,2007,27(28):7418-7428.
    [78]Chou A H, Yeh T H, Ouyang P, et al. Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation[J]. Neurobiol Dis,2008,31(1):89-101.
    [79]Boy J, Schmidt T, Wolburg H, et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3[J]. Hum Mol Genet,2009,18(22):4282-4295.
    [80]Boy J, Schmidt T, Schumann U, et al. A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats[J]. Neurobiol Dis,2010,37(2):284-293.
    [81]Silva-Fernandes A, Costa M C, Duarte-Silva S, et al. Motor uncoordination and neuropathology in a transgenic mouse model of Machado-Joseph disease lacking intranuclear inclusions and ataxin-3 cleavage products [J]. Neurobiol Dis,2010,40(l):163-176.
    [82]Ishikawa K, Tanaka H, Saito M, et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p 13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1[J]. Am J Hum Genet,1997,61(2):336-346.
    [83]Yue Q, Jen J C, Nelson S F, et al. Progressive ataxia due to a missense mutation in a calcium-channel gene[J]. Am J Hum Genet,1997,61(5):1078-1087.
    [84]Alonso I, Barros J, Tuna A, et al. Phenotypes of spinocerebellar ataxia type 6 and familial hemiplegic migraine caused by a unique CACNA1A missense mutation in patients from a large family[J]. Arch Neurol,2003,60(4):610-614.
    [85]Watase K, Barrett C F, Miyazaki T, et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal-dysfunction with age-dependent accumulation of mutant CaV2.1 channels[J]. Proc Natl Acad Sci U S A,2008,105 (33):11987-11992.
    [86]Gouw L G, Digre K B, Harris C P, et al. Autosomal dominant cerebellar ataxia with retinal degeneration:clinical, neuropathologic, and genetic analysis of a large kindred[J]. Neurology,1994,44(8):1441-1447.
    [87]Benomar A, Krols L, Stevanin G, et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1[J].Nat Genet,1995,10(1):84-88.
    [88]David G, Giunti P, Abbas N, et al. The gene for autosomal dominant cerebellar ataxia type II is located in a 5-cM region in 3p12-p13:genetic and physical mapping of the SCA7 locus[J]. Am J Hum Genet,1996,59(6):1328-1336.
    [89]Trottier Y, Lutz Y, Stevanin G, et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias[J]. Nature,1995,378(6555):403-406.
    [90]Lindblad K, Savontaus M L, Stevanin G, et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7[J]. Genome Res,1996,6(10):965-971.
    [91]Yvert G, Lindenberg K S. Picaud S, et al. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice[J]. Hum Mol Genet,2000,9(17):2491-2506.
    [92]La Spada A R, Fu Y H, Sopher B L, et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7[J].Neuron,2001,31(6):913-927.
    [93]Chen S, Peng G H, Wang X. et al. Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localization[J]. Hum Mol Genet,2004,13(1):53-67.
    [94]Yoo S Y, Pennesi M E, Weeber E J, et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity [J]. Neuron,2003,37(3):383-401.
    [95]Bowman A B, Yoo S Y, Dantuma N P, et al. Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation[J]. Hum Mol Genet,2005,14(5):679-691.
    [96]Abou-Sleymane G, Chalmel F, Helmlinger D, et al. Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program [J]. Hum Mol Genet,2006,15(5):691-703.
    [97]Janer A, Werner A, Takahashi-Fujigasaki J, et al. SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7[J]. Hum Mol Genet,2010,19(1):181-195.
    [98]Moseley M L, Zu T, Ikeda Y, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8[J]. Nat Genet,2006,38(7):758-769.
    [99]Grewal R P, Tayag E, Figueroa K P, et al. Clinical and genetic analysis of a distinct autosomal dominant spinocerebellar ataxia[J]. Neurology,1998,51 (5):1423-1426.
    [100]Zu L, Figueroa K P, Grewal R, et al. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22[J]. Am J Hum Genet,1999, 64(2):594-599.
    [101]Rasmussen A, Matsuura T, Ruano L, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10[J]. Ann Neurol,2001, 50(2):234-239.
    [102]White M C, Gao R, Xu W, et al. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10[J]. PLoS Genet,2010,6(6):e1000984.
    [103]Worth P F, Giunti P, Gardner-Thorpe C, et al. Autosomal dominant cerebellar ataxia type III:linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3[J]. Am J Hum Genet,1999,65(2):420-426.
    [104]Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11[J]. Nat Genet,2007,39(12):1434-1436.
    [105]Bouskila M, Esoof N, Gay L, et al. TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development[J]. Biochem J,2011,437(1):157-167.
    [106]Chen D H, Brkanac Z, Verlinde C L, et al. Missense mutations in the regulatory domain of PKC gamma:a new mechanism for dominant nonepisodic cerebellar ataxia[J]. Am J Hum Genet,2003,72(4):839-849.
    [107]Brkanac Z, Bylenok L, Fernandez M, et al. A new dominant spinocerebellar ataxia linked to chromosome 19q13.4-qter[J]. Arch Neurol,2002, 59(8):1291-1295.
    [108]Zhang Y, Snider A, Willard L, et al. Loss of Purkinje cells in the PKCgamma H101Y transgenic mouse[J]. Biochem Biophys Res Commun,2009, 378(3):524-528.
    [109]Storey E, Gardner R J, Knight M A, et al. A new autosomal dominant pure cerebellar ataxia[J]. Neurology,2001,57(10):1913-1915.
    [110]Knight M A, Kennerson M L, Anney R J, et al. Spinocerebellar ataxia type 15 (sea15) maps to 3p24.2-3pter:exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant[J]. Neurobiol Dis,2003,13(2):147-157.
    [111]van de Leemput J, Chandran J, Knight M A, et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans[J]. PLoS Genet,2007,3(6):e108.
    [112]Iwaki A, Kawano Y, Miura S, et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16[J]. J Med Genet,2008,45(1):32-35.
    [113]Miurd S, Shibata H, Furuya H, et al. The contactin 4 gene locus at 3p26 is a candidate gene of SCA16[J]. Neurology,2006,67(7):1236-1241.
    [114]Hara K, Fukushima T, Suzuki T, et al. Japanese SCA families with an unusual phenotype linked to a locus overlapping with SCA 15 locus[J]. Neurology,2004,62(4):648-651.
    [115]Hara K. Shiga A, Nozaki H, et al. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families[J]. Neurology,2008,71(8):547-551.
    [116]Synofzik M, Beetz C, Bauer C, et al. Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features[J]. J Med Genet,2011, 48(6):407-412.
    [117]Marelli C, van de Leemput J, Johnson J O, et al. SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia[J]. Arch Neurol,2011,68(5):637-643.
    [118]Koide R, Kobayashi S, Shimohata T, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene:a new polyglutamine disease?[J]. Hum Mol Genet,1999,8(11):2047-2053.
    [119]Bruni A C, Takahashi-Fujigasaki J, Maltecca F, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation[J]. Arch Neurol,2004,61(8):1314-1320.
    [120]Filla A, De Michele G, Cocozza S, et al. Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy[J]. Neurology,2002,58 (6):922-928.
    [121]Martianov I, Viville S, Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein[J]. Science,2002,298 (5595): 1036-1039.
    [122]Shah A G, Friedman M J, Huang S, et al. Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17[J]. Hum Mol Genet,2009,18(21):4141-4152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700