枯草芽孢杆菌生物膜在青枯病生防中的功能研究及Cyclic-di-GMP信号通路初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枯草芽孢杆菌与其他芽孢杆菌属菌株是农业上生防农业病虫害的重要生防菌之一,但其具体生防机理尚未清晰。枯草芽孢杆菌生防植物病害的主效基因是什么?枯草芽孢杆菌生防菌施用后,以什么细胞形态存在于植物根围区?枯草芽孢杆菌如何调控移动相关基因的表达,游动至植物根围?枯草芽孢杆菌与寄主植物直接是否存在信号交流?如若存在信号交流,那么该途径中的信号分子是什么?枯草芽孢杆菌如何接受来自寄主植物的信号分子并调控生防相关基因的表达?等等,这些关于枯草芽孢杆菌生防机理深层次问题的解决,将能更好更有效使用以枯草芽孢杆菌为主要成分的生物农药,推动枯草芽孢杆菌的产业化。
     本研究以生防枯草芽孢杆菌防治番茄青枯病为模型,系统研究了枯草芽孢杆菌生防番茄青枯病的机理,发现生物膜形成能力和其抗生物质(主要为表面活性素)在生防青枯病中起主效作用。番茄根系分泌物通过激活枯草芽孢杆菌组氨酸激酶KinD,诱导生物膜的形成。研究还首次报道枯草芽孢杆菌C-di-GMP信号途径调控细胞移动性和生物膜形成,为研究C-di-GMP途径在枯草芽孢杆菌与寄主植物互作过程的信号交流奠定基础。
     1.生防枯草芽孢杆菌生物膜、拮抗能力与防治番茄青枯病相关性研究
     本试验以生防枯草芽孢杆菌防治番茄青枯病为模型,系统研究了枯草芽孢杆菌生物膜形成能力和其抗生物质(主要为表面活性素)在其生防青枯病中的作用。首先,从自然界根围土中分离筛选得到60株芽孢杆菌菌株,通过16S rDNA测序鉴定其中20株为枯草芽孢杆菌。通过温室防治青枯病试验选取其中防效高于50%的6菌株进行后续生防机理研究。野生型菌株都能形成生物膜,试验构建了生物膜增强和减弱突变体并比较突变体温室生防青枯病效果。结果表明,枯草芽孢杆菌生物膜能增加生防菌在根围的定殖能力,其生物膜形成能力与生防活性呈正相关。抗生物质也是生防枯草芽孢杆菌的生防机理之一。本研究构建了不同抗生基因的突变体,通过平板拮抗试验和温室防病试验发现表面活性剂在抑制青枯菌过程中起重要作用。本研究结果表明,生物膜形成能力和表面活性剂的产生能力是生防枯草芽孢杆菌防治番茄青枯病的重要机理。研究中建立的番茄-枯草芽孢杆菌体系为研究生防菌-寄主植物互作提供基础。
     2.枯草芽孢杆菌组氨酸激酶KinD在寄主植物-枯草芽孢杆菌信号交流过程中功能研究
     生防枯草芽孢杆菌能够在植物根部及根围形成生物膜并在防病促生过程中起着重要作用。但是,对于枯草芽孢杆菌与寄主植物这种友好的互作过程中的诸多细节报道较少。在互作过程中,枯草芽孢杆菌如何移动至根表并定殖?寄主植物释放的信号分子是什么?枯草芽孢杆菌如何接受来自植物的信号分子并启动生物膜相关基因的表达继而在根表形成生物膜保护寄主免受病原物的侵染?本研究通过建立一种基于无菌培养番茄植株与枯草芽孢杆菌共培养的互作体系来研究两者之间的互作过程,研究结果发现枯草芽孢杆菌通过跨膜的组氨酸激酶KinD接受植物释放的信号分子,并通过构建氨基酸点突变体,发现KinD蛋白结构中CACHE功能域为信号分子的结合位点。番茄的根系分泌物能够诱导Bacillus subtilis生物膜基因和KinD报道基因sdp的表达。通过分离鉴定根系分泌物,并以KinD报道基因PsdpA-lux活性为筛选指标,发现根系分泌物中含有1种以上的活性物质能够增加PsdpA-lux活性,其中L-苹果酸(L-Malic Acid)分子能够通过增强KinD的活性,并增加生物膜的形成。
     3.枯草芽孢杆菌C-di-GMP信号通路基因鉴定及其机制分析
     C-di-GMP分子广泛存在于细菌中,作为细菌的第二信使分子,其参与调节细菌游动性、生物膜形成、寄主表面定殖能力、致病性及细胞间信号交流等多种生理过程。已报道的关于C-di-GMP分子的信号通路研究主要集中于革兰氏阴性细菌,而革兰氏阳性细菌的报道甚少。本研究首次对革兰氏阳性细菌模式菌枯草芽孢杆菌C-di-GMP信号通路的基因进行分析,并初步探明C-di-GMP信号通路在枯草芽孢杆菌移动性及生物膜形成过程中的作用。试验结果表明,受SpoOA负调控的YuxH蛋白为磷酸二酯酶能够降解细胞体内的C-di-GMP分子。C-di-GMP分子受体蛋白YpfA与C-di-GMP分子结合后发生构象变化并直接与细菌鞭毛动力蛋白MotA互作来调控细胞的游动性。C-di-GMP信号通路直接或间接地影响枯草芽孢杆菌生物膜的形成及降解过程。
     4.总结
     本研究的主要研究结果与创新点如下:1.从自然界中筛选得到的野生型枯草芽孢杆菌都能形成生物膜,且在各菌株中生物膜形成主要途径是保守的;2.构建了枯草芽孢杆菌-番茄的互作体系,通过比较野生型菌株及对应生物膜突变体的生防青枯病效果,首次报告枯草芽孢杆菌生物膜形成能力与生防效果呈正相关关系;3.首次证明枯草芽孢杆菌的跨膜激酶KinD能够接受植物根系分泌物中的信号分子后激活生物膜形成途径在根表形成生物膜。通过分离鉴定根系分泌物发现,L-苹果酸能够激活KinD激酶;4.首次报道革兰氏阳性细菌枯草芽孢杆菌的C-di-GMP信号通路调控细胞移动性和生物膜形成能力。
Bacillus subtilis and other Bacilli have long been used as biological control agents (BCAs) against plant bacterial diseases. The exact mechanisms for plant biocontrol have not been clearly addressed. There are too many questions needed to address in this field. For example, what are major genes involved in biocontrol efficacy against plant diseases in B. subtilis? Which kind of cell morphology exists in the rhizosphere after application? How do B. subtilis cells move towards plant roots and colonizate on the root surface? Is there a signaling transduction pathway between B. subtilis and plants during the biocontrol? If there is a signal pathway, what are the signaling molecules, and how does B. subtilis or plant recognize the signal and regulate genes expression? It will be beneficial for deeply investigating the B. subtilis biocontrol mechanism and accelerating the commercial procedure of B. subtilis biopesticide.
     In this study, we established the B. subtilis-tomato interaction system to gain a better insight into B. subtilis biocontrol mechanism. We showed that in those wild strains, both biofilm formation and production of surfactin, an antimicrobial agent, were necessary for plant biocontrol but neither one was sufficient. B. subtilis kinase KinD can recognize the signaling molecules from tomato root exudates, then active the biofilm formation. We also present the function of C-di-GMP signaling pathway in gram-positive bacterium B. subtilis. C-di-GMP controlled the motility and biofilm formation in B. subtilis.
     1. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation and surfactin
     Our goal in this study is to first isolate spore-forming B. subtilis wild strains from natural environments that exhibit high biocontrol efficacy. And second, we hope to investigate the molecular mechanisms of plant biocontrol in those wild strains. We screened a total of sixty distinct isolates collected from various locations countrywide and obtained six wild strains of B. subtilis that demonstrated above50%biocontrol efficacy on tomato plants against the plant pathogen Ralstonia solanacearum under greenhouse conditions. These wild strains were able to form robust biofilms both in defined media and on tomato plant roots, and exhibited strong antagonistic activities against various plant pathogens in plate assays. We further showed that in those wild strains, both biofilm formation and production of surfactin, an antimicrobial agent, were necessary for plant biocontrol but neither one was sufficient. Loss of either feature due to genetic mutations resulted in a substantial decrease in biocontrol efficacy. Biofilm formation and surfactin production may act synergistically to enhance biocontrol efficacy. In addition, we showed that biofilm formation strongly promoted colonization of B. subtilis cells to tomato root surfaces, during which the biofilm matrix may function as an adhesion. Finally, we have established a model system for studies of B. subtilis-tomato plant interactions at molecular levels.
     2. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants
     The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities-biofilms-on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, L-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation.
     3. Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis
     Cyclic-di-GMP (C-di-GMP) is a second messenger that regulates diverse cellular processes in bacteria, including motility, biofilm formation, cell-cell signaling, and host colonization. Studies of C-di-GMP signaling have chiefly focused on gram-negative bacteria. Here we investigated C-di-GMP signaling in the gram-positive bacterium Bacillus subtilis by constructing deletion mutations for genes predicted to be involved in the synthesis, breakdown, or response to the second messenger. We found that a putative C-di-GMP degrading phosphodiesterase YuxH and a putative C-di-GMP receptor YpfA had a strong influence on motility and that these effects depended on sequences similar to canonical EAL and RxxxR---D/NxSxxG motifs, respectively. Evidence indicates that YpfA inhibits motility by interacting with the flagellar motor protein MotA and that yuxH is under the negative control of the master regulator SpoOA-P. Based on these findings, we propose that YpfA inhibits motility in response to rising levels of c-di-GMP during entry into stationary phase due to the down regulation of yuxH by SpoOA-P. We also present evidence that YpfA has a mild influence on biofilm formation. In toto, our results demonstrate the existence of a functional C-di-GMP signaling system in B. subtilis that directly inhibits motility and directly or indirectly influences biofilm formation.
引文
1. Abriouel, H., Franz, C. M., Ben Omar, N.& Galvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35,201-232.
    2. Allesen-Holm, M., Barken, K. B., Yang, L., Klausen, M., Webb, J. S., Kjelleberg, S., Molin, S., Givskov, M.& Tolker-Nielsen, T. (2006). A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59,1114-1128.
    3. Alm, R. A., Bodero, A. J., Free, P. D.& Mattick, J. S. (1996). Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. JBacteriol 178,46-53.
    4. Amikam, D., Steinberger, O., Shkolnik, T.& Ben-Ishai, Z. (1995). The novel cyclic dinucleotide 3'-5'cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line. Biochem J 311 (Pt 3),921-927.
    5. Amikam, D.& Galperin, M. (2006). PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics (Oxford, England) 22,3-9.
    6. Anderson, G. G.& O'Toole, G. A. (2008). Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322,85-105.
    7. Arico, B., Miller, J. F., Roy, C., Stibitz, S., Monack, D., Falkow, S., Gross, R.& Rappuoli, R. (1989). Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci U S A S6,6671-6675.
    8. Bai, U., Mandic-Mulec, I.& Smith, I. (1993). SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev 7,139-148.
    9. Bais, H. P., Fall, R.& Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134,307-319.
    10. Banse, A. V., Chastanet, A., Rahn-Lee, L., Hobbs, E. C.& Losick, R. (2008). Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc Natl Acad Sci USA 105,15547-15552.
    11. Barraud, N., Schleheck, D., Klebensberger, J., Webb, J. S., Hassett, D. J., Rice, S. A.& Kjelleberg, S. (2009). Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191,7333-7342.
    12. Beech, I. B., Sunner, J. A.& Hiraoka, K. (2005). Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8,157-168.
    13. Beyhan, S., Tischler, A. D., Camilli, A.& Yildiz, F. H. (2006). Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 188,3600-3613.
    14. Beyhan, S., Odell, L. S.& Yildiz, F. H. (2008). Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J Bacteriol 190,7392-7405.
    15. Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P.& Perotto, S. (2001). Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHAO show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact 14,255-260.
    16. Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C.& Kearns, D. B. (2008). A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320,1636-1638.
    17. BM, S.& GD, L. (1998). Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Can J Microbiol 44,77-83.
    18. Boehm, A., Kaiser, M., Li, H.& other authors (2010). Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141,107-123.
    19. Boles, B. R.& McCarter, L. L. (2002). Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J Bacteriol 184,5946-5954.
    20. Bonmatin, J.-M., Laprevote, O.& Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides:iturins and surfactins. Activity-structure relationships to design new bioactive agents Comb Chem High Throughput Screen 6,541-556.
    21. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R.& Kolter, R. (2001). Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98,11621-11626.
    22. Branda, S. S., Gonzalez-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R.& Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186,3970-3979.
    23. Branda, S. S., Vik, S., Friedman, L.& Kolter, R. (2005). Biofilms:the matrix revisited. Trends Microbiol 13,20-26.
    24. Branda, S. S., Chu, F., Kearns, D. B., Losick, R.& Kolter, R. (2006). A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59,1229-1238.
    25. Brotz, H., Bierbaum, G., Reynolds, P. E.& Sahl, H. G. (1997). The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur JBiochem 246,193-199.
    26. Bruggemann, H., Hagman, A., Jules, M.& other authors (2006). Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8,1228-1240.
    27. Caiazza, N. C,& O'Toole, G. A. (2004). SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA 14. J Bacteriol 186,4476-4485.
    28. Casper-Lindley, C.& Yildiz, F. H. (2004). VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae Ol El Tor. JBacteriol 186,1574-1578.
    29. Chai, Y., Chu, F., Kolter, R.& Losick, R. (2008). Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67,254-263.
    30. Chai, Y., Kolter, R.& Losick, R. (2009). Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Mol Microbiol 74,876-887.
    31. Chai, Y., Kolter, R.& Losick, R. (2010a). Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol Microbiol 78,218-229.
    32. Chai, Y., Norman, T., Kolter, R.& Losick, R. (2010b). An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev 24,754-765.
    33. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U.& Schirmer, T. (2004). Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101,17084-17089.
    34. Chen, Y., Cao, S., Chai, Y., Clardy, J., Kolter, R., Guo, J. H.& Losick, R. (2012a). A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85,418-430.
    35. Chen, Y., Chai, Y., Guo, J. H.& Losick, R. (2012b). Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis. JBacteriol.194:5080-5090.
    36. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R.& Guo, J.-h. (2012c). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology.
    37. Choudhary, D. K & Johri, B. N. (2007). Interactions of Bacillus spp. and plants-With special reference to induced systemic resistance (ISR) Microbiological Research 164,493-513
    38. Christen, B., Christen, M., Paul, R., Schmid, F., Folcher, M., Jenoe, P., Meuwly, M.& Jenal, U. (2006). Allosteric control of cyclic di-GMP signaling. JBiol Chem 281,32015-32024.
    39. Christen, M., Christen, B., Folcher, M., Schauerte, A.& Jenal, U. (2005). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280,30829-30837.
    40. Christen, M., Kulasekara, H. D., Christen, B., Kulasekara, B. R., Hoffman, L. R.& Miller, S. I. (2010). Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328,1295-1297.
    41. Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Jr., Nielsen, A. T., Givskov, M.& Molin, S. (1999). Molecular tools for study of biofilm physiology. Methods Enzymol 310, 20-42.
    42. Chu, F., Kearns, D. B., Branda, S. S., Kolter, R.& Losick, R. (2006). Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59,1216-1228.
    43. Chu, F., Kearns, D. B., McLoon, A., Chai, Y., Kolter, R.& Losick, R. (2008). A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 68,1117-1127.
    44. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R.& Lappin-Scott, H. M. (1995). Microbial biofilms. Annu Rev Microbiol 49,711-745.
    45. D'Argenio, D. A., Calfee, M. W., Rainey, P. B.& Pesci, E. C. (2002). Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184,6481-6489.
    46. Danhorn, T., Hentzer, M., Givskov, M., Parsek, M. R.& Fuqua, C. (2004). Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186,4492-4501.
    47. Davey, M. E.& O'Toole G, A. (2000). Microbial biofilms:from ecology to molecular genetics. Microbiol Mol Biol Rev 64,847-867.
    48. Davies, D. G.& Marques, C. N. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191,1393-1403.
    49. Donlan, R. M. (2002). Biofilms:microbial life on surfaces. Emerg Infect Dis 8,881-890.
    50. Dorenbos, R, Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W. J.& Van Dijl, J. M. (2002). Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. JBiol Chem 277,16682-16688.
    51. Dow, J. M., Fouhy, Y., Lucey, J. F.& Ryan, R. P. (2006). The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact 19,1378-1384.
    52. Duerig, A., Abel, S., Folcher, M., Nicollier, M., Schwede, T., Amiot, N., Giese, B.& Jenal, U. (2009). Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23,93-104.
    53. Dufour, S., Deleu, M., Nott, K., Wathelet, B., Thonart, P.& Paquot, M. (2005). Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta 1726,87-95.
    54. Eberl, L., von Bodman, S. B.& Fuqua, C. (2007). Biofilms on plant surfaces. In The Biofilm Mode of Life:Mechanisms and Adaptation,215-234.
    55. Fawcett, P., Eichenberger, P., Losick, R.& Youngman, P. (2000). The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 97,8063-8068.
    56. Fletcher, M.& K. Marshall, e.(1982). Are solid surfaces of ecological significance to aquatic bacteria. Advances in Microbial Ecology 6,199-237.
    57. Friedman, L.& Kolter, R.(2004a). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. JBacteriol 186,4457-4465.
    58. Friedman, L.& Kolter, R. (2004b). Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51,675-690.
    59. Fujishige, N. A., Kapadia, N. N., De Hoff, P. L.& Hirsch, A. M. (2006). Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56,195-206.
    60. Galperin, M. Y., Natale, D. A., Aravind, L.& Koonin, E. V. (1999). A specialized version of the HD hydrolase domain implicated in signal transduction. JMol Microbiol Biotechnol 1,303-305.
    61. Galperin, M. Y., Nikolskaya, A. N.& Koonin, E. V. (2001). Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203,11-21.
    62. Galperin, M. Y. (2004). Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6,552-567.
    63. Geetha, I.& Manonmani, A. M. (2010). Surfactin:a novel mosquitocidal biosurfactant produced by Bacillus subtilis ssp. subtilis (VCRC B471) and influence of abiotic factors on its pupicidal efficacy. Lett Appl Microbiol 51,406-412.
    64. Gonzalez-Pastor, J. E., Hobbs, E. C.& Losick, R. (2003). Cannibalism by sporulating bacteria. Science 301,510-513.
    65. Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S.& Lory, S. (2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7,745-754.
    66. Goodman, A. L., Merighi, M., Hyodo, M., Ventre, L, Filloux, A.& Lory, S. (2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23,249-259.
    67. Gotz, F. (2002). Staphylococcus and biofilms. Mol Microbiol 43,1367-1378.
    68. Govan, J. R.& Deretic, V. (1996). Microbial pathogenesis in cystic fibrosis:mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60,539-574.
    69. Guder, A., Schmitter, T., Wiedemann, I., Sahl, H. G. & Bierbaum, G. (2002). Role of the single regulator MrsRl and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Appl Environ Microbiol 68,106-113.
    70. Guvener, Z. T.& McCarter, L. L. (2003). Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. JBacteriol 185,5431-5441.
    71. Hall-Stoodley, L., Costerton, J. W.& Stoodley, P. (2004). Bacterial biofilms:from the natural environment to infectious diseases. Nat Rev Microbiol 2,95-108.
    72. Hall-Stoodley, L.& Stoodley, P. (2009). Evolving concepts in biofilm infections. Cell Microbiol 11,1034-1043.
    73. Hamon, M. A.& Lazazzera, B. A. (2001). The sporulation transcription factor SpoOA is required for biofilm development in Bacillus subtilis. Mol Microbiol 42,1199-1209.
    74. Hamon, M. A., Stanley, N. R., Britton, R. A., Grossman, A. D.& Lazazzera, B. A. (2004). Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52,847-860.
    75. Harmsen, M., Yang, L., Pamp, S. J.& Tolker-Nielsen, T. (2010). An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59,253-268.
    76. Hartely, C. (1921).Damping-off in forest nurseries. U. S. Dept. Agr., Bul.934:1-99.
    77. Hasper, H. E., de Kruijff, B.& Breukink, E. (2004). Assembly and stability of nisin-lipid Ⅱ pores. Biochemistry 43,11567-11575.
    78. Hecht, G. B.& Newton, A. (1995). Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. JBacteriol 177,6223-6229.
    79. Heerklotz, H.& Seelig, J. (2007). Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. Eur Biophys J36,305-314.
    80. Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7,263-273.
    81. Hickman, J. W., Tifrea, D. F.& Harwood, C. S. (2005). A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102, 14422-14427.
    82. Hickman, J. W.& Harwood, C. S. (2008). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. MolMicrobiol 69,376-389.
    83. Hofemeister, J., Conrad, B., Adler, B.& other authors (2004). Genetic analysis of the biosynthesis of non-ribosomal peptide-and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis Al/3. Mol Genet Genomics 272,363-378.
    84. Hou, X., Boyetchko, S. M., Brkic, M., Olson, D., Ross, A.& Hegedus, D. (2006). Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl Microbiol Biotechnol 72,644-653.
    85. Hwang S F, a. C. P. (1992). Potential for the integrated control of Rhi-zoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. ZPflKrankh PflSchutz 99,626-636.
    86. Ito, J., Mildner, G.& Spizizen, J. (1971). Early blocked asporogenous mutants of Bacillus subtilis 168. I. Isolation and characterization of mutants resistant to antibiotic(s) produced by sporulating Bacillus subtilis 168. Mol Gen Genet 112,104-109.
    87. Ivnitsky, H., Katz, I., Minz, D., Volvovic, G., Shimoni, E., Kesselman, E., Semiat, R.& Dosoretz, C. G. (2007). Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Res 41,3924-3935.
    88. Jack, R. W.& Jung, G. (2000). Lantibiotics and microcins:polypeptides with unusual chemical diversity. Curr Opin Chem Biol 4,310-317.
    89. Jacques, P.& Ongena, M. (2007). Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends in Microbiology 16,115-125.
    90. Jenal, U. (2004). Cyclic di-guanosine-monophosphate comes of age:a novel secondary messenger involved in modulating cell surface structures in bacteria? Current opinion in microbiology 7,185-276.
    91. Jenal, U.& Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40,385-407.
    92. Jourdan, E., Henry, G., Duby, F., Dommes, J., Barthelemy, J. P., Thonart, P.& Ongena, M. (2009). Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22,456-468.
    93. Kader, A., Simm, R., Gerstel, U., Morr, M.& Romling, U. (2006). Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60,602-616.
    94. Karaolis, D. K., Means, T. K., Yang, D.& other authors (2007a). Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol 178,2171-2181.
    95. Karaolis, D. K., Newstead, M. W., Zeng, X., Hyodo, M., Hayakawa, Y., Bhan, U., Liang, H.& Standiford, T. J. (2007b). Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect Immun 75,4942-4950.
    96. Katz, E.& Demain, A. (1977). The peptide antibiotics of Bacillus:chemistry, biogenesis, and possible functions. Bacteriol Rev 41,449-474.
    97. Kazmierczak, B. I., Lebron, M. B.& Murray, T. S. (2006). Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60, 1026-1043.
    98. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R.& Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55,739-749.
    99. Kim, P. I., Ryu, J., Kim, Y. H.& Chi, Y. T. (2010). Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. JMicrobiol Biotechnol 20,138-145.
    100. Kim, Y. R., Lee, S. E., Kim, C. M.& other authors (2003). Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71,5461-5471.
    101. Kirillina, O., Fetherston, J. D., Bobrov, A. G., Abney, J.& Perry, R. D. (2004). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54,75-88.
    102. Klausen, M., Aaes-Jorgensen, A., Molin, S.& Tolker-Nielsen, T. (2003a). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50,61-68.
    103. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S.& Tolker-Nielsen, T. (2003b). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type Ⅳ pili mutants. Mol Microbiol 48,1511-1524.
    104. Kleerebezem, M. (2004). Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25,1405-1414.
    105. Klein, C.& Entian, K. D. (1994). Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60,2793-2801.
    106. Kobayashi, K. (2007). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66,395-409.
    107. Kobayashi, K. (2008). SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol Microbiol 69,1399-1410.
    108. Kolodkin-Gal, L, Romero, D., Cao, S., Clardy, J., Kolter, R.& Losick, R. (2010). D-amino acids trigger biofilm disassembly. Science 328,627-629.
    109. Kolodkin-Gal, I., Cao, S., Chai, L., Bottcher, T., Kolter, R., Clardy, J.& Losick, R. (2012). A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149,684-692.
    110. Koutsoudis, M. D., Tsaltas, D., Minogue, T. D.& von Bodman, S. B. (2006). Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subsp stewartii. Proc Natl Acad Sci USA 103,5983-5988.
    111. Kuchma, S. L., Brothers, K. M., Merritt, J. H., Liberati, N. T., Ausubel, F. M.& O'Toole, G. A. (2007). BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. JBacteriol 189,8165-8178.
    112. Kulasekara, H. D., Ventre, I., Kulasekara, B. R, Lazdunski, A., Filloux, A.& Lory, S. (2005). A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55,368-380.
    113.Lasa, I. (2006). Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9,21-28.
    114. Lasa, I.& Penades, J. R. (2006). Bap:a family of surface proteins involved in biofilm formation. Res Microbiol 157,99-107.
    115. Latasa, C., Roux, A., Toledo-Arana, A., Ghigo, J. M., Gamazo, C., Penades, J. R.& Lasa, I. (2005). BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58,1322-1339.
    116. Leclere, V., Bechet, M., Adam, A.& other authors (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71,4577-4584.
    117. Lee, V. T., Matewish, J. M., Kessler, J. L., Hyodo, M., Hayakawa, Y.& Lory, S. (2007). A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65, 1474-1484.
    118. Lemon, K. P., Higgins, D. E.& Kolter, R. (2007). Flagellar motility is critical for Listeria monocytogenes biofilm formation. JBacteriol 189,4418-4424.
    119. Lestrate, P., Dricot, A., Delrue, R. M., Lambert, C., Martinelli, V., De Bolle, X., Letesson, J. J. & Tibor, A. (2003). Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun 71,7053-7060.
    120. Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70,267-274.
    121. Lin, D., Qu, L. J., Gu, H.& Chen, Z. (2001). A 3.1-kb genomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae. J Appl Microbiol 91, 1044-1050.
    122. Liu, Y., Chen, Z., Ng, T. B., Zhang, J., Zhou, M., Song, F.& Lu, F. (2007). Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28,553-559.
    123. Lopez, D., Fischbach, M. A., Chu, F., Losick, R.& Kolter, R. (2009). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci USA 106,280-285.
    124. Lory, S., Merighi, M.& Hyodo, M. (2009). Multiple activities of c-di-GMP in Pseudomonas aeruginosa. Nucleic Acids Symp Ser (Oxf),51-52.
    125. Ma, L., Conover, M., Lu, H., Parsek, M. R., Bayles, K.& Wozniak, D. J. (2009). Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5, e1000354.
    126. Maget-Dana, R.& Peypoux, F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87,151-174.
    127. Mah, T.-F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S.& O'Toole, G. A. (2003). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426,306-310.
    128. Manjula, K., Kishore, G. K.& Podile, A. R. (2004). Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can J Microbiol 50,737-744.
    129. Marvasi, M., Visscher, P. T.& Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis:polymers and genes encoding their synthesis. FEMS Microbiol Lett 313,1-9.
    130. McAuliffe, O., Ross, R. P.& Hill, C. (2001). Lantibiotics:structure, biosynthesis and mode of action. FEMS Microbiol Rev 25,285-308.
    131. McLoon, A. L., Kolodkin-Gal, I., Rubinstein, S. M., Kolter, R.& Losick, R. (2011). Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J Bacteriol 193, 679-685.
    132. Meissner, A., Wild, V., Simm, R., Rohde, M., Erck, C., Bredenbruch, F., Morr, M., Romling, U.& Haussler, S. (2007). Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 9,2475-2485.
    133. Merkel, T. J., Barros, C.& Stibitz, S. (1998). Characterization of the bvgR locus of Bordetella pertussis. JBacteriol 180,1682-1690.
    134. Merritt, J. H., Brothers, K. M., Kuchma, S. L.& O'Toole, G. A. (2007). SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189,8154-8164.
    135. Mikkelsen, H., Ball, G., Giraud, C.& Filloux, A. (2009). Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One 4, e6018.
    136. Mizumoto, S., Hirai, M.& Shoda, M. (2006). Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl Microbiol Biotechnol 12,869-875.
    137. Murray, E. J., Kiley, T. B.& Stanley-Wall, N. R. (2009). A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology 155,1-8.
    138. Nagorskal, K., Bikowski, M.& Obuchowski, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent Acta Biochimica polonica 54.
    139. O'Toole, G. A.& Kolter, R. (1998a). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways:a genetic analysis. Mol Microbiol 28,449-461.
    140. O'Toole, G. A.& Kolter, R. (1998b). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30,295-304.
    141. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K, Weaver, V. B.& Kolter, R, (1999). Genetic approaches to study of biofilms. Methods Enzymol 310,91-109.
    142. Oglesby, L. L., Jain, S.& Ohman, D. E. (2008). Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154,1605-1615.
    143. Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J.& Thonart, P. (2005). Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67,692-698.
    144. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L.& Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9,1084-1090.
    145. Ostrowski, A., Mehert, A., Prescott, A., Kiley, T. B.& Stanley-Wall, N. R. (2011). YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. JBacteriol 193,4821-4831.
    146. Papavizas, G. C.& Lumsden., R. D. (1980). Biological control of soilborne fungal propagules. Annu Rev Phytopathol 18,389-413.
    147. Patriquin, G. M., Banin, E., Gilmour, C., Tuchman, R., Greenberg, E. P.& Poole, K. (2008). Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. JBacteriol 190,662-671.
    148. Paul, K., Nieto, V., Carlquist, W., Blair, D.& Harshey, R. (2010). The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Molecular cell 38,128-167.
    149. Peggy, A. C.& Scott, S. (2007). c-di-GMP-mediated regulation of virulence and biofilm formation. Current Opinion in Microbiology 10.
    150. Pero, J.& Sloma, A. (1993). Proteases. Bacillus subtilis and Other Gram-Positive Bacteria.939-942.
    151.Petrova, O. E.& Sauer, K. (2009). A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog 5, e1000668.
    152. Porter, J. R. (1976). Antony van Leeuwenhoek:tercentenary of his discovery of bacteria. Bacteriol Rev 40,260-269.
    153.Ramey, B. E., Matthysse, A. G.& Fuqua, C. (2004). The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Mol Microbiol 52,1495-1511.
    154. Raupach, G. S.& Kloepper, J. W. (1998). Mixtures of Plant Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Cucumber Pathogens. Phytopatology 88,1158-1164.
    155. Rice, S. A., Koh, K. S., Queck, S. Y., Labbate, M., Lam, K. W.& Kjelleberg, S. (2005). Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. JBacteriol 187,3477-3485.
    156. Rojas, C. M., Ham, J. H., Deng, W. L., Doyle, J. J.& Collmer, A. (2002). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC 16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci USA 99,13142-13147.
    157. Romero, D., de Vicente, A., Rakotoaly, R. H.& other authors (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20,430-440.
    158. Romero, D., Aguilar, C., Losick, R.& Kolter, R. (2009). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA 107,2230-2234.
    159. Romero, D., Vlamakis, H., Losick, R.& Kolter, R. (2011). An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 80,1155-1168.
    160. Romling, U., Mark, G.& Michael, Y. G. (2005). C-di-GMP:the dawning of a novel bacterial signalling system. Molecular Microbiology 57.
    161. Romling, U.& Amikam, D. (2006). Cyclic di-GMP as a second messenger. Current opinion in microbiology 9,218-246.
    162. Ross, P., Weinhouse, H., Aloni, Y.& other authors (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325,279-281.
    163. Ross, R. P., Morgan, S.& Hill, C. (2002). Preservation and fermentation:past, present and future. Int J Food Microbiol 79,3-16.
    164. Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W. & Bais, H. P. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3,130-138.
    165. Ryan, R., Fouhy, Y., Lucey, J.& Dow, J. (2006). Cyclic di-GMP signaling in bacteria:recent advances and new puzzles. Journal of bacteriology 188,8327-8361.
    166. Ryan, R. P., Fouhy, Y., Lucey, J. F., Jiang, B. L., He, Y. Q., Feng, J. X., Tang, J. L.& Dow, J. M. (2007). Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63,429-442.
    167. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W.& Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134,1017-1026.
    168. Sari, E., Etebarian, H. R., Roustaei, A.& Aminian, H. (2006). biological control of gaeumannomyces graminis on wheat with bacillus. Plant Pathology Journal 5,307-314.
    169. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W.& Davies, D. G. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184,1140-1154.
    170. Sauer, K., Cullen, M. C., Rickard, A. H., Zeef, L. A., Davies, D. G.& Gilbert, P. (2004). Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAOl biofilm. J Bacteriol 186,7312-7326.
    171.Schleheck, D., Barraud, N., Klebensberger, J., Webb, J. S., McDougald, D., Rice, S. A.& Kjelleberg, S. (2009). Pseudomonas aeruginosa PAOl preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 4, e5513.
    172. Schmidt, A. J., Ryjenkov, D. A.& Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase:enzymatically active and inactive EAL domains. J Bacteriol 187, 4774-4784.
    173. Serrano, M., Zilhao, R., Ricca, E., Ozin, A. J., Moran, C. P., Jr.& Henriques, A. O. (1999). A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J Bacteriol 181,3632-3643.
    174. Shoda, M. (2000). Bacterial control of plant diseases. JBiosci Bioeng 89,515-521.
    175. Simm, R., Morr, M., Kader, A., Nimtz, M.& Rmling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Molecular microbiology Si,1123-1157.
    176. Simm, R., Fetherston, J. D., Kader, A., Romling, U.& Perry, R. D. (2005). Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187,6816-6823.
    177. Singh, P. K. (2004). Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 17,267-270.
    178. Solomon, D. H., Wobb, J., Buttaro, B. A., Truant, A.& Soliman, A. M. (2009). Characterization of bacterial biofilms on tracheostomy tubes. Laryngoscope 119,1633-1638.
    179. Stanley, N. R.& Lazazzera, B. A. (2005). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol Microbiol 57,1143-1158.
    180. Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J.& Entian, K. D. (2002). Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184,1703-1711.
    181. Stein, T., Heinzmann, S., Solovieva, I.& Entian, K. D. (2003). Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. JBiol Chem 278,89-94.
    182. Stein, T. (2005). Bacillus subtilis antibiotics:structures, syntheses and specific functions. Mol Microbiol 56,845-857.
    183. Stein T, h. S., Dusterhus S (2005). Expression and functional analysis of subtilin immunity genes spaifeg in the subtilin-sensitive host Bacillus subtilis MO 1099. The Journal of Bacteriology 187 822-828.
    184. Steinberger, O., Lapidot, Z., Ben-Ishai, Z.& Amikam, D. (1999). Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3',5'-cyclic diguanylic acid. FEBS Lett 444,125-129.
    185. Stewart, P. S.& Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138.
    186. Stover, A. G.& Driks, A. (1999a). Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. JBacteriol 181,1664-1672.
    187. Stover, A. G.& Driks, A. (1999b). Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. JBacteriol 181,5476-5481.
    188. Straight, P. D., Fischbach, M. A., Walsh, C. T., Rudner, D. Z.& Kolter, R. (2007). A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci USA 104,305-310.
    189. Strauch, M. A., Bobay, B. G., Cavanagh, J., Yao, F., Wilson, A.& Le Breton, Y. (2007). Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. JBacteriol 189,7720-7732.
    190. Sudarsan, N., Lee, E., Weinberg, Z., Moy, R., Kim, J., Link, K.& Breaker, R. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science (New York, NY) 321,411-414.
    191. Suh, J. D., Ramakrishnan, V.& Palmer, J. N. Biofilms. Otolaryngol Clin North Am 43,521-530, viii.
    192. Tal, R., Wong, H., Calhoon, R.& other authors (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum:genetic organization and occurrence of conserved domains in isoenzymes. Journal of bacteriology 180,4416-4441.
    193. Tamayo, R., Tischler, A. D.& Camilli, A. (2005). The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. JBiol Chem 280,33324-33330.
    194. Tamayo, R., Pratt, J. T.& Camilli, A. (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61,131-148.
    195. Thomma, B., TierensKFM, PenninckxIAMA, B, M. M., BroekaertWF & CammueBPA (2001). Different micro-organisms differentially induce Arabidopsis disease response pathways Plant Physiol Biochem 39,673-680.
    196. Tielker, D., Hacker, S., Loris, R., Strathmann, M., Wingender, J., Wilhelm, S., Rosenau, F.& Jaeger, K. E. (2005). Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151,1313-1323.
    197. Tischler, A.& Camilli, A. (2004). Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular microbiology 53,857-926.
    198. Tischler, A. D.& Camilli, A. (2005). Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73,5873-5882.
    199. Toure, Y., Ongena, M., Jacques, P., Guiro, A.& Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. JAppl Microbiol 96,1151-1160.
    200. Tschen, S. M. (1987). Control of Rizoctonia soanli by Bacillus subtilis. Transactions of the Mycological Society Japan 28,483-493.
    201. Tschowri, N., Busse, S.& Hengge, R. (2009). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 23,522-534.
    202. Urushibata, Y., Tokuyama, S.& Tahara, Y. (2002). Characterization of the Bacillus subtilis ywsC gene, involved in gamma-polyglutamic acid production. J Bacteriol 184,337-343.
    203. Valle, J., Toledo-Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penades, J. R.& Lasa, I. (2003). SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48,1075-1087.
    204. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A.& Filloux, A. (2001). The chaperone/usher pathways of Pseudomonas aeruginosa:identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci USA 98,6911-6916.
    205. Vanittanakom, N., Loeffler, W., Koch, U.& Jung, G. (1986). Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. JAntibiot (Tokyo) 39,888-901.
    206. Ventre, I., Goodman, A. L., Vallet-Gely, I.& other authors (2006). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103,171-176.
    207. Verhamme, D. T., Murray, E. J.& Stanley-Wall, N. R. (2009). DegU and SpoOA jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J Bacteriol 191,100-108.
    208. Vilain, S., Pretorius, J. M., Theron, J.& Brozel, V. S. (2009). DNA as an adhesin:Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75,2861-2868.
    209. Walker, T. S., Bais, H. P., Deziel, E., Schweizer, H. P., Rahme, L. G., Fall, R.& Vivanco, J. M. (2004). Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134,320-331.
    210. Watnick, P. I.& Kolter, R. (1999). Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34,586-595.
    211.Weinberg, Z., Barrick, J. E., Yao, Z.& other authors (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 35,4809-4819.
    212. Weinhouse, H., Sapir, S., Amikam, D., Shilo, Y., Volman, G., Ohana, P.& Benziman, M. (1997). c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBSLett 416,207-211.
    213. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C.& Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science 295,1487.
    214. Wolfe, A.& Visick, K. (2008). Get the message out:cyclic-Di-GMP regulates multiple levels of flagellum-based motility. Journal of bacteriology 190,463-538.
    215. Wu, C. Y., Chen, C. L., Lee, Y. H., Cheng, Y. C., Wu, Y. C., Shu, H. Y., Gotz, F.& Liu, S. T. (2007). Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. JBiol Chem 282,5608-5616.
    216. Yap, M. N., Yang, C. H., Barak, J. D., Jahn, C. E.& Charkowski, A. O. (2005). The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. J Bacteriol 187,639-648.
    217. Yi, X., Yamazaki, A., Biddle, E., Zeng, Q.& Yang, C. H. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Mol Microbiol 77,787-800.
    218. Yi, X., Yamazaki, A., Biddle, E., Zeng, Q.& Yang, C.-H. (2010). Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Molecular microbiology 11,787-1587.
    219. Yu, G., JB, S., GL, H.& BL, B. (2002). Production of iturin A by Bacillus amyloliquefaciem supressing Rhizoctonia solani. Soil Biol Biochem 34,955-963.
    220. Yvonne, F., Jean, F. L., Robert, P. R.& Dow, J. M. (2006). Cell-cell signaling, cyclic di-GMP turnover and regulation of virulence in Xanthomonas campestris. Research in Microbiology 157.
    221.Zehnder, G., C, Y., MurphyJF, SikoraEJ & KloepperJW. (2000). Induction of resistance in tomato against cucumber mosaic cucumo virus by plant growth-promoting rhizobacteria Biol Control 45,127-137.
    222.丁国春,付鹏,李红梅&郭坚华(2005).枯草芽孢杆菌防治南方根结线虫.南京农业大学学报28,46-49.
    223.何红,蔡学清,陈玉森,沈兆昌,关雄&胡方平(2002).辣椒内生枯草芽孢杆菌BS-2和BS-1防治香蕉炭疽病.福建农林大学学报31,442-444.
    224.何红,邱思鑫&蔡学清(2004).辣椒内生细菌BS1和BS2在植物体内的定殖及鉴定.微生物学报44,13-18.
    225.刘玮玮,季静,王超,慕卫&刘峰(2009).枯草芽孢杆菌挥发产物的杀线虫活性评价及成分鉴定.植物病理学报39.
    226.喻国辉,程萍,王燕鹂,陈远凤,陈燕红&黎永坚(2010).枯草芽孢杆菌TR21田间防治巴西蕉枯萎病的效果.中国生物防治26,497-500.
    227.杜立新,冯书亮&曹克强(2004).枯草芽孢杆菌BS2208和BS2209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报27,78-82.
    228.林福呈&李德葆(2003).枯草芽孢杆菌(Bacillus subtilis) S9对植物病原真菌的溶菌作用.植物病理学报33,174-177.
    229.王雅平,刘伊平,潘乃穟 & 陈章良(1993).枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报,63-68.
    230.罗楚平,刘邮洲,吴荷芳,王晓宇,刘永锋,聂亚锋,张荣胜&陈志谊(2011).脂肽类化合物bacillomycin L抗真菌活性及其对水稻病害的防治.中国生物防治学报27,76-81.
    231.范青,田世平,李永兴,汪沂,徐勇&李久蒂(2000).枯草芽孢杆菌(Bacillus subtilis) B-912对采后柑桔果实青、绿霉病的抑制效果.植物病理学报30,343-348.
    232.辛玉成,秦淑莲,李宝笃,尹士采,丁锡花&雷彩霞(2000).枯草芽孢杆菌XM 16菌株制剂对苹果霉心病的防治及病原的抑制作用.植物病理学报30,66-70.
    233.陈志谊,许志刚 & 陆凡(2000).拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究.江苏农业学报16148-152.
    234.陈志谊,许志刚 & 陆凡(2001).拮抗细菌B-916对水稻植株的抗性诱导作用.西南农业学报14,44-48.
    235.顾真荣,马承铸 & 韩长安(2001).产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定.上海农业学报17,92-96.
    236.高学文,姚仕义,P, H., J, V.&王金生(2003).基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究.中国农业科学36,1496-1501.
    1. Aguilar, C., Vlamakis, H., Losick, R.& Kolter, R. (2007). Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10,638-643.
    2. Aliye, N., Fininsa, C.& Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt(Ralstonia solanacearum). Biological Control 47,282-288.
    3. Amikam, D.& Galperin, M. (2006). PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics (Oxford, England) 22,3-9.
    4. Anantharaman, V.& Aravind, L. (2000). CACHE-a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 25,535-537.
    5. Antoniewski, C., Savelli, B.& Stragier, P. (1990). The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J Bacteriol 111,86-93.
    6. Ausmees, N., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M.& Lindberg, M. (2001). Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol lett 204,163-167.
    7. Bais, H. P., Fall, R.& Vivanco, J. M. (2004a). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134,307-319.
    8. Banse, A. V., Hobbs, E. C.& Losick, R. (2011). Phosphorylation of SpoOA by the histidine kinase KinD requires the lipoprotein Med in Bacillus subtilis. J Bacteriol 193,3949-3955.
    9. Benach, J., Swaminathan, S. S., Tamayo, R.& other authors (2007). The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J26,5153-5166.
    10. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A.& Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51,215-229.
    11. Beyhan, S., Tischler, A. D., Camilli, A.& Yildiz, F. H. (2006). Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 188,3600-3613.
    12. Bianciotto, V., Andreotti, S., Balestrini, R., Bonfante, P.& Perotto, S. (2001). Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant-Microbe Int 14,255-260.
    13. Boehm, A., Kaiser, M., Li, H.& other authors (2010). Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141,107-123.
    14. Bordeleau, E., Fortier, L.-C., Malouio, F.& Burrus, V. (2011). c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet 7.
    15. Bramhill, D. (1997). Bacterial cell division. Annu Rev Cell Dev Biol 13,395-424.
    16. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R.& Kolter, R. (2001). Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98,11621-11626.
    17. Branda, S. S., Gonzalez-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R.& Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186,3970-3979.
    18. Branda, S. S., Chu, F., Kearns, D. B., Losick, R.& Kolter, R. (2006). A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59,1229-1238.
    19. Butcher, R. A., Schroeder, F. C., Fischbach, M. A., Straightt, P. D., Kolter, R., Walsh, C. T.& Clardy, J. (2007). The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 104,1506-1509.
    20. Chai, Y., Chu, F., Kolter, R.& Losick, R. (2008). Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67,254-263.
    21. Chai, Y., Kolter, R.& Losick, R. (2009). Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Mol Microbiol 74,876-887.
    22. Chai, Y., Norman, T., Kolter, R.& Losick, R. (2010). An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev 24,754-765.
    23. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U.& Schirmer, T. (2004). Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 101,17084-17089.
    24. Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Sussmuth, R., Piel, J.& Borriss, R. (2009a). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotech 140,27-37.
    25. Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S.& Borriss, R. (2009b). Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotech 140,38-44.
    26. Christen, B., Christen, M., Paul, R., Schmid, F., Folcher, M., Jenoe, P., Meuwly, M.& Jenal, U. (2006). Allosteric control of cyclic di-GMP signaling. JBiol Chem 281,32015-32024.
    27. Christen, M., Christen, B., Folcher, M., Schauerte, A.& Jenal, U. (2005). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280,30829-30837.
    28. Chu, F., Kearns, D. B., Branda, S. S., Kolter, R.& Losick, R. (2006). Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59,1216-1228.
    29. Chu, F., Kearns, D. B., McLoon, A., Chai, Y., Kolter, R.& Losick, R. (2008). A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol Microbiol 68,1117-1127.
    30. Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S.& Conteras, A. (1989). Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. American Potato Journal 66,315-332.
    31. Davey, M. E.& O'toole, G. A. (2000). Microbial biofilms:from ecology to molecular genetics. Microbiol Mol Biol Rev 64,847-867.
    32. Doan, T., Servant, P., Tojo, S., Yamaguchi, H., Lerondel, G., Yoshida, K.-L, Fujita, Y.& Aymerich, S. p. (2003). The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology 149,2331-2343.
    33. Dow, J. M., Fouhy, Y., Lucey, J. F.& Ryan, R. P. (2006). The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact 19,1378-1384.
    34. Dubnau, D. (1999). DNA uptake in bacteria. Annu Rev Microbiol 53,217-244.
    35. Duerig, A., Abel, S., Folcher, M., Nicollier, M., Schwede, T., Amiot, N., Giese, B.& Jenal, U. (2009). Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23,93-104.
    36. Earl, A. M., Losick, R.& Kolter, R. (2007). Bacillus subtilis genome diversity. JBacteriol 189, 1163-1170.
    37. Earl, A. M., Losick, R.& Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends Microbiol 16,269-275.
    38. Emmert, E. A. B.& Handelsman, J. (1999). Biocontrol of plant disease:a (Gram-) positive perspective. FEMS Microbiol Lett 171,1-9.
    39. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry 59,257-268.
    40. Gonzalez-Pastor, J. E., Hobbs, E. C.& Losick, R. (2003). Cannibalism by sporulating bacteria. Science 301,510-513.
    41. Graham, J. H., Leonard, R. T.& Menge, J. A. (1981). Membrane-mediated decrease in root exudation responsible for phorphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68,548-552.
    42. Guerout-Fleury, A. M., Frandsen, N.& Stragier, P. (1996). Plasmids for ectopic integration in Bacillus subtilis. Gene 180,57-61.
    43. Guex, N.& Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modeling. Electrophoresis 18,2714-2723.
    44. Habazettl, J., Allan, M. G., Jenal, U.& Grzesiek, S. (2011). Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. JBiol Chem 286,14304-14314.
    45. Haggag, W. M.& Timmusk, S. (2008). Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. JApp Microbiol 104,961-969.
    46. Hamon, M. A.& Lazazzera, B. A. (2001). The sporulation transcription factor SpoOA is required for biofilm development in Bacillus subtilis. Mol Microbiol 42,1199-1209.
    47. Hayward, A. (1991). Biology and epidemiology of bacterial wilt caused by Pseudamonas solanacearum. Annu Rev Phytopathol 29,65-87.
    48. Hayward, A. C. (1995). Pathogenesis and Host Specificity in Plant Disease:Histopathological, Biochemical, Genetic and Molecular Bases Pseudomonas solanacearum pp 1,139-151.
    49. Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7,263-273.
    50. Hickman, J. W., Tifrea, D. F.& Harwood, C. S. (2005). A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102, 14422-14427.
    51. Hou, X., Boyetchko, S. M., Brkic, M., Olson, D., Ross, A.& Hegedus, D. (2006). Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl Microbiol Biotechnol 72,644-653.
    52. Jenal, U. (2004). Cyclic di-guanosine-monophosphate comes of age:a novel secondary messenger involved in modulating cell surface structures in bacteria? Current opinion in microbiology 7,185-276.
    53. Jenal, U.& Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40,385-407.
    54. Ji, X. L., Lu, G. B., Gai, Y. P., Zheng, C. C.& Mu, Z. M. (2008). Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65,565-573.
    55. Jiang, M., Shao, W., Perego, M.& Hoch, J. A. (2000). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38,535-542.
    56. Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Azarova, T., Makarova, N.& Lugtenberg, B. (2006a). Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Int 19,250-256.
    57. Karimova, G., Pidoux, J., Ullmann, A.& Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95,5752-5756.
    58. Kearns, D. B.& Losick, R. (2003). Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49,581-590.
    59. Kearns, D. B., Chu, F., Rudner, R.& Losick, R. (2004). Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52,357-369.
    60. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R.& Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55,739-749.
    61. Kearns, D. B.& Losick, R. (2005). Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19,3083-3094.
    62. Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R.& Losick, R. (2010). D-Amino acids trigger biofilm disassembly. Science 328,627-629.
    63. Kolodkin-Gal, I., Cao, S. G., Chai, L., Bottcher, T., Kolter, R., Clardy, J.& Losick, R. (2012). A Self-Produced Trigger for Biofilm Disassembly that Targets Exopolysaccharide. Cell 149,684-692.
    64. Krasteva, P. V., Fong, J. C. N., Shikuma, N. J., Beyhan, S., Navarro, M. V. A. S., Yildiz, F. H. & Sondermann, H. (2010). Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327,866-868.
    65. Kuchma, S. L., Brothers, K. M., Merritt, J. H., Liberati, N. T., Ausubel, F. M.& O'Toole, G. A. (2007). BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. JBacteriol 189,8165-8178.
    66. Leclere, V., Bechet, M., Adam, A.& other authors (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71,4577-4584.
    67. Lemessa, F.& Zeller, W. (2007). Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42,336-344.
    68. Li, J. G., Liu, H. X., Cao, J., Chen, L. F., Gu, C., Allen, C.& Guo, J. H. (2010). PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Mol Plant Pathol 11,371-381.
    69. Liu, W. T., Yang, Y. L., Xu, Y.& other authors (2010). Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc Natl Acad Sci USA 107,16286-16290.
    70. Lopez, D., Fischbach, M. A., Chu, F., Losick, R.& Kolter, R. (2009). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci USA 106,280-285.
    71. Lugtenberg, B.& Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. Annu Rev Microbiol 63,541-556.
    72. McLoon, A. L., Kolodkin-Gal, L, Rubinstein, S. M., Kolter, R.& Losick, R. (2011). Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. JBacteriol 193, 679-685.
    73. Molle, V., Fujita, M., Jensen, S. T., Eichenberger, P., Gonzalez-Pastor, J. E., Liu, J. S.& Losick, R. (2003). The SpoOA regulon of Bacillus subtilis. Mol Microbiol 50,1683-1701.
    74. Morris, C. E.& Monier, J. M. (2003). The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41,429-453.
    75. Nagorska, K., Bikowski, M.& Obuchowskji, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica 54,495-508.
    76. Neiditch, M. B., Federle, M. J., Pompeani, A. J., Kelly, R. C., Swem, D. L., Jeffrey, P. D., Bassler, B. L.& Hughson, F. M. (2006). Ligand-Induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126,1095-1108.
    77. Newell, P. D., Boyd, C. D., Sondermann, H.& O'Toole, G. A. (2011). A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol 9, e1000587.
    78. Ng, W.-L.& Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annu Rev Genet 43,197-222.
    79. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P.& Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79,176-191.
    80. OToole, G., Kaplan, H. B.& Kolter, R. (2000). Biofilm formation as microbial development. Annu Rev Microbiol 54,49-79.
    81. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L.& Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9,1084-1090.
    82. Ongena, M.& Jacques, P. (2008). Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol 16,115-125.
    83. Paul, K., Nieto, V., Carlquist, W., Blair, D.& Harshey, R. (2010). The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Molecular cell 38,128-167.
    84. Paul, R, Abel, S. r., Wassmann, P., Beck, A., Heerklotz, H.& Jenal, U. (2007). Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. JBiol Chem 282,29170-29177.
    85. Peggy, A. C.& Scott, S. (2007). c-di-GMP-mediated regulation of virulence and biofilm formation. Current Opinion in Microbiology 10.
    86. Peypoux, F., Bonmatin, J. M.& Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51,553-563.
    87. Piggot, P. J.& Hilbert, D. W. (2004). Sporulation of Bacillus subtilis. Curr Opin Microbiol 7, 579-586.
    88. Roberts, W. K.& Selitrennikoff, C. P. (1988). Plant and bacterial chitinases differ in antifungal activity. Journal of General Microbiology,169-176.
    89. Rogers, E. A., Terekhova, D., Zhang, H.-M., Hovis, K. M., Schwartz, I.& Marconi, R. T. (2009). Rrpl, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 71,1551-1573.
    90. Romero, D., Vlamakis, H., Losick, R.& Kolter, R. (2011). An accessory protein required for anchoring and assembly of amyloid fibres in Bacillus subtilis biofilms. Mol Microbiol 80,1155-1168.
    91. Romling, U., Mark, G.& Michael, Y. G. (2005). C-di-GMP:the dawning of a novel bacterial signalling system. Molecular Microbiology 57.
    92. Romling, U.& Amikam, D. (2006). Cyclic di-GMP as a second messenger. Current opinion in microbiology 9,218-246.
    93. Ross, P., Weinhouse, H., Aloni, Y.& other authors (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325,279-281.
    94. Rudrappa, T., Czymmek, K. J., Pare, P. W.& Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148,1547-1556.
    95. Ryan, R., Fouhy, Y., Lucey, J.& Dow, J. (2006a). Cyclic di-GMP signaling in bacteria:recent advances and new puzzles. Journal of bacteriology 188,8327-8361.
    96. Ryan, R. P., Fouhy, Y., Lucey, J. F.& other authors (2006b). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103,6712-6717.
    97. Ryan, R. P., Fouhy, Y., Lucey, J. F., Jiang, B. L., He, Y. Q., Feng, J. X., Tang, J. L.& Dow, J. M. (2007). Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63,429-442.
    98. Ryjenkov, D. A., Simm, R., Romling, U.& Gomelsky, M. (2006). The PilZ domain is a receptor for the second messenger c-di-GMP:the PilZ domain protein YcgR controls motility in enterobacteria. JBiol Chem 281,30310-30314.
    99. Schmidt, A. J., Ryjenkov, D. A.& Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase:enzymatically active and inactive EAL domains. J Bacteriol 187,4774-4781.
    100. Shin, J.-S., Ryu, K.-S., Ko, J., Lee, A.& Choi, B.-S. (2010). Structural characterization reveals that a PilZ domain protein undergoes substantial conformational change upon binding to cyclic dimeric guanosine monophosphate. Protein Sci 20,270-277.
    101. Shin, S. H., Lim, Y., Lee, S. E., Yang, N. W.& Rhee, J. H. (2001). CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Methods 44,89-95.
    102. Simm, R, Morr, M., Kader, A., Nimtz, M.& Romling, V. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53, 1123-1134.
    103. Slama, B.& Hendrickson, W. (2008). Crystal structure of the periplasmic domain of Vibrio Cholerae LuxQ. PDB, ID:3c38.
    104. Sonenshein, A. L. (2000). Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3,561-566.
    105. Stein, T., Dusterhus, S., Stroh, A.& Entian, K. D. (2004). Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70,2349-2353.
    106. Stein, T. (2005). Bacillus subtilis antibiotics:structures, syntheses and specific functions. Mol Microbiol 56,845-857.
    107. Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeister, J., Jacques, P., Thonart, P.& Vater, J. (1999). Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6,31-41.
    108. Stephenson, K.& Hoch, J. A. (2002). Evolution of signalling in the sporulation phosphorelay. Mol Microbiol 46,297-304.
    109. Sudarsan, N., Lee, E., Weinberg, Z., Moy, R., Kim, J., Link, K.& Breaker, R. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science (New York, NY) 321,411-414.
    110. Tal, R., Wong, H., Calhoon, R.& other authors (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum:genetic organization and occurrence of conserved domains in isoenzymes. Journal of bacteriology 180,4416-4441.
    111. Tamayo, R., Tischler, A. D.& Camilli, A. (2005). The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. JBiol Chem 280,33324-33330.
    112. Tamayo, R., Pratt, J. T.& Camilli, A. (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61,131-148.
    113. Tanaka, K., Kobayashi, K.& Ogasawara, N. (2003). The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Microbiology 149,2317-2329.
    114. Thompson, J. D., Higgins, D. G.& Gibson, T. J. (1994). CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22,4673-4680.
    115. Thompson, J. D., Gibson, T. J., Plewniak, F. d. r., Jeanmougin, F. o.& Higgins, D. G. (1997). The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25,4876-4882.
    116. Timmusk, S., Grantcharova, N.& Wagner, E. G. H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71,7292-7300.
    117. Tischler, A. D.& Camilli, A. (2004). Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. MolMicrobiol 53,857-869.
    118. Toure, Y., Ongena, M., Jacques, P., Guiro, A.& Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. JAppl Microbiol 96,1151-1160.
    119. Tschowri, N., Busse, S.& Hengge, R. (2009). The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev 23,522-534.
    120. Wach, A. (1996). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in Saccharomyces cerevisiae. Yeast 12,259-265.
    121. Wei, Y., Guffanti, A. A., Ito, M.& Krulwich, T. A. (2000). Bacillus subtilis Yqkl Is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force. JBiol Chem 275,30287-30292.
    122. Westers, H., Dorenbos, R., van Dijl, J. M.& other authors (2003). Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20,2076-2090.
    123. Wolfe, A.& Visick, K. (2008). Get the message out:cyclic-Di-GMP regulates multiple levels of flagellum-based motility. Journal of bacteriology 190,463-538.
    124. Wu, R., Schiffer, M., Gu, M.& Joachimiak, A. (2008). The crystal structure of two-component sensor histidine kinase domain from Bacillus subtilis. PDB, ID:3FOS.
    125. Wulff, E. G., Mguni, C. M., Mortensen, C. N., Keswani, C. L.& Hockenhull, J. (2002). Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Euro J Plant Pathol 108,317-325.
    126. Xue, Q. Y., Chen, Y., Li, S. M., Chen, L. F., Ding, G. C., Guo, D. W.& Guo, J. H. (2009). Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48,252-258.
    127. Yasbin, R. E.& Young, F. E. (1974). Transduction in Bacillus subtilis by bacteriophage SPP1. J Virol 14,1343-1348.
    128. Yi, X., Yamazaki, A., Biddle, E., Zeng, Q.& Yang, C.-H. (2010). Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Molecular microbiology 77,787-1587.
    129. Zhang, Z.& Hendrickson, W. A. (2010). Structural characterization of the predominant family of histidine kinase sensor domains. JMol Biol 400,335-353.
    130. Zheng, G., Yan, L. Z., Vederas, J. C.& Zuber, P. (1999). Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. JBacteriol 181,7346-7355.
    131.刘铭,张敏 & 戢俊臣(2005).中国姜瘟病的研究进展.中国农学通报21,337-341.
    132.孙思,韦爱梅 & 伍慧雄(2004).青枯病的化学和生物防治研究进展.江西植保27,157-162.
    133.李广存,金黎平 & 谢开云(2004).马铃薯青枯病研究进展.中国马铃薯18,350-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700