蛋白型微生物絮凝剂对卡马西平的去除效能和机制解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药品和个人护理品(PPCPs)是具有潜在危险性的新兴环境污染物,它们不易降解、残留期长,可以通过富集效应积累于生物体内,因此会给水生生物和人类带来巨大的潜在危害,现已成为环境领域的热点研究问题。卡马西平作为典型的PPCPs指示性物质,其化学持久性、痕量污染性给现有的处理方法及工艺造成了困难。针对上述问题,本研究基于微生物絮凝剂具有良好的净水效能和应用广谱性的特点,开展了对PPCPs去除效果和机制的研究。
     本研究从大庆油污土壤及哈尔滨太平废水处理厂的活性污泥中筛选得到100余株产絮菌,结合实验室现有的及文献中已报道的产絮菌,构建了产絮菌种质资源库。并根据蛋白质对卡马西平有较强的结合力的特点,从产絮菌种质资源库中优选出蛋白类微生物絮凝剂产絮菌J-1,开展微生物絮凝剂的制备和应用研究。经鉴定产絮菌J-1为克雷伯氏菌(Klebsiella variicola),GenBank登录号为KF770752,菌种保藏号为CGMCC NO.6243。
     通过对产絮菌J-1的生长特性和发酵特性的研究,确定该菌具有良好的遗传稳定性,其最大比生长速率为0.44h-1,最大菌量预测值为2.05g/L。产絮菌J-1发酵产絮凝剂的最佳条件为接种量6.5mL/100mL,pH值7.5,温度35oC,摇床转速140r/min,发酵时间15h,此时的絮凝率为97.32%。
     由产絮菌J-1发酵产生的微生物絮凝剂MFX,分泌于发酵液的上清液中。其主要成分是结合多糖的蛋白质大分子有机物质,其中蛋白质的含量是多糖的1.6倍。在中性偏碱条件下,20~80oC范围内,微生物絮凝剂MFX的絮凝活性可以保持在85%以上。同时,MFX具有较高的分子量分布,最高可达8,509,760Da。另外,红外光谱结果表明,微生物絮凝剂MFX中含有包括氨基、酰氨基、羧基和羟基在内的多种官能团。根据MFX的理化性质采用醇沉水提法对其主要活性成分进行提取。最佳提取条件为发酵上清液浓缩至原体积的1/2;乙醇用量为发酵液体积的3.5倍;提取时间为15h;乙醇浓度为100%。在此条件下,絮凝剂活性成分的提取量为2.54g/L。与提取前相比,其水溶液更加粘稠,且絮凝效果也由提取前的97.35%提高到98.06%。
     微生物絮凝剂MFX对雌激素、卡马西平和磺胺甲恶唑等几种典型的PPCPs物质均有良好的去除效果,其中在絮凝剂投加量7mL,助凝剂投加量0.1mL,pH值7.5,反应温度35oC,反应时间0.5h时,MFX对水量为1L,浓度为1mg/L的卡马西平的去除率达到81.75%。与常规的四种无机有机化学絮凝剂相比,微生物絮凝剂MFX对卡马西平的去除效果有着显著的优势。选择水量为1L的生活污水和二沉池出水,考察微生物絮凝剂MFX对实际废水中卡马西平的去除效果,结果显示在pH值为8,絮凝剂投加量为8.5mL,助凝剂投加量为0.1mL,作用时间为13min的去除条件下,微生物絮凝剂MFX对卡马西平的去除率分别达到75.03%和69.76%。与卡马西平配水相比,去除率有所下降,这是由于生活污水和二沉池出水中的固体悬浮物(SS)、总氮(TN)、总磷(TP)等与卡马西平对微生物絮凝剂MFX吸附位点的竞争导致的。
     通过微生物絮凝剂MFX处理卡马西平的絮凝形态学和Zeta电位的变化,推测,微生物絮凝剂MFX去除卡马西平的主要机制为吸附架桥作用和网捕卷扫作用。利用浓度为90%(V:V)的甲醇对卡马西平进行解吸附1h,解吸附率达到62%。对比吸附前、吸附后和解吸附后的微生物絮凝剂MFX的扫描电镜照片,证明微生物絮凝剂MFX对卡马西平的吸附是部分可逆的。利用超声波对解吸附后的沉淀进行破碎,有23%的卡马西平被释放出来,尚有8.14%的卡马西平不知去向。三维荧光光谱实验结果证明在λex/λem=(250~270)nm/(410~420)nm处有新的物质生成。红外光谱显示3590.22cm-1处有新峰生成,同时羟基、羧基和氨基的特征峰均出现红移现象,证实了微生物絮凝剂MFX对卡马西平的去除过程中同时存在物理吸附和化学吸附。吸附动力学和热力学结果显示微生物絮凝剂MFX对卡马西平的吸附更符合拟一级动力学反应和Freundlich吸附等温方程,该结论进一步证明了微生物絮凝剂MFX对卡马西平的吸附是由物理吸附和化学吸附共同起作用的吸附架桥和网捕卷扫过程。
Pharmaceuticals and Personal Care Products (PPCPs) have brought potentially enormous hazard to aquatic species and human because of their bio-accumulate effect to organisms, leading to an attention of environment fields. The persistence and trace characteristics of PPCPs make them difficult to remove by current methods and processes. According to the issues above, this research developed removal effect and mechanism study of PPCPs based on favorable water-clean property and broad-spectrum application of bioflocculant.
     This research started from seed selection of bioflocculant micro-organisms. After screening,100strains flocculant organisms were acquired. Combined with bioflocculant micro-organisms in our lab and from literature, a database of bioflocculant organisms seeds information was set up. Bioflocculant species J-1was selected for micro-organism flocculants preparation and application. After identified, J-1belongs to Klebsiella variicola, GenBank accession number is KF770752, microbial culture preservation number is CGMCC NO.6243. According to the growing property and fermentation characteristic study of J-1, It’s hereditary stability was stable, the maximum specific growth rate was0.44h-1, the maximum predicted biomass was2.05g/L. the most optimum flocculant yield conditions of bioflocculant bacterium J-1were inoculation6.5mL/100mL, pH7.5, temperature35oC, rotating speed140r/min, fermentation time15h, and the flocculating rate under such condition was97.32%, bioflocculant yield rate2.51g/L.
     The primary metabolism products, MFX, of bioflocculant bacterium J-1was secreted to supernatant of fermentation liquor. The results of color reaction, enzymolysis reaction, and three dimensional fluorescence spectra revealed that MFX is macomolecule organic substance consisted of polysaccharide and protein, which the content of protein was1.6times higher than polysaccharide. The results of stability test and thermogravimetric analysis proved that under condition of netral of slightly basic, temperature of20~80oC, the flocculants active property could be kept above85%. Meanwhile, MFX has the property of relatively high molecular weight as high as8,509,760Da. The result of infrared spectroscopy indicated that microbial flocculants MFX contains many functional groups such as amidogen, amide, carboxyl, and hydroxyl. According to the physical and chemical characteristics of MFX, ethanol extraction method was applied to extract its major active ingredients. The most optimum extraction conditions are concentrating the fermentation supernatant volume to1/2of former volume, ethanol quantity3.5 times than fermentation volume, extracting time15h, ethanol concentration100%. Under such condition, the extracted concentration of flocculant avtive ingredients was2.543g/L. Compared to previously, the liquid solution was more sticky, and flocculating effect promoted from97.35%to98.06%.
     Microbial flocculant MFX showed a favorable removal effect of several typical PPCPs such as estrogen, carbamazepine, sulfamethoxazole. Under conditions of flocculant inoculum7mL, flocculant favorable drug addition0.1mL, pH7.5, reaction temperature0.5h, the removal efficiency of carbamazepine was more than81.75%. Compared to the regular four inorganic and organic flocculants, microbial flocculant MFX had a prominent advantage in removing carbamazepine. Sewage and secondary sedimentation tank effluent were selected to study microbial flocculant MFX removal effect of carbamazepine in real wastewater, and the result showed that under conditions of pH8, flocculant inoculum8.5mL, flocculant favorable drug addition0.1mL, reaction time13min, microbial flocculant MFX could remove carbamazepine by75.03%and69.76%. Compared to synthesis carbamazepine water, removal efficiency was decreased a little, because of substances such as suspended solids (SS), total nitrogen (TN), total phosphorus (TP) competed with carbamazepine for the absorption position of microbial flocculant.
     According to the flocculant behavior and potential Zeta changes of microbial flocculant MFX, it is probable that the major mechanism of microbial flocculant MFX removing carbamazepine are absorbtion bridging, capturing and sweeping effects. Concentration of90%ethanol was applied to dissociative adsorb carbamazepine, and the dissociative adsorption rate was62%. Compared to the SEM images of pre-absorbed, after absorbed and dissociative adsorbed microbial flocculant MFX, the absorption of carbamazepine of MFX was partial reversible. Ultrasonic wave method was applied to broken dissociative absorbed sediments,23%carbamazepine was released, and8.14%remained was unknown to where. The result of three-dimension fluorescence spectrum proved that both physical absorption and chemical absorption exist in the process of MFX removing carbamazepine. Absorption kinetics and thermal results showed that MFX removing carbamazepine was fit for pseudo-first order kinetics and Freundlich absorption isotherm. This result further proved that microbial flocculant MFX absorbing carbamazepine was the process of combination of physical and chemical absorption effects of absorption bridging, capturing and sweeping.
引文
[1] Qu J, Fan M. The current state of water quality and technology development forwater pollution control in China[J]. Critical Reviews in Environmental Scienceand Technology,2010,40(6):519-560.
    [2] Yong-hong Z, Jiaxiang D, Jinyan Z. Study on Current Situation and ControllingTechnologies of Agricultural Non-point Source Pollution in China[J]. Journal ofAnhui Agricultural Sciences,2010,5:129.
    [3] Zhang X, Chen C, Lin P, et al. Emergency Drinking Water Treatment duringSource Water Pollution Accidents in China: Origin Analysis, Framework andTechnologies[J]. Environmental science&technology,2010,45(1):161-167.
    [4] Chen W, Xu J, Lu S, et al. Fates and transport of PPCPs in soil receivingreclaimed water irrigation[J]. Chemosphere,2013,93(10):2621-2630.
    [5] Liu J L, Wong M H. Pharmaceuticals and personal care products (PPCPs): Areview on environmental contamination in China[J]. Environment international,2013,59:208-224.
    [6] Garric J. Emerging issues in ecotoxicology: pharmaceuticals and personal careproducts(PPCPs)[M]. Encyclopedia of aquatic ecotoxicology. SpringerNetherlands,2013:407-428.
    [7] Snyder S A, Westerhoff P, Yoon Y, et al. Pharmaceuticals, personal care products,and endocrine disruptors in water: implications for the water industry[J].Environmental Engineering Science,2003,20(5):449-469.
    [8] Ternes T A, Joss A, Siegrist H. Scrutinizing pharmaceuticals and personal careproducts in wastewater treatment[J]. Environ. Sci.Technol.,2004,38(20):392–399.
    [9]吕小明.典型新兴环境污染物的研究进展[J].中国环境监测,2012,28(4):118-123.
    [10]王斌,邓述波,黄俊,等.我国新兴污染物环境风险评价与控制研究进展[J].环境化学,2013,32(7):1129-1136.
    [11] Eckstein G. Comment: Emerging EPA Regulation of Pharmaceuticals in theEnvironment[J]. Environmental Law Reporter,2012,42(12).
    [12]周雪飞,张亚雷,代朝猛.饮用水处理中药物和个人护理用品去除特性的研究进展[J].环境与健康杂志,2008,25(11):1024-1027.
    [13]安婧,周启星.药品及个人护理用品(PPCPs)的污染来源,环境残留及生态毒性[J].生态学杂志,2009,28(9):1878-1890.
    [14]胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J].生态环境,2005,14(6):947-952.
    [15] Chefetz B, Mualem T, Ben-Ari J. Sorption and mobility of pharmaceuticalcompounds in soil irrigated with reclaimed wastewater[J]. Chemosphere,2008,73(8):1335-1343.
    [16] Galán M J G, Díaz-Cruz M S, Barceló D. Sulfonamide Antibiotics in Naturaland Treated Waters: Environmental and Human Health Risks[M]. EmergingOrganic Contaminants and Human Health. Springer Berlin Heidelberg,2012:71-92.
    [17] Wu X, Ernst F, Conkle J L, et al. Comparative uptake and translocation ofpharmaceutical and personal care products (PPCPs) by common vegetables[J].Environment international,2013,60:15-22.
    [18] Kosma C I, Lambropoulou D A, Albanis T A. Investigation of PPCPs inwastewater treatment plants in Greece: Occurrence, removal andenvironmental risk assessment[J]. Science of The Total Environment,2014,466:421-438.
    [19] Parolini M, Pedriali A, Binelli A. Application of a Biomarker Response Indexfor Ranking the Toxicity of Five Pharmaceutical and Personal Care Products(PPCPs) to the Bivalve Dreissena polymorpha[J]. Archives of environmentalcontamination and toxicology,2013:1-9.
    [20] Boxall A B A, Rudd M A, Brooks B W, et al. Pharmaceuticals and personalcare products in the environment: what are the big questions[J]. Environmentalhealth perspectives,2012,120(9):1221.
    [21] Redman A, Woodburn K, Kozerski G, et al. Using Lines of Evidence toDetermine Ecological Risk During an On-Going Risk Assessment of PPCPs:Cyclic Volatile Methyl Siloxanes as a Case Study[J]. Proceedings of the WaterEnvironment Federation,2010,2010(15):2293-2298.
    [22] Berninger J P, Du B, Connors K A, et al. Effects of the antihistaminediphenhydramine on selected aquatic organisms[J]. Environmental Toxicologyand Chemistry,2011,30(9):2065-2072.
    [23] Kolarova J, Zlabek V, Grabic R, et al. The effect of environmentally relevantconcentration of selected PPCPs on fish cell lines[J]. Toxicology Letters,2013,221: S161.
    [24]贾瑷,胡建英,孙建仙,施嘉琛.环境中的医药品与个人护理品[J].化学进展,2009,21(23):389-399.
    [25]张良亮.给水处理系统中卡马西平和双A去除规律及调控方法的研究[D].上海:东华大学学位论文,2009.
    [26]俞道进,曾振灵,陈杖榴.四环素类抗生素残留对水生态环境影响的研究进展[J].中国兽医学报,2004,24(5):515-517.
    [27] Sauvêtre A, Schr der P. Root endophytic bacterial community in Phragmitesaustralis plants exposed to carbamazepine[J]. Endophytes for plant protection:the state of the art,2013:186.
    [28]张娟,代朝猛,周雪飞,等.水体中卡马西平的污染特征与赋存现状研究[J].给水排水,2012,38(6):120-124.
    [29] Daughton C G. Non-regulated water contaminants: emerging research[J].Environmental Impact Assessment Review,2004,24(7):711-732.
    [30] Clara M, Strenn B, Kreuzinger N. Carbamazepine as a possible anthropogenicmarker in the aquatic environment: investigations on the behaviour ofcarbamazepine in wastewater treatment and during groundwater infiltration[J].Water Res.,2004,38:947-954.
    [31] Jemba P K. Excretion and ecotoxicity of pharmaceutical and personal careproducts in the environment[J]. Ecotoxicology and Environmental Safety,2006,63(1):113-130.
    [32] Kosjek T, Andersen H R, Kompare B, et al. Fate of carbamazepine duringwater treatment[J]. Environmental science&technology,2009,43(16):6256-6261.
    [33] De Laurentiis E, Chiron S, Kouras-Hadef S, et al. Photochemical fate ofcarbamazepine in surface freshwaters: Laboratory measures and modeling[J].environmental science&technology,2012,46(15):8164-8173.
    [34]蔡蕊.低温卡马西平降解菌的筛选及降解特性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2012:1-3.
    [35] Ternes T A. Occurrence of drugs in German sewage treatment plants andrivers[J]. Water Res.,1998,32:3245–3260.
    [36] Heberer T, Feldmann D. Contribution of ef uents from hospitals and privatehouseholds to the total loads of diclofenac and carbamazepine in municipalsewage ef uents–modeling versus measurements [J]. J. Hazard. Mater,2005,122:211–218.
    [37] Oulton R L, Kohn T, Cwiertny D M. Pharmaceuticals and personal careproducts in effluent matrices: a survey of transformation and removal duringwastewater treatment and implications for wastewater management[J]. Journalof Environmental Monitoring,2010,12(11):1956-1978.
    [38] Williams C F, McLain J E T. Soil Persistence and Fate of Carbamazepine,Lincomycin, Caffeine, and Ibuprofen from Wastewater Reuse[J]. Journal ofenvironmental quality,2012,41(5):1473-1480.
    [39] Arye G, Dror I, Berkowitz B. Fate and transport of carbamazepine in soilaquifer treatment (SAT) infiltration basin soils[J]. Chemosphere,2011,82(2):244-252.
    [40] Monteiro S C, Boxall A B A. Occurrence and fate of human pharmaceuticals inthe environment[M]. Reviews of environmental contamination and toxicology.Springer New York,2010:53-154.
    [41] Thacker P D. Pharmaceutical data eludes environmental researchers[J].Environ. Sci. Technol.,2005,39:193-194.
    [42] Joss A, Keller E, Alder A C, G bel A, McArdell C S, Ternes T, et al. Removalof pharmaceuticals and fragrances in biological wastewater treatment[J]. WaterRes.,2005,39(14):3139-3152.
    [43] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in theaquatic environment: a review of recent research data[J]. Toxicol Lett,2002,131:5-17.
    [44] Weigel S, Bester K, Hühnerfuss H. New method for rapid solid-phaseextraction of large-volume water samples and its application to non-targetscreening of North Sea water for organic contaminants by gas chromatographymass spectrometry[J]. J Chromatogr A,2001,9(12):151-161.
    [45] Miao X S, Yang J J, Metcalfe C D. Carbamazepine and itsmetabolites inwastewater and in biosolids in amunicipalwastewater treatment plant[J].Environ Sci Technol,2005,39(19):7469-7475.
    [46] Kinney C A, Furlong E T, Werner S L, et al. Presence and distribution ofwastewater-derived pharmaceuticals in soil irrigated with reclaimed water[J].Environmental Toxicology and Chemistry,2006,25(2):317-326.
    [47] Focazio M J, Kolpin D W, Barnes K K, et al. A national reconnaissance forpharmaceuticals and other organic wastewater contaminants in the UnitedStates[J]. Untreated drinking water sources. Science of the Total Environment,2008,402(23):201-216.
    [48] Rabiet M, Togola A, Brissaud F, Seidel J L, et al. Consequences of treatedwater recycling as regards pharmaceuticals and drugs in surface and groundwaters of a medium-sized mediterranean catchment[J]. Environ Sci Technol,2006,40:5282–5288.
    [49] Williams C F, Watson J E, Nelson S D. Comparison of equilibrium andnon-equilibrium distribution coefficients for the human drug carbamazepinein soil[J]. Chemosphere,2013,95:163-167.
    [50] Onesios K M, Jim T Y, Bouwer E J. Biodegradation and removal ofpharmaceuticals and personal care products in treatment systems: a review[J].Biodegradation,2009,20(4):441-466.
    [51] Linden K, Keen O, Love N G, et al. Demonstrating Advanced OxidationCoupled with Biodegradation for Removal of Carbamazepine [J].2012.
    [52] Keen O S, Baik S, Linden K G, et al. Enhanced biodegradation ofcarbamazepine after UV/H2O2advanced oxidation[J]. Environmental science&technology,2012,46(11):6222-6227.
    [53] Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activatedsludge process[J]. Environmental science&technology,2010,44(9):3468-3473.
    [54] Fal s P, Longrée P, la Cour Jansen J, et al. Micropollutant removal by attachedand suspended growth in a hybrid biofilm-activated sludge process[J]. Waterresearch,2013,47(13):4498-4506.
    [55] Matos M, Pereira M A, Nicolau A, et al. Influence of the organic loading rateon the growth of Galactomyces geotrichum in activated sludge[J]. Journal ofEnvironmental Science and Health, Part A,2012,47(4):565-569.
    [56] McAdam E J, Bagnall J P, Soares A, et al. Fate of alkylphenolic compoundsduring activated sludge treatment: impact of loading and organiccomposition[J]. Environmental science&technology,2010,45(1):248-254.
    [57]王绪科,朱英,邹艺娜.城市污水处理厂污泥中PPCPs的降解转化研究进展[J].山东科学,2013,26(1):93-96.
    [58] Meunier L, Canonica S, Von Gunten U. Implications of sequential use of UVand ozone for drinking water quality[J]. Water research,2006,40(9):1864-1876.
    [59]杨林.曝气生物过滤去除微污染水源水中典型PPCPs的效能与机理[D].上海:东华大学学位论文,2010.
    [60] Chiron S, Minero C, Vione D. Photodegradation processes of the antiepilepticdrug carbamazepine, relevant to estuarine waters[J]. Environmental science&technology,2006,40(19):5977-5983.
    [61]茶丽娟,张迪,彭红波,等.卡马西平在云南典型土壤上的吸附研究[J].昆明理工大学学报,2011,36(6):61-66.
    [62] Zhang Y, Geissen S U, Gal C. Carbamazepine and diclofenac: removal inwastewater treatment plants and occurrence in water bodies[J]. Chemosphere,2008,73(8):1151-1161.
    [63] Paxéus N. Removal of selected non-steroidal anti-in ammatory drugs(NSAIDs), gem brozil, carbamazepine, b-blockers, trimethoprim and triclosanin conventional wastewater treatment plants in ve EU countries and theirdischarge to the aquatic environment[J]. Water Sci. Technol.,2004,50(5):253-260.
    [64] Thacker P D. Pharmaceutical data eludes environmental researchers[J]. EnvironSci Technol,2005,39(9):193-194.
    [65] Joss A, Keller E, Alder AC, G bel A, McArdell CS, Ternes T, et al. Removalof pharmaceuticals and fragrances in biological wastewater treatment[J]. WaterRes,2005,39(14):3139-3152.
    [66]张磊,郎建峰,牛姗姗.生物膜法在污水处理中的研究进展[J].水科学与工程技术,2010,(5):38-41.
    [67]金铃.膜生物反应器去除水中PPCPs的效果及SRT的影响研究[D].哈尔滨:哈尔滨工业大学学位论文,2010.
    [68] Serrano D, Suárez S, Lema J M, Omil F. Removal of persistent pharmaceuticalmicropollutants from sewage by addition of PAC in a sequential membranebioreactor[J]. Water Res.,2011,45(16):5323-5333.
    [69]杨兴.典型PPCP降解菌的筛选及其在曝气生物滤池中的应用[D].上海:东华大学学位论文,2010.
    [70] Semrany S, Favier L, Djelal H, et al. Bioaugmentation: Possible solution in thetreatment of Bio-Refractory Organic Compounds(Bio-ROCs)[J]. BiochemicalEngineering Journal,2012,69(15):75-86.
    [71] Zhou N A, Lutovsky A C, Andaker G L, et al. Cultivation and characterizationof bacterial isolates capable of degrading pharmaceutical and personal careproducts for improved removal in activated sludge wastewater treatment[J].Biodegradation,2013,24(6):1-15.
    [72]崔长征,胡洪营,于亚琦,于茵.卡马西平降解菌的筛选及降解特性研究[J].微生物学通报,2009,36(4):557-562.
    [73]杨林,薛罡,刘亚男.卡马西平降解菌的筛选分离及其降解机理[J].环境工程学报,2012,6(5):1559-1564.
    [74] Ternes T A, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A. A rapidmethod to measure the solid–water distribution coef cient (Kd) forpharmaceuticals and musk fragrances in sewage sludge[J]. Water Res.,2004,38(19):4075-4084.
    [75]乔铁军,张锡辉,欧慧婷.饮用水中药品和个人护理用品的研究进展[J].给水排水,2010,4(36):118-125.
    [76]刘莹,管运涛,张锡辉,等.药品和个人护理用品类污染物研究进展[J].清华大学学报:自然科学版,2009(3):368-372.
    [77]李爽,翟学东,曹平,等.岸滤预处理去除河流水源水中有机物和氨氮的静态试验研究[J].给水排水,2012,增刊.
    [78] Sacher R. Riverbank filtration: understanding contaminate biogeochemistry andpathogen removal-experiences on the fate of organic micropollutants duringriverbank filtration[J]. USA: Kluwer Academic Publisher,2002:253.
    [79] Clara M, Strenn B, Kreuzinger N. Carbamazepine as a possible anthropogenicmarker in the aquatic environment: investigations on the behaviour ofCarbamazepine in wastewater treatment and during groundwater infiltration [J].Water Research,2004,38(4):947-954.
    [80] Ternes T A, Stuber J, Herrmann N, et al. Ozonation: A tool for removal ofpharmaceuticals, contrast media and musk fragrances from wastewater[J].Water Research,2003,37(8):1976-1982.
    [81] Lei L, Patricia AQ, Detlef RUK. Effects of activated carbon surface chemistryand pore structure on the adsorption of organic contaminants from aqueoussolution[J]. Carbon,2002,40(12):2085-2100
    [82]张亚斌.几种膜技术在废水处理方面的应用研究分析[J].电力学报,2013,28(2):177-180.
    [83]毕飞,陈欢林,高从堦.纳滤膜去除饮用水中微量有机物的研究进展[J].现代化工,2011,31(7):21-26.
    [84]周珺如,董秉直.纳滤膜去除饮用水中PPCP研究进展[J].给水排水,2009,35(S1):13-17.
    [85]黄裕,张晗,董秉直.纳滤膜去除卡马西平的影响因素研究[J].环境科学,2011,32(3):705-710.
    [86]许亮,王文美,张余,等.生物活性炭技术在水处理中的研究进展与应用[J].中国环保产业,2010,(5):30-34.
    [87]宋梅.膜处理技术在水处理中的应用[J].科技创新导报,2012,(17):78-78.
    [88]陈家斌,周雪飞,张亚雷.水环境中PPCPs的臭氧氧化和高级氧化技术[J].给水排水(增刊),2009,35(2):85-90.
    [89]周宁娟,段友丽.羟基化锌催化臭氧氧化去除水中痕量卡马西平[J].中国给水排水,2013,29(13):57-59.
    [90]周宁娟,薛罡,卜聃,刘亚男.臭氧化降解给水系统中卡马西平的实验研究[J].水处理技术,2011,37(4):109-111.
    [91] Meunier L, Canonica S, Von Gunten U. Implications of sequential use of UVand ozone for drinking water quality[J]. Water research,2006,40(9):1864-1876.
    [92] Keen O S, Baik S, Linden K G, et al. Enhanced biodegradation ofcarbamazepine after UV/H2O2advanced oxidation[J]. Environmental science&technology,2012,46(11):6222-6227.
    [93] Tusnelda E. Doll, Fritz H. Frimmel. Kinetic study of photocatalyticdegradation of carbamazepine, clo bric acid, iomeprol and iopromide assistedby different TiO2materials—determination of intermediates and reactionpathways[J]. Water Res.,2004,38(4):955-964.
    [94] Serge C, Claudio M, Davide V. Photodegradation processes of the antiepilepticdrug carbamazepine, relevant to estuarine waters[J]. Environ Sci Technol,2006,40(19):5977-5983.
    [95] Kosma C I, Lambropoulou D A, Albanis T A. Occurrence and removal ofPPCPs in municipal and hospital wastewaters in Greece[J]. Journal ofhazardous materials,2010,179(1):804-817.
    [96] Vogna D, Marotta R, Andreozzi R, Napolitano A, d’Ischia M. Kinetic andchemical assessment of the UV/H2O2treatment of antiepileptic drugcarbamazepine[J]. Chemosphere,2004,54(4):497–505.
    [97]张旋,王启山.高级氧化技术在废水处理中的应用[J].水处理技术,2009,35(3):18-22.
    [98]刘晶冰,燕磊,白文荣,等.高级氧化技术在水处理的研究进展[J].水处理技术,2011,37(3):11-17.
    [99]王绍温,陈胜,孙德智.物化法处理印染废水的研究进展[J].工业水处理,2010,30(1):8-12.
    [100]马放,段姝悦,孔祥震,等.微生物絮凝剂的研究现状及其发展趋势[J].中国给水排水,2012,28(2):14-17.
    [101]张本兰.新型高效无毒水处理剂—微生物絮凝剂的开发与应用[J].1996.
    [102]马放,刘俊良,李淑更,等.复合型微生物絮凝剂的开发[J].中国给水排水,2003,19(4):1-4.
    [103]张琼,李国斌,苏毅,等.水处理絮凝剂的应用研究进展[J].化工科技,2013,21(2):49-52.
    [104]王琴,杨劲峰,赵继红.微生物絮凝剂在废水处理中的应用研究[J].广州化工,2013,41(12):46-48.
    [105]施春阳,刘兵昌.微生物絮凝剂的研究和应用进展[J].污染防治技术,2013,26(3):48-51.
    [106] Butterfield C.T.. Studies of sewage purification. II. A zoogloea-formingbacterium isolated from activated sludge. Public Health Reports,1935,50:671-681.
    [107] Kurane R., Hatamochi K., Kakuno T., et al. Taniguchi Production of abioflocculant by Rhodococcus erythropolis S-l grown on alcohols. Bioscience,Biotechnology and Biochemistry,1994,58(2):428-429.
    [108] Lian B, Chen Y, Zhao J, et al. Microbial flocculation by Bacillusmucilaginosus: Applications and mechanisms[J]. Bioresource technology,2008,99(11):4825-4831.
    [109]国向云,郭亚兵. EM的富集培养及絮凝特性实验研究[J].南通职业大学学报,2004,18(2):79-82.
    [110]孙娜.降油及产絮凝剂的微生物菌群培养和废水处理特性研究[D].南昌:南昌大学学位论文,2007.
    [111]武春艳.降解HNS生产废水的复合型微生物絮凝剂产生菌筛选及应用研究[D].太原:中北大学学位论文,2011.
    [112]钟冬梅.固氮菌絮凝剂的研究[D].南宁:广西大学学位论文,2006.
    [113]余莉萍.高效微生物絮凝剂的开发与应用研究[D].广州:暨南大学学位论文,2003.
    [114]石璐,唐受印.高效微生物絮凝剂产生菌的筛选及培养条件研究[D].湘潭:湘潭大学学位论文,2003.
    [115]李博,赵敏,彭元举.高效微生物絮凝剂产生菌BJ-I的筛选鉴定及絮凝特性研究[J].佳木斯大学学报,2009,27(2):301-305.
    [116]张志强.复合菌群产微生物絮凝剂(MBF)的研究[D].南昌:南昌大学学位论文,2005.
    [117]高琦.菲律宾蛤仔黏附污泥制备生物絮凝剂及其应用研究[D].大连:大连交通大学学位论文,2008.
    [118]李强.放射状土壤杆菌M-503产生物絮凝剂的制备,纯化及应用研究[D].山东:山东大学学位论文,2005.
    [119]罗平. RL-2生物絮凝剂的研制及絮凝机理研究[D].重庆:重庆大学学位论文,2005.
    [120]苏峰.产微生物絮凝剂菌株的筛选及发酵条件的优化[D].济南:山东轻工业学院学位论文,2011.
    [121]刘珊.产絮凝剂菌种筛选及其在食品工业废水絮凝净化研究[D].长沙:湖南农业大学学位论文,2010.
    [122]杨劲峰,赵继红,徐冰倩.成团泛菌产微生物絮凝剂絮凝条件的优化[J].精细石油化工进展,2009,10(2):39-42.
    [123]杨劲峰.成团泛菌产微生物絮凝剂处理石料废水的研究[J].河北化工,2013,36(002):60-62.
    [124]刘泽群.低温复合产絮菌去除铁离子的试验研究[D].哈尔滨:黑龙江大学学位论文,2010.
    [125]王雪.生物絮凝剂混菌发酵条件优化及动力学分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:7-12.
    [126] Wang J N, Li A, Yang J X, Ma F, et al. Mycelial pellet as the biomass carrierfor semicontinuous production of bioflocculant[J]. RSC Advances,2013,2:18414-18423.
    [127] Elkady M F, Farag S, Zaki S, et al. Bacillus mojavensis strain32A, abioflocculant-producing bacterium isolated from an Egyptian salt productionpond[J]. Bioresource technology,2011,102(17):8143-8151.
    [128]黄惠莉,林文銮.印染废水脱色菌的选育及脱色研究[J].华侨大学学报,1997,18(3):293-296.
    [129]彭晓文,邱廷省,陈明.微生物絮凝剂L-3絮凝性能及废水处理研究[J].环境污染治理技术与设备,2004,5(7):35-38.
    [130]夏元东,周立萦,武鹏媲.制药废水絮凝过滤预处理试验研究[J].青岛建筑工程学院学报,2002,23(4):47-51.
    [131]崔建升,郭玉凤,耿艳楼.微生物絮凝剂处理含油废水[J].城市环境与城市生态,2004,17(3):33-34.
    [132]尹华,余莉萍,彭辉,等.微生物絮凝剂JMBF-2的结构和性质[J].中国给水排水,2003,19(1):1-4.
    [133]魏薇.生物复合型絮凝剂去除水中重金属离子的效能及机制研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2013:17-39.
    [134]王竞,周集体,宫小燕,等.细菌胞外高聚物对水溶性染料和Cr(Ⅵ)生物吸附研究[J].大连理工大学学报,2000,40(6):688-691.
    [135] Cunningham V L, Perino C, D’Aco V J, et al. Human health risk assessmentof carbamazepine in surface waters of North America and Europe[J].Regulatory toxicology and pharmacology,2010,56(3):343-351.
    [136] Bendz D, Paxeus N A, Ginn T R, et al. Occurrence and fate ofpharmaceutically active compounds in the environment, a case study: H jeRiver in Sweden[J]. Journal of Hazardous Materials,2005,122(3):195-204.
    [137] Bercu J P, Parke N J, Fiori J M, et al. Human health risk assessments for threeneuropharmaceutical compounds in surface waters[J]. Regulatory Toxicologyand Pharmacology,2008,50(3):420-427.
    [138]邹艳敏,吴向阳,仰榴青.水环境中药品和个人护理用品污染现状及研究进展[J].环境监测管理与技术,2010(6):14-19.
    [139] Eckstein G, Sherk G. Alternative strategies for managing pharmaceutical andpersonal care products in water resources[J]. Texas Tech University Center forWater Law&Policy,2011.
    [140]杨红莲,袭著革,闫峻,等.新型污染物的生态效应和潜在健康影响研究进展[C].中国毒理学会环境与生态毒理学专业委员会成立大会会议论文集.2008.
    [141] Marco-Urrea E, Jelena R, Gloria C, Mira P, Teresa V, Damià B. Oxidation ofatenolol, propranolol, carbamazepine and clo bric acid by a biologicalFenton-like system mediated by the white-rot fungus Trametes versicolor[J].Water Res.,2010,44:521-532.
    [142] Kim I, Tanaka H. Photodegradation characteristics of PPCPs in water withUV treatment[J]. Environment international,2009,35(5):793-802.
    [143] Miège C, Choubert J M, Ribeiro L, et al. Removal efficiency ofpharmaceuticals and personal care products with varying wastewatertreatment processes and operating conditions--Conception of a database andfirst results[J]. Water Science and Technology,2008,57(1):49-56.
    [144] Karnjanapiboonwong A, Suski J G, Shah A A, et al. Occurrence of PPCPs at awastewater treatment plant and in soil and groundwater at a land applicationsite[J]. Water, Air&Soil Pollution,2011,216(1-4):257-273.
    [145] Wang X K, Zhu Y, Zou Y N. A survey of the degradation and transformationof PPCPs in the sluge of sewage treatment plant[J]. Shandong Kexue-Shandong Science,2013,26(1):93-96.
    [146]朱虹.菌丝球形成过程及其影响因素的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:36-39.
    [147]王薇.絮凝菌的产絮特性及生物絮凝剂的初步分离提纯研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005:23-28.
    [148]朱艳彬,冯旻,杨基先,等.复合型生物絮凝剂产生菌筛选及絮凝机理[J].哈尔滨工业大学学报,2004,36(6):759-762.
    [149]李建武,萧能,余瑞元,等合编.生物化学实验原理和方法.第一版.北京大学出版社,1997:125-130,150-155,174-176.
    [150]马放,张金凤,远立江,等.复合型生物絮凝剂成分分析及其絮凝机理的研究[J].环境科学学报,2005,25(11):1491-1496.
    [151]张惟杰.糖复合物生化研究技术.浙江大学出版社,1999:112-117,193~200.
    [152] Behbahani M, Najafi F, Bagheri S, et al. Application of surfactant assisteddispersive liquid–liquid microextraction as an efficient sample treatmenttechnique for preconcentration and trace detection of zonisamide andcarbamazepine in urine and plasma samples[J]. Journal of Chromatography A,2013,1308(20):25-31.
    [153] Li Y, Han J, Yan Y, et al. Simultaneous extraction and determination ofsulfadiazine and sulfamethoxazole in water samples and aquaculture productsusing [Bmim] BF4/(NH4)3C6H5O7aqueous two-phase system coupled withHPLC[J]. Journal of the Iranian Chemical Society,2013,10(2):339-346.
    [154] Lima D L D, Silva C P, Otero M, et al. Low cost methodology for estrogensmonitoring in water samples using dispersive liquid–liquid microextractionand HPLC with fluorescence detection[J]. Talanta,2013,115:980-985.
    [155]王明洁,吴小丽,袁建,等.小麦粉水分的吸附与解吸特性[J].食品科学,2012,33(19):45.
    [156]易平贵,俞庆森,商志才,等.氧氟沙星与牛血清白蛋白相互作用机制[J].药学学报,2000,35(10):774-777.
    [157]谭颖嫦,廖美德,秦鹏,等. CHU-R菌株产虾青素的发酵工艺研究[J].现代食品科技,2012,28(3):289-291.
    [158]熊丽娟,杨朝晖,曾光明,等.培养基中磷酸盐在GA1所产絮凝剂絮凝中的作用研究[J].环境科学学报,2007,27(7):1157-1162.
    [159] Stockert C M, Bisson L F, Adams D O, et al. Nitrogen Status andFermentation Dynamics for Merlot on Two Rootstocks[J]. American Journalof Enology and Viticulture,2013,64(2):195-202.
    [160]侯宁,李大鹏,马放,等.生物破乳剂产生菌XH-1的发酵动力学[J].江苏大学学报(自然科学版),2013,34(4):455-459.
    [161] Cremer J, Melbinger A, Frey E. Growth dynamics and the evolution ofcooperation in microbial populations[J]. Scientific reports,2012,2.
    [162] Bengtson P, Sterngren A E, Rousk J. Archaeal abundance across a pH gradientin an arable soil and its relationship to bacterial and fungal growth rates[J].Applied and environmental microbiology,2012,78(16):5906-5911.
    [163] Djuki-Vukovi A P, Mojovi L V, Vuka inovi-Sekuli M S, et al. Effect ofdifferent fermentation parameters on L-lactic acid production from liquiddistillery stillage[J]. Food chemistry,2012,134(2):1038-1043.
    [164] Papagianni M. Effects of dissolved oxygen and pH levels on weissellin Aproduction by Weissella paramesenteroides DX in fermentation[J].Bioprocess and biosystems engineering,2012,35(6):1035-1041.
    [165] Souza C J A, Costa D A, Rodrigues M Q R B, et al. The influence ofpresaccharification, fermentation temperature and yeast strain on ethanolproduction from sugarcane bagasse[J]. Bioresource technology,2012,109:63-69.
    [166]罗龙海.微生物絮凝剂的研究及在水处理领域的应用[J].广东化工,2012,39(2):107-108.
    [167]施春阳,刘兵昌.微生物絮凝剂的研究和应用进展[J].污染防治技术,2013,26(3):48-51.
    [168] Beale D J, Porter N A, Roddick F A. The interaction between natural organicmatter in raw waters and pesticide residues: a three dimensionalexcitation–emission matrix (3DEEM) fluorescence investigation[J]. WaterScience&Technology,2013,67(11):2428-2436.
    [169]欧阳二明,张锡辉,王伟.城市水体有机污染类型的三维荧光光谱分析法[J].水资源保护,2007,23(3):56-59.
    [170]马宇熙,王晨,冯炘,等.利用秸秆微生物产絮凝剂的提取及性质分析[J].环境科学与技术,2012,10:027.
    [171]王薇.产絮菌合成生物絮凝剂特性及絮凝成分解析[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:69-77
    [172]王丽丽.复合型生物絮凝剂的结构和絮凝特性分析及去除重金属离子的研究[D].哈尔滨:哈尔滨工业大学工学博士学位论文,2011:49-50
    [173] Nisius L, Grzesiek S. Key stabilizing elements of protein structure identifiedthrough pressure and temperature perturbation of its hydrogen bondnetwork[J]. Nature Chemistry,2012,4(9):711-717.
    [174]张建平,赵林,谭欣.水分子团簇结构的改变及其生物效应[J].化学通报,2004,4:278-283.
    [175] Li H, Du Y, Wu X, et al. Effect of molecular weight and degree of substitutionof quaternary chitosan on its adsorption and flocculation properties forpotential retention-aids in alkaline papermaking[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,242(1):1-8.
    [176]曹文仲,钟宏,田伟威,等.赤泥矿物表面电性与高分子官能团选择絮凝[J].有色金属,2006,58(1):72-74.
    [177]史江红.雌激素在污水处理系统中浓度分布及其去除效果研究进展[J].给水排水,2013,39(7):1-3.
    [178] Wi niewska M, Terpi owski K, Chibowski S, et al. Effect of solution pH onthe stability of mixed silica-alumina suspension in the presence of polyacrylicacid (PAA) with different molecular weights[J]. Central European Journal ofChemistry,2013,11(1):101-110.
    [179]常青.水处理絮凝学[M].化学工业出版社,2005:10-55
    [180]吴丹.高效生物絮凝剂产生菌的特性及发酵过程的优化[D].哈尔滨:哈尔滨工业大学硕士学位论文,2012:1-2.
    [181] Tr uble H. The movement of molecules across lipid membranes: a moleculartheory [J]. The Journal of Membrane Biology,1971,4(1):193-208.
    [182]金鹏康,王晓昌.天然有机物的混凝特性研究[J].西安建筑科技大学学报,2000,32(2):155-159.
    [183]金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J].环境科学学报,2001,21(S1):23-29.
    [184]朱洪光,王旦一.混凝预处理厌氧发酵液对超滤膜通量的影响[J].农业机械学报,2012,43(4):93-99.
    [185]侯吉瑞,刘中春,张淑芬,等.碱对聚丙烯酰胺的分子形态及其流变性的影响[J].物理化学学报,2003,19(3):256-259.
    [186]于海波.微生物絮凝剂用于废水处理的研究及其应用[J].山西建筑,2011,37(11):127-128.
    [187]毛艳丽,张延风,罗世田,等.水处理用絮凝剂絮凝机理及研究进展[J].华中科技大学学报:城市科学版,2008,25(2):78-82.
    [188]唐婉莹,翟宇峰.聚合氯化铝絮凝机理探讨[J].南京理工大学学报:自然科学版,1997,21(4):325-328.
    [189]朱仕耀,王小英,刘派,等.不同类别聚丙烯酰胺的作用原理及其助留助滤性能[J].造纸科学与技术,2012,31(4):44-48.
    [190]王兰,唐静,赵璇.微生物絮凝剂絮凝机理的研究方法[J].环境工程学报,2011,5(3).
    [191]盛楠.破碎絮体的再絮凝技术研究[D].武汉:武汉理工大学硕士学位论文,2012.
    [192] Ray D T, Hogg R. Agglomerate breakage in polymer-flocculatedsuspensions[J]. Journal of colloid and interface science,1987,116(1):256-268.
    [193]薄晓文.微生物絮凝剂与铝盐混凝剂复配在水和废水处理中的应用研究[D].山东:山东大学硕士学位论文,2012.
    [194] Cheng Q Y, Xue G, Zhang L L. Enhanced Process in Conventional WaterTreatment System for Removal of Carbamazepine[J]. Environmental Science&Technology,2011,7:010.
    [195] Hogg R. Flocculation and dewatering[J]. International Journal of MineralProcessing,2000,58(1):223-236.
    [196] Zhao Y X, Gao B Y, Shon H K, et al. Floc characteristics of titaniumtetrachloride (TiCl4) compared with aluminum and iron salts in humicacid–kaolin synthetic water treatment[J]. Separation and PurificationTechnology,2011,81(3):332-338.
    [197] Li W W, Zhou W Z, Zhang Y Z, et al. Flocculation behavior and mechanismof an exopolysaccharide from the deep-sea psychrophilic bacteriumPseudoalteromonas sp. SM9913[J]. Bioresource technology,2008,99(15):6893-6899.
    [198] Zhang Z, Xia S, Zhao J, et al. Characterization and flocculation mechanism ofhigh efficiency microbial flocculant TJ-F1from Proteus mirabilis [J].Colloids and Surfaces B: Biointerfaces,2010,75(1):247-251.
    [199]王晓敏,王亮,李风亭,等.混凝剂对胶体电动电位的影响研究[J].工业安全与环保,2006,32(2):7-9.
    [200]何宁,李清彪.生物絮凝剂的最新研究进展及其应用[J].2005,(2):104-108
    [201]陈兴莉.离子及高温高压对溶液体系的影响[D].合肥:合肥工业大学硕士学位论文,2010.
    [202]张裕卿,付二红,梁江华.超声波对木质纤维素糖化过程影响的研究[J].中国生物工程杂志,2007,27(9):81-84.
    [203]李伟伟.深海适冷菌Pseudoalter sp. SM9913胞外多糖的絮凝和吸附性能研究[D].济南:山东大学硕士学位论文,2008.
    [204]陈英辉,赵永波. P-糖蛋白在多药耐药的K562细胞转运苯妥英纳与卡马西平中的作用[J].生物化学与生物物理进展,2008,35(12):1425-1429.
    [205]邹汉法,汪海林,张玉奎,等.微渗析取样高效液相色谱法测定药物与蛋白质的相互作用[J].抚顺石油学院学报,1996,16(3).1
    [206] Munagapati V S, Yarramuthi V, Nadavala S K, et al. Biosorption of Cu(II),Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibriumand thermodynamics[J]. Chemical Engineering Journal,157(2-3):357-365.
    [207] Ho Y S, McKay G. Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34(5):451-465.
    [208] Bilgili M S. Adsorption of4-chlorophenol from aqueous solutions by xad-4resin: Isotherm, kinetic, and thermodynamic analysis[J]. Journal of hazardousmaterials,2006,137(1):157-164.
    [209] Aydin Y A, Aksoy N D. Adsorption of chromium on chitosan: Optimization,kinetics and thermodynamics[J]. Chemical Engineering Journal,2009,151(1):188-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700