非木材植物无胶碎料板喷蒸热压工艺及胶合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国竹材及农作物秸秆等非木材植物资源丰富,充分利用这些资源可以提高非木材植物资源的附加值,提高农业资源的利用效率,有利于增加农民收入,有利于发展农村循环经济以及实现社会经济可持续发展。同时,还可以解决长期以来农作物秸秆焚烧所带来的环境污染问题,有利于改善人类生存环境。竹材及农作物秸秆的主要成分为木质素、纤维素和半纤维素以及一些灰份杂质,其主要化学组份及结构与木材组份类似,可用于无胶人造板生产。喷蒸热压是一种高效人造板热压工艺,喷蒸热压过程中板坯承受水热协同作用,可以大大缩短人造板热压周期,提高无胶人造板力学强度,显著改善无胶人造板尺寸稳定性。
     本文分析了苎麻秆、烟秆及竹材制备无胶碎料板的可行性,并通过喷蒸热压工艺分别制备苎麻秆无胶碎料板、烟秆无胶碎料板及竹材加工剩余物无胶碎料板,研究了无胶碎料板密度、喷蒸蒸汽压力及喷蒸时间对无胶碎料板静曲强度、弹性模量、内结合强度以及吸水厚度膨胀率等物理力学性能的影响。研究表明:
     (1)密度对三种无胶碎料板的静曲强度、弹性模量、内结合强度和吸水厚度膨胀率影响显著,随着三种无胶碎料板密度的增大,其静曲强度、弹性模量、内结合强度都明显增加,吸水厚度膨胀率均先增大后减小。
     (2)蒸汽压力为1.0MPa时,喷蒸时间对无胶板静曲强度和内结合强度影响显著,随着喷蒸时间的增加无胶板静曲强度和内结合强度值均先增大后减小;蒸汽压力为0.6MPa时,喷蒸时间对无胶板静曲强度和内结合强度影响不明显;蒸汽压力为1.0MPa和0.6MPa时,喷蒸时间对无胶板弹性模量影响显著,随着喷蒸时间的增加三种无胶板弹性模量值均增大:蒸汽压力为1.0MPa、喷蒸时间为7min和l0min时三种无胶板静曲强度、弹性模量、内结合强度值均相对较高;蒸汽压力为1.0MPa和0.6MPa时,喷蒸时间对三种无胶板吸水厚度膨胀率影响较显著,随着喷蒸时间的增加,三种无胶碎料板吸水厚度膨胀率降低;利用喷蒸热压工艺制备的三种无胶碎料板吸水厚度膨胀率值均高于GB/T4897.2-2003标准和日本JIS A5908标准。
     (3)在同一密度(0.8g/cm3)条件下,喷蒸热压工艺制备的三种无胶碎料板的静曲强度、弹性模量和内结合强度明显高于普通热压工艺制备的无胶碎料板,吸水厚度膨胀率明显低于普通热压工艺制备的无胶碎料板。(4)三种无胶碎料板喷蒸热压优化工艺:密度为0.8g/cm3,蒸汽压力1.0MPa,喷蒸时间为7min。
     分别采用化学成分分析、高效液相色谱(HPLC)分析、比表面积分析、红外光谱(FTIR)分析、X射线光电子能谱(XPS)、固体核磁共振分析(CP/MAS13C-NMR)、X射线衍射(XRD)分析及热重分析(TG)等手段,分析了普通热压和喷蒸热压前后的三种无胶碎料板化学成分、界面官能团以及纤维素结晶度等的变化,揭示了三种无胶碎料板的无胶胶合机理。研究表明,喷蒸热压过程中水热协同作用使板坯内部发生了更剧烈的化学变化,板坯内部产生了更多的自胶合物质:
     化学成分分析表明,喷蒸热压后竹材、苎麻秆和烟秆碎料的热水抽提物、苯醇抽提物和木素含量显著增加,半纤维素、综纤维素及a-纤维素含量均明显降低。喷蒸热压过程中碎料的半纤维素和少量低聚合度的纤维素降解为单糖和低聚糖,同时半纤维素和少量低聚合度的纤维素降解产物均能发生脱水反应,生成糠醛、糠醇等有机化合物,木质素及其降解产物(含多酚类物质)可与上述糠醛类化合物发生反应形成类似于酚醛树脂胶的“木质素胶”。
     高效液相色谱分析结果表明,半纤维素在水热共同作用下可以发生水解,生成低聚多糖和单糖,部分低聚多糖和单糖脱下的羧基可以形成甲酸和乙酸等有机酸,水解产物中的单糖部分脱水后还可以转化成糠醛。生成的有机酸可以进一步促进半纤维素水解,实现半纤维素自生酸催化水解反应。喷蒸热压过程中水、热协同作用更剧烈,半纤维素发生了更大程度的降解,产生了更多的游离糖、有机酸和糠醛等水解产物。
     快速比表面积及孔隙分析结果表明,竹材、苎麻秆和烟秆的喷蒸热压板碎料热水抽提物残渣形成更多微小孔隙,微小孔隙相互连通成较大的孔隙,形成了更多的中孔和大孔孔隙,比表面积变得最大,说明喷蒸热压过程半纤维素降解程度更大,产生了更多的可溶于热水的低分子化合物。
     傅里叶红外光谱分析结果表明,喷蒸热压工艺使竹材、苎麻秆和烟秆碎料中的活性—OH数量明显增加,氢键缔合-OH的数目增加;喷蒸热压过程中的水热协同作用使半纤维素发生更大程度的水解,一方面,降解产物产生聚合反应生成了糠醛均聚物——缩聚呋喃树脂,另一方面,降解产物中的糠醛类化合物与具有酚羟基结构的木素发生缩聚反应,形成具有胶粘作用的类似于酚醛树脂的缩合物。
     X射线光电子能谱分析结果表明,喷蒸热压过程中的水热协同作用使部分半纤维素及少量纤维素更易发生降解反应,生成单糖和低聚糖等降解产物,降解产物可能进一步脱水生成糠醛类化合物,糠醛类化合物又和木质素反应生成类似于胶粘剂的树脂聚合物;与热压前原料相比,喷蒸热压板的碎料中含有羟基(—OH)的纤维素和半纤维素含量显著减小,含有羰基(C=O)的半纤维素以及木质素成分含量变化较小,含有酯基或羧基(—O—C=O)的半纤维素以及抽提物成分显著增加。
     固体核磁共振分析结果表明,竹材、苎麻秆和烟秆3种材料的热压前碎料、普通热压板碎料及喷蒸热压板碎料的纤维素C1以及木素的C3、C4、C5峰高相差不大,说明热压过程对样品的纤维素和木素影响较小;喷蒸热压过程中半纤维素降解速度加剧,使得半纤维素的相对量减少。与热压前碎料相比,喷蒸热压板碎料谱图中21、172附近的半纤维素中乙酰基C—C及72附近的半纤维素的C2、C3、C5特征峰峰高明显减弱,峰顶渐趋平缓。X射线衍射分析结果表明,喷蒸热压过程中水、热共同作用比普通热压作用更剧烈,水、热协同作用更突出,半纤维素水解程度更大,导致非结晶区得到抽提、结晶区表面微纤丝及非结晶区微纤丝的羟基裸露,其间形成氢键而使非结晶区重结晶,纤维的相对结晶度增加。
     热重分析结果表明,竹材、苎麻秆和烟秆的3个样品的第一失重阶段和第三失重阶段的失重曲线变化趋势均基本相似,但第二失重阶段的失重曲线明显不同。与热压前碎料相比,喷蒸热压样品进入第二阶段的热解温度明显相对前移,TG曲线斜率更大,说明喷蒸热压过程中剧烈的水热协同作用使样品中更多的半纤维素和纤维素产生降解,生成了更多的易于热解的低分子量的糖类等低分子量碳水化合物;喷蒸热压样品的第二阶段失重率均最小,说明喷蒸热压过程中半纤维素热解产生的糠醛等与木素发生反应,生成了更多的热解温度更高的胶粘成分。
     非木材植物无胶碎料板喷蒸热压成型机理可能是:
     (1)水、热协同作用使纤维素分子的活性羟基数量增加,活性羟基中的氢原子除以主价键与氧原子联结外,还与相邻纤维素分子羟基中负电性较强的氢原子以负价键联结成氢键O.H…H。
     (2)半纤维降解产物——糠醛的树脂化,即半纤维素的木聚糖水解生成糠醛,糠醛可以发生自动氧化和催化氧化反应生成糠酸。在糠酸的催化作用下糠醛可以生成糠醇,糠醇在甲酸、乙酸等有机酸催化作用下可以进行缩聚反应生成有助于碎料板自胶合的成分缩聚呋喃树脂。
     (3)木聚糖水解生成糠醛类化合物以及纤维水解生产的5-羟甲基-2-糠醛在高温及催化作用下与具有酚羟基结构的木素发生缩聚反应,形成具有类似于酚醛树脂的缩合物。
     (4)喷蒸热压过程中水、热作用剧烈,板坯内部温度分布更均匀,碎料中的木质素被流展并部分均匀分布在碎料颗粒间,起到了胶粘剂的作用。另外,木质素受水、热作用部分发生降解,生成木质素碎片。这些碎片存在因活化而与木质素发生缩合反应的可能。喷蒸热压过程半纤维素等容易降解的碳水化合物降解后,而使被活化降解的木质素暴露在外面,有利于木质素进行缩合反应而产生交联,在碎料间起到胶粘作用。
Non-wood plant resources such as bamboo and crop straw have its huge storage in China, the added value of non-wood plant resources and the use efficiency of agricultural resources was improved by making full use of those resources, in this way, the peasants' income was increased, meanwhile, environmental pollution problem caused by crop straw burning can be solved, human living environment was improved. The main component of bamboo and crop straw were lignin, cellulose, hemicellulose and some ash contents, the chemistry component and structure of those non-wood plant resources is similar to timber, those non-wood plant resource can be used in the production of binderless wood based panel. Steam-injection pressing is a kind of high efficient hot pressing process, in the process of which hot pressing cycle was shortened obviously, the mechanical strength and dimensional stability of binderless wood based panel was improved by the effect of hydrothermal synergistic.
     This paper analyze the preparation feasibility of binderless particleboard with ramie, tabacco stem and bamboo, the binderless particleboard of ramie, tabacco stem and bamboo were prepared by steam-injection pressing process respectively. The effect on static bending strength, elastic modulus, internal bond strength and thickness swelling of binderless particleboard made by board density, steam pressure and steam injection time were studied. The research has showed that:
     (1) the effect made by density on the four physical and mechanical properties is obvious, with the density of three different board increased, static bending strength, elastic modulus and internal bond strength were increased obviously, but thickness swelling was firstly increased and then decreased;
     (2) when the steam pressure is1.0Mpa, the effect on static bending strength and internal bond strength made by steam injection time was obvious, with the steam injection time increased, the static bending strength and internal bond strength was firstly increased and then decreased; when the steam pressure is0.6Mpa, the effect on static bending strength and internal bond strength made by steam injection time was not obvious, when the steam pressure is1.0Mpa or0.6Mpa, the effect on elastic modulus made by steam injection time was obvious, with the steam injection time increased, the elastic modulus of the three different board were increased; when the steam pressure is1.0Mpa and the steam injection time is7min or10min, the elastic modulus, static bending strength and internal bond strength value of the three different board were relatively high; when the steam pressure is1.OMpa or0.6Mpa, the effect on thickness swelling of the three different board made by steam injection time is relatively obvious, with the steam injection time increased, the thickness swelling was decreased; the thickness swelling of the three different binderless particleboard which is prepared by steam injection pressing process meet the standard of GB/T4897.2-2003AND JISA5908;
     (3) the static bending strength, elastic modulus and internal bond strength of the three different binderless particleboard prepared by steam injection pressing process is obviously higher than that of ordinary hot pressing process. But the thickness swelling is obviously lower than that of ordinary hot pressing under the some condition that the density is0.8g/cm3.
     The chemical constituents, interface functional groups and cellulose crystallinity variation of the three different binderless particleboard were analyzed by the method of HPLC, FTIR, XPS, CP/MAS13C-NMR, XRD, TG, specific surface area and chemical constituents, non-adhesive bonding mechanisms of the three different binderless particleboard were revealed. The study has showed that there are intense chemical changes in the inner slab by the synergistic effect of hydrothermal in the process of steam injection pressing, the self-adhesive materials were produced in the inner slab:the chemical constituent analysis has showed that the hot water, alcohol benzene extract and lignin content of bamboo, ramie, tabacco stem was obviously increased, the content of hemicellulose, holocellulose and a-cellulose were obviously decreased after steam injection pressing, hemicellulose and some cellulose with low polymerization degree were degraded into monosaccharide and oligosaccharide, meanwhile, the dehydration reaction of degradation products from hemicellulose and a few low polymerization degree cellulose produced furfural and furfuryl alcohol which can react with lignin and its degradation products and produce " lignin-adhesive" which is similar to phenol formaldehyde resin adhesive (PF); the analysis results of HPLC has showed that the hydrolysis of hemicellulose under the synergistic effect of hydrothermal produced oligosaccharides and monosaccharide. The carboxyl from the decarboxylation reaction of oligosaccharides and monosaccharide produced organic acids such as formic acid and acetic acid, the dehydration of partial monosaccharide was converted to furfural. Those organic acids promoted the hydrolysis of hemicellulose and made the hemicellulose hydrolyzed by its own acids. In the process of steam injection pressing, the hydrolysis effect of was more intense, hemicellulose was degraded in a more great extent, which produced more free sugars, organic acids and furfural. The analysis results of specific surface and pore have showed that the hot water extract' residue from the three different materials after steam injection pressing formed more micro pore, which formed more mesopore and macropore by linking together and made the specific surface greatest, the degradation of hemicellulose in the process of steam injection pressing produced more low molecular weight compounds which is soluble in hot water. The analysis results of FTIR have showed that the amount of active hydroxyl in the three different particles was increased obviously by steam injection pressing; the synergistic effect of hydrothermal made hemicellulose hydrolyzed in a more great extent, the polymerization of degradation products produced furfural homopolymer. The analysis results of XPS have showed that the synergistic effect of hydrothermal made partial hemicellulose and a few cellulose degraded more easily, the degradation produced monosaccharide and oligosaccharide, those degradation products was dehydrated and produced furfural compounds, those furfural compounds reacted with lignin and produced a resin polymer which is similar to adhesive; compared to the materials before hot pressing, the content of hemicellulose and cellulose which have hydroxyl in its surface was decreased obviously, the content of hemicellulose and lignin which have carboxyl was hardly changed, the content of hemicellulose and extract which have ester group and carboxyl was increased obviously. The analysis results of CP/MAS13C-NMR have showed that the C1peak of cellulose and the C3, C4, C5peak of lignin from the raw materials, ordinary hot pressing materials and steam injection pressing materials was nearly the same, which showed that hot pressing has a little effect on cellulose and lignin; the degradation speed of hemicellulose was accelerated in the process of steam injection pressing, which made the relative content of hemicelloluse was decreased. Compared to the materials before hot pressing, in the spectra of materials after steam injection pressing, the characteristic peak height of acetyl from hemocellulose near21,72and C2, C3, C5from hemicellulose near72were decreased obviously, the peak tend to gentle. The analysis results of XRD have showed that the synergistic effect of hydrothermal in the process of steam injection pressing was more intense than that of ordinary hot pressing, the hemicellulose was hydrolyzed in a more great extent than that of ordinary hot pressing, which made the non-crystalline region extracted and made the microfibril'hydroxy of crystalline region surface and non-crystalline region exposed, those exposed hydroxy formed hydrogen bond which made non-crystalline region recrystallized, the relative crystallinity of fibers was increased. The analysis results of TG have showed that the TG curve changing trend of the first weight loss stage for the three different materials and that of the third weight loss stage was nearly the same, but the second weight loss stage of TG curve was obviously different. Compared to the materials before hot pressing, the pyrolysis temperature of the second weight loss stage in the process of steam injection pressing moved forward relatively, the slope of TG curve was bigger, which showed that the synergistic effect of hydrothermal in the process of steam injection pressing made more hemicellulose and cellulose degraded and produced some low molecular weight carbohydrate such as low molecular weight sugar which is easy to pyrolysis; the weight loss rate of samples in the third stage was minimum, which explained that in the process of steam injection pressing the furfural from hemicellulose'pyrolysis reacted with lignin and produced some components for adhesion which have higher pyrolysis temperature.
     The possible mechanism for steam injection molding of non-wood plants binderless particleboard was that:(1) the synergistic effect of hydrothermal made the amount of hydroxyl increased, the hydrogen atom from active hydroxyl combined oxygen atom with its main valence chemical bond and combined the hydrogen atom from near cellulose molecule'hydroxyl which have strong electronegativity with negative-valence chemical bond by forming hydrogen bond (O-H…H).(2)the resinification of furfural which is the degradation product of hemicellulose, furfural can produce furfuryl alcohol with the catalysis of furoic acid, the polycondensation of furfuryl alcohol, with the catalysis of organic acids such as formic acid and acetic acid, can produce condensation furan resins which is helpful to self-adhesion for particle board;(3) under the condition of high temperature and catalysis, the polycondensation between furfural compounds from the hydrolysis of xylan,5-hydroxymethyl-2-furfural from the hydrolysis of fibers and lignin which has phenolic hydroxyl produced a kind of condensation polymer which is similar to phenolic resin;(4) the degradation of partial lignin can produce lignin debris under the effect of hydrothermal. There is chance for the polycondensation between those activated debris and lignin. The degradation of carbohydrate such as hemicellulose made the degraded and activated lignin exposed, which is helpful to the polycondensation of lignin and have the effect of adhesion among those debris.
引文
[1]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2006,(1):2-8.
    [2]姜喜山.国家木材供给安全保障对策的研究[J].北京林业大学学报(社会科学版),2011,10(2):51-53
    [3]贾治邦.中国森林资源报告—第七次全国森林资源清查[R].北京:中国林业出版社,2009.
    [4]缪东玲.2010年森林资源及其木材供给能力的国际比较分析[J].林业经济,2010,(12):82-88.
    [5]韩建.我国竹材人造板发展回顾与展望[J].木材工业2006,20(2:)52-55
    [6]于文吉,王天佑.我国非木材人造板的原料、市场和发展方向[J].2005,(2):12-14
    [7]刘瑞伟.我国农作物秸秆利用现状及对策[J].农业与科技,2009,29(1):7-9.
    [8]石磊,赵由才,柴晓利.我国生物质秸秆的综合利用技术进展[J].中国沼气,2005,23(2):11-14.
    [9]王欣,周定国.农作物秸秆化学成分对人造板工艺的影响[J].林产工业,2009,36(5):26-29.
    [10]王丽宏,张立峰.农作物秸秆资源的开发利用[J].河北农业大学学报,2003,26:31-33.
    [11]刘巽浩.秸秆还田的机理与技术模式[M].北京:中国农业出版社,2001.
    [12]曾木祥,张玉洁.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997(1):1-7.
    [13]周定国,梅长彤.而向21世纪的农作物秸秆材料工业[J].2000,24(5):1-4.
    [14]吕江南,贺德意,王朝云等.全国麻类生产调查报告.中国麻业,2004,26(2):95-101
    [15]吕江南,贺德意,王朝云等.全国麻类生产调查报告(Ⅱ).中国麻业,2004,26(3):145-149
    [16]吕江南,贺德意,王朝云等.全国麻类生产调查报告(Ⅲ).中国麻业,2004,26(4):194-197
    [17]吕江南,贺德意,王朝云等.全国麻类生产调查报告(Ⅳ).中国麻业,2004,26(5):245-250
    [18]吕江南,贺德意,王朝云等.全国麻类生产调查报告(Ⅴ).中国麻业,2004,26(6):296-301
    [19]吕江南,贺德意,王朝云等.全国麻类生产调查报告(Ⅵ).中国麻业,2005,27(1):41-48
    [20]梁虎南,刘秉钺.烟秆制碱性过氧化氢机械浆[J].黑龙江造纸,3002,(3):5-7
    [21]李晓薇,李光沛.烟秆工业利用的新用途[J].农牧产品开发,1999,(4):30-31
    [22]张承龙.烟秆的资源化利用技术现状及其前景[J].再生资源研究,2002,(1):38-40
    [23]张树彬,王圣滔,韩贺麟等.利用农作物秸秆制人造板的发展前景[J].农业机械学报,2000,(2):122-123.
    [24]王宝山,周景宇.对农作物秸秆综合利用发展方向的探索[J].农业机械,2009,9:75-76.
    [25]曹建峰.秸秆的综合利用技术分析[J].能源研究与信息.2006,22(1):22-25.
    [26]刘丽香,吴承祯,洪伟等.农作物秸秆综合利用的进展[J].亚热带农业研究,2006,2(1):75-80.
    [27]李应中.农牧结合与中国农业的持续发展[J].中国农业资源与区划,1995(4):1-5.
    [28]曾木祥.制定秸杆直接还田技术规程的研究[J].土壤肥料,1995(4):8-13.
    [29]尚大军.我国秸秆人造板工业若干问题之我见[J].中国人造板,2007,4:6-9
    [30]蒋远舟,向仕龙.非木材人造板[M].北京:中国林业出版社,1989
    [31]Jim L Bowyer, Vo ker E Stockman. Agricultural residues—an exciting bio-based raw material for the global panels industry[J]. Forest Products Journal.2001,51(1):10-21
    [32]Arnold L. Making insulating board from cornstalks. Cellulose,1930, (1):272-275
    [33]王戈,余雁.国内外麦秸板的研究、生产及发展[J].世界林业研究,2002,15(1):36-42
    [34]恩斯特.伯林克曼.以一年生植物作为生产刨花板的原料[J].木材工业,1990,4(3):40-45
    [35]易平,唐召群.国外农作物秸秆人造板工业化生产发展近况[J].人造板通讯,2001,11:9-18
    [36]向仕龙,蒋远舟.非木材植物人造板[M].北京:中国林业出版社,2001
    [37]Roger M, Rowell. Composites from agri-based resources. In Proceedings of Use of Recycled Wood and Paper in Building Applications. Proceeding No.7286, Forest Product Society, Madison, Wis,1996:217-222
    [38]RussellC, W illiam. The straw resource—A new fiber basket. In Proceedings 30th international particleboard composite materials sympo sium. W. S. U, Pullman, Washington, USA,1996: 183-190.
    [39]陈琳,沈文星,周定国.我国秸秆人造板工业的发展现状与对策[J].福建林业科技.2006,33(3):166-168
    [40]刘瑛,李选才等.麻类作物副产品的综合利用现状[J].江西棉化,2003,25(1):3-7
    [41]郑风山,马心.农作物秸秆板工业在国内外的发展近况[J].林产工业.2003,30(6):3-6
    [42]Lawther JM, Sun R, Banks WB (1996) Effect of steam treatmenton the chemical composition of wheat straw. Holzforschung50:365-371
    [43]Shen KC (1991) Method of making composite products from lignocellulosic materials. United States Patent 5017319
    [44]Velasquez JA, Ferrando F, Farriol X, Salvado J (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood SciTechnol 37:269-278
    [45]Suchsland O, Woodson GE, McMillin CW (1987) Effect of cooking conditions on fiber bonding in dry-formed binderless hardboard.Forest Prod. J 37:65-69
    [46]Matsumoto J, Harada S, Kajita H (1999) Proceedings of the techno trend. The Adhesion Society of Japan, October, pp 30-37
    [47]Sekino N, Inoue M, Irle M, Adcock T (1999) The mechanism behind the improved dimensional stability of particleboards made from steam-pretreatment particles. Holzforschung 53:435-440
    [48]Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis. Ind Crop Prod.2003,18:17-23
    [49]李坚著.木质材料的界面特性与无胶胶合技术.哈尔滨:东北林业大学出版社,1989
    [50]李坚.无胶锻木胶合板.林产工业,1987(1):7-10
    [51]李坚.无胶湿法中密度纤维板.林产工业,1988(4):35-38
    [52]李坚.木质材料的无胶胶合技术——浅析影响无胶制板力学强度的因子[J].林产工业, 1986(4):4-6.
    [53]张贵麟,徐咏兰,刘鹏飞.无胶杨木中密度纤维板丁艺和结合机理的初步研究[J].木材工业,1990(3):2-9
    [54]何东亮.技术改造型干法无胶木纤维纤维板的特点和差异[J].建筑人造板,1997(4):26-29.
    [55]沈隽,胡国民等.高温蒸气处理制造“自胶结”人造板技术的研究与发展[J].东北林业大学学报,2000,7(4):64-68
    [56]徐朴等.无胶薄型中密度纤维板工业化生产技术[J].林产工业,1997(2):34-45.
    [57]何东亮.干法无胶木纤维纤维板生产工艺与产品性能特点浅析[J].木材工业,1998(2):37-38.
    [58]曹忠荣.人造板生产技术的突破—无胶制板研制成功[J].林产工业.1985(5):33-34.
    [59]曹忠荣,阎昊鹏,郭文莉.干法无胶木纤维纤维板粘合机理的研究Ⅱ.干法无胶木纤维纤维板的红外光谱分析[J].木材工业,1996(5):3-6
    [60]曹忠荣,郭文莉,阎吴鹏.干法无胶木纤维纤维板粘合机理的研究Ⅲ.木材主要化学成分的影响[J].木材工业,1996(6):3-5
    [61]阎吴鹏,曹忠荣,郭文莉.干法无胶木纤维纤维板粘合机理的研究Ⅰ.制板过程中化学成分的变化及作用[J].木材工业,1996(4):3-11
    [62]徐朴等.干法无胶木纤维纤维板下业化生产技术[J].林产工业,1997(6):27-31
    [63]曹忠荣.干法无胶硬质纤维板制造工艺[J].林产工业,1994(4):33-34.
    [64]金春德.无胶人造板制造工艺研究[M].东北林业大学,2002.
    [65]曹忠荣.论无胶人造板的生产可行性[J].木材工业,1989,3(3):31-33
    [66]储键基,周跃东.论人造板工业与可持续发展[J].云南林业, 2009,30(2):31
    [67]Suchsland O etc. Binderless Fiberboard from two fifferent types of fiber furnishes[J]. Forest Products Journal.1985,35(2):63-68.
    [68]何泽龙.喷蒸热压新工艺技术及其在国内外人造板工业中的应用开发[J].林产工业,2005,32(1):10-12.
    [69]Wang Jieying, Cui Wenbin, Liu Zhengtian.Comparison Between Steam-Injection Pressing and Conventional Hot Pressing in Producing Poplar Particleboards[J]. Journal of Beijing Forestry University (English Ed.),1997,6(2):100-104.
    [70]谢力生.人造板蒸汽喷射热压法[J].木材加工机械,2000,(1):14-17.
    [71]谢力生,王红强.低密度厚型纤维板喷蒸热压工艺[J].东北林业大学学报,2008,36(4):22-23.
    [72]蔡祖善,赵光宏等.无胶蔗渣碎料板初试成功[J].林产工业,1986,13(4):1-4
    [73]张建辉,严永林.无胶竹材碎料板的制造工艺初深[J].木工机床,2003(1):26-28
    [74]王国超.国外人造板喷蒸热压新工艺.林产工业,1994,18(5):41-431
    [75]何泽龙.喷蒸热亚新工艺技术及其在国内外人造板工业中应用开发.林产工业,2005,32(1):10-12
    [76]徐长妍,华毓坤.喷蒸真空热压技术.林产工业,1999,26(2):20-29
    [77]Jianying Xu, Guangping Han, E.D. Wong et al. Development of binderless particleboard from kenaf core using steam-injection pressing[J]. J Wood Sci,2003,49:327-332
    [78]T Hata.Heat flow in particle mat and properties of particleboard under steam pressing. Wood Rsearch.1994,89:1-47
    [79]Dede Hermawan, Toshimitsu Hata, Kenji Umemura. Production Of cement Particleboard With Steam-injection Pressing[J]. J Wood Sci,2001,47:294-300.
    [80]徐咏兰,周梅剑,华毓坤.喷蒸热压刨花板断而密度分布的研究[J].林产工业,1998,25(2):9-11
    [81]徐长妍,华毓坤.喷蒸真空热压水溶性酚醛胶杨木大片刨花板[J].木材工业,2002,16(4):10-12
    [82]Jonson S E. Characteristics of phenol-formaldehyde adhesive bonds in steam injection pressed flakeboard[J]. Wood and Fiber Science,1994,26(2):259-269
    [83]谢力生,李昱坤,李翠翠.纤维板喷蒸热压传热传质规律研究[J].林业科技,2007,32(1):46-48
    [84]Ragil Widyorini, Jianying Xu, Kenji Umemura et al. Manufacture and properties of binderless particleboard from bagasse I:effects of raw material type, storage methods, and manufacturing process[J]. J Wood Sci,2005,51:648-654
    [85]Jianying Xu·Ryo Sugawara·Ragil Widyorini et al. Manufacture and properties of low-density binderless particleboard from kenaf core[J]. J Wood Sci,2004,50:62-67
    [86]王洁瑛,刘正添,崔文彬.用喷蒸热压提高刨花板尺寸稳定性的研究[J].四川农业大学学报,1998,16(1):91-94
    [87]Okamoto H, Sano S, Kawai S et al. Production of dimensionally stable medium density fiberboard by use of high-pressure steam pressing[J]. Mokuzai Gakkaishi,1994,40:380-389
    [88]Sekino N, Suematsu A, Fujimoto Y, Kitani Y, Wang Q (2000) Effect of manufacturing parameters on the linear expansion of densified wood composite panels I. Effect of element size and press temperature. Mokuzai Gakkaishi 46:334-341
    [89]Japanese Industrial Standard (2003) JIS A 5905-2003 fiberboards.Japanese Standard Association, Tokyo
    [90]Suematsu A, Sekino N, Fujimoto Y, Kitani Y, Wang Q (2001) Effect of manufacturing parameters on the linear expansion of densified wood composite panels Ⅱ. Effect of board density, resin type and resin content on linear expansion of particleboard. Mokuzai Gakkaishi 47:129-137
    [91]Laemsak N, Okuma M (2000) Development of boards made from oil palm frond Ⅱ:properties of binderless boards from steamexploded fibers of oil palm frond. J Wood Sci 46:322-326
    [92]Suzuki S, Shintani H, Park S, Saito K, Laemsak N, Okuma M (1998) Preparation of binderless boards from steam exploded pulps of oil palm. (Elaeis guineensis Jacq.) Fronds and structural characteristics of lignin and wall polysaccharides in steam exploded pulps to be discussed for self-bindings. Holzforschung 52:417-426
    [93]Widyorini R, Xu J, Watanabe T, Kawai S (2005) Chemical changes of steam-pressed kenaf core binderless particleboard. J Wood Sci 51:26-31
    [94]Maloney TM (1993) Modern particleboard and dry-process fiberboard manufacturing. Miller Freeman, San Francisco, pp 212,236-245
    [95]Widyorini R,Xu JY, Watanabe T, Kawai S(2005)Self-bonding characteristics of binderless kenaf core composites.Wood Sci Technol 39:651-662
    [96]马灵飞,韩红,马乃训.部分散生竹材纤维形态及主要理化性能[J].浙江林学院学报,1993,1(4):361-367
    [97]高珊珊,郑仁红,吴晓丽.4种大径从生竹材的密度和干缩性研究[J].福建林学院学报,2010,30(3):270-274
    [98]林金国 赖根明 郑国丰.方竹材基本密度和干缩性变异规律的研究[J].西北林学院学报,2004,19(2):112-115
    [99]刘力,俞友明,郭建忠.竹材化学与利用.2006,浙江:浙江大学出版社
    [100]于文吉,江泽慧.叶克林竹材特性研究及其进展[J].世界林业研究,2002,15(2):50-55
    [101]汪剑鸣,孙学兵.江西苎麻产业化发展的若干思考[J].江西农业学报2004,16(1):55-60
    [102]汪波,彭定祥.苎麻产业现有问题的若干思考[J].中国麻业科学,2007,29(增刊2):393-395,403.
    [103]彭定祥.我国麻类作物生产现状与发展趋势[J].中国麻业科学,2009,31(增刊1):72-78
    [104]黎宇,谢国炎,熊谷良等.世界麻类原料生产与贸易概况(上)[J].中国棉麻流通经济,2008,4:27-30
    [105]吕江南,贺得意,工朝云等.全国麻类生产调查报告[J].中国麻业,2005,27(1):1-5
    [106]郭颖艳,徐剑莹,金涛.苎麻秆的基本特性及无胶碎料板制造工艺[J].林业科技开发2008,22(3):74-76
    [107]李少明,汤利,范茂攀,等.2008.不同微生物腐熟剂对烟末高温堆肥腐熟进程的影响[J].农业环境科学学报,27(2):783—786
    [108]寻觅,徐剑莹,徐剑秋.烟秆/木材刨花板的初步研究[J].林业机械与木工设备.2009,37(3):27-29
    [109]张承龙.烟秆的资源化利用技术现状[J].云南环境科学第,2002,21(3):56-58
    [110]何志斌,何福望.烟秆原料特性及其制浆性能的初步研究[J].中国造纸,1993,(6):29-31
    [111]王国超.国外人造板喷蒸热压新工艺.林产工业,1994,18(5):41-431
    [112]徐剑莹,曾敏,梅村研二.喷蒸热压法棉秆无胶碎料板的研制[J].木材工业,2010,24(6):4-7
    [113]Okamoto H, Sano S, Kawai S et al. Production of dimensionally stable medium density fiberboard by use of high-pressure steam pressing. Mokuzai Gakkaishi,1994,40:380-389
    [114]池德汝,童昕,林新青.纤维板的静曲弹性模量及静曲强度的动态检测[J].福建林业科技,2006,33(3):20-23
    [115]沈哲红,李文珠,方群等.如何提高刨花板静曲强度和降低甲醛释放量[J].林产工业,2004,31(6):28-29
    [116]杨光,杨波,李广辉.制板工艺对无甲醛纤维板物理力学性能的影响[J].林产工业,2009,36(6):20-23
    [117]Ross J R, Pellerin F R. Nondestructive Testing for Assessing Wood Member in Structure[J]. FPL-GTR-70,1994.
    [118]胡英成,王逢瑚,刘一星,等.利用振动法检测胶合板的抗弯弹性模量[J].木材工业,2001,15(2):3-8
    [119]花铁果,梁德沛,海凌超,等.影响中纤板表面结合强度检测值的因子分析[J].木材工业,2009,23(6):28-30
    [120]高秋玲.热熔胶粘贴试件检测人造板内结合强度影响因素分析[J].中国人造板,2009,12:28-37
    [121]梅长彤,周定国,戴春平.平面密度分布对刨花板内结合强度的影响[J].林业科学,2004,40(3):123-127
    [122]顾继友,高振华,谭海彦.制造工艺因素对刨花板吸水厚度膨胀率的影响[J].林业科学,2003,39(1):132-139
    [123]华毓坤.人造板工艺学[M].北京:中国林业出版社,2002
    [124]温福泉,海凌超,廖桂福等.浅谈人造板产品的吸水厚度膨胀率[J].木材加工机械,2009,(4):22-24
    [125]寻觅.烟秆碎料板的研制.中南林业科技大学硕士学位论文,2009
    [126]金淘.非木材植物碎料/粉末自胶合性能的研究.中南林业科技大学硕士学位论文,2010
    [127]郭楚柔.竹材无胶碎料板的研制及化学成分分析.中南林业科技大学学士学位论文,2009
    [128]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社,2004
    [129]何翠芳.棉杆蒸爆处理制备无胶纤维板工艺及胶合机理研究.2008,南京林业大学硕士学位论文
    [130]张叔良.高效液相色谱检测技术的进展—两种新型检测器及其应用[J].色谱,1993,1(1):17-19
    [131]ACS Applications Report, ACS公司资料,1990,90(7)
    [132]Hoffmann D, linuma Y, Herrmann H. Development of a method for fast analysis of phenolic molecular markers in biomass burning particles using high performance liquid hromatography/atmospheric pressure chemical ionisation mass spectrometry[J]. Journal of Chromatography A,2007,1143(1-2):168-175.
    [133]倪学文.银杏酚酸的分离纯化及其生物活性研究.2004,华中农业大学博士学位论文
    [134]池玉杰,闫洪波.6种白腐菌腐朽前后的山杨木材酚酸种类和含量变化的高效液相色谱分析[J].林业科学,2008,44(2):116-123
    [135]秦特夫.杉木和“三北”一号杨磨木木质素化学官能团特征的研究[J].林业科学,1999,35(3):69-75.
    [136]Mussatto S I,Santos J C, Roberto I C.Effect of PH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylit production[J].J Chem Technol Biot,2004,79:590-596
    [137]李淑君.植物纤维水解技术.北京:化学工业出版社,2009
    [138]Xiang Li,Zhong Li,lingai Luo.Adsorption isotherms and potential distributions of nitrogen on various acti-vated carbons[J]. Chinese Journal of Reactive Polymers,2005,14(1):8-12
    [139]魏芸,李忠全,汪俊琴等GB/T19587-2004气体吸附法测定固态物质比表面积.2009,9,29
    [140]张志,杜杰,朱宏志.低温氮气吸附法研究海绵钯比表而积和孔径分布[J].稀有金属,2011,35(5):411-416
    [141]刘培生.多孔材料比表而积和孔隙形貌的测定方法[J].稀有金属材料与工程,2005,增(2):25-29
    [142]程海涛,傅金和,工戈等.竹炭比表面积影响因素的分析[J].木材工业,2009,23(5):48-50
    [143]苏伟,周理,周亚平.椰壳炭制备高比表而积活性炭的研究[J].林产化学与工业,2006,26(2):49-52
    [144]李新功,郑霞,吴义强.竹纤维/聚乳酸复合材料界面调控[J].复合材料学报,2012,26(4):49-52
    [145]邢其毅等.基础有机化学(上册).高等教育出版社,1980
    [146]刘贵生等.马尾松木材红外光谱的研究.北京木材工业,1986年,第2期
    [147]工小青,任海青,赵荣军.毛竹材表面光化降解的FTIR和XPS分析[J].光谱学与光谱分析,2009,29(7):1864-1867
    [148]江泽慧,于文吉,余养伦.竹材化学成分分析和表面性能表征[J].东北林业大学学报,2006,34(4):1-6
    [149]杜官木,杨忠,邱坚.微波等离子体处理西南桤木表面的ESR和XPS分析[J].林业科学,2004,40(2):148-151
    [150]李坚等.木材波谱学[M].北京:科学出版社,2002
    [151]陈集,饶小桐.仪器分析[M].重庆:重庆大学出版社,2002
    [152]梅超群,樊水明,江进学.核磁共振波谱在木材改性中的应用.应用化工,2009,38(6):880-883
    [153]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000
    [154]Bardet M, Foray M F, Tran Q K. High-resolution solid-state CPMASNMR study of archaeological woods [J]. Anal Chem,2002,74:4386
    [155]刘传富,孙润仓,叶君.固体核磁CP/MAS13C-NMR在植物纤维原料研究中的应用[J].中国造纸学报,2005,2(2):184-188
    [156]方桂珍,李坚,孔漫,等.多元羧酸与木材酯化反应的固体核磁共振谱CPMAS-(13)CNMR的表征[J].林业科学,2001,37(2):108
    [157]秦特夫.“Ⅰ-214杨”心材、边材木质素的红外光谱、质子和碳-13核磁共振波谱特征研究[J].林业科学研究,2001,14(4):375-382
    [158]秦特夫.杉木幼龄材与成熟材木质素的化学官能团和化学键特征研究[J].林业科学,2004,40(2):137-141
    [159]Maunu S, Liitia T, Kauliomaki S, et al. C-13 CPMAS NMR investigations of cellulose polymorphs in different pulps [J]. Cellulose,2000,7(2):147-150
    [160]Hult E L, Larsson PT, Iversen T. A comparative CP/MAS C-13-NMR study of cellulose structure in sprucewood and kraft pulp [J]. Cellulose,2000,7(1):35-40
    [161]孙伟伦,李坚.高温热处理落叶松木材尺寸稳定性及结晶度分析表征[J].林业科学,2010,46(12):114-118
    [162]江泽慧,费本华,杨忠.光谱预处理对近红外光谱预测木材纤维素结晶度的影响[J].光谱学与光谱分析,2007,27(3):435-438
    [163]李坚,郑睿贤,金春德.无胶人造板实践与研究[M].北京:科学出版社,2010
    [164]薛振华,赵广杰.不同处理方法对木材结晶性能的影响[J].西北林学院学报,2007,22(2):169-171
    [165]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社,2004
    [166]ZERIOUH A, BELKBIR L. Thermal decomposition of a Moroccan wood under a nitrogen atmosphere [J]. Thermochimica Acta,1995:243-258.
    [167]陈志林,王群,左铁镛等.无机质复合木材的复合工艺与性能[J].复合材料学报,2003,20(4):128-132
    [168]卢洪波,苏桂秋,徐海军.玉米秸秆TG-FTIR联机热解特性研究[J].应用能源技术,2005,(6):8-10
    [169]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究.煤炭转化,2003,26(3):91-97
    [170]罗晔,费斌,郭嘉.竹材炭化过程的热重分析及动力学研究.生物质化学工程,2009,43(6):7-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700