郯庐断裂带中—南段走滑运动的构造—热年代学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
郯庐断裂带是中国东部呈NNE走向的一条巨型断裂带,在中国境内延伸长度约2400 km。
    长期的研究已表明,这一巨型断裂带中生代以来经历了长期、复杂的演化历史,也记录了中
    国东部地球动力学的演变。该断裂带晚白垩世至老第三纪的伸展活动及随后的挤压历史,由
    于构造保存较好,因而基本上得了人们的肯定。然而,关于该断裂带的早期平移历史及起源,
    特别是它与大别-苏鲁造山带之间的关系,虽然在国际地学界受到了广泛的重视,但在认识上
    却存在着很大的分歧与争论。一些学者主张郯庐断裂带属于同造山构造,并分别提出了转换
    断层模式、斜向板块边界模式、旋转的缝合线模式、撕裂断裂模式。另一些学者则认为郯庐
    断裂带源于晚侏罗-早白垩世期间,属于滨太平洋构造。之所以对郯庐断裂带的平移时间还存
    在如此大的分歧,主要是因为缺乏该断裂带系统的年代学工作,尤其是没有针对郯庐断裂带
    出露的中-深层次韧性剪切带进行系统的年代学工作。
    大量的野外工作发现,郯庐断裂带存在早、晚两期韧性剪切带。早期剪切带糜棱面理走
    向NE-NNE,倾向NW或SE,面理倾角较陡,矿物拉伸线理水平或近水平;晚期剪切带糜棱
    面理优势走向为NE-NNE,面理倾角较陡,以向SE倾为主,拉伸线理一致向SSW缓倾,倾
    角最大不超过20°。显微构造(S-C构造、残斑拖尾、“云母鱼”构造等)和石英C轴组构都
    指示这些糜棱岩形成于断裂带的左旋剪切过程中。
    为了能够获得郯庐早、晚两期剪切带左行平移的准确活动时间以及确定郯庐断裂带与大
    别-苏鲁造山带之间的关系,本次研究在郯庐断裂带中-南段糜棱岩中选取了角闪石、白云母、
    黑云母、斜长石、钾长石等一系列单矿物进行40Ar/39Ar年代学研究。
    在大别山东缘和苏鲁造山带西缘的郯庐早期韧性剪切带内分别获得了181 Ma左右和
    209. 9-214. 3 Ma的白云母年龄值。所有这些样品的形成温度均高于白云母的封闭温度,因而均
    记录了郯庐断裂带早期剪切活动的冷却时间。由于一系列冷却年龄的最大值更接近于变形年
    龄,因而可以认为郯庐断裂带形成的最晚时间为214. 3 Ma前的晚三叠世。通过糜棱岩中新生
    矿物组合、长石和石英的变形特征的估算和白云母-绿泥石地质温度计的计算获得了郯庐早期
    剪切带的变形温度分别为400-500℃(大别山东缘)、600-700℃(苏鲁造山带西缘)。利用白云
    母Si原子数地质压力计获得了郯庐早期剪切带的变形压力主要为0. 25-0. 42 GPa(大别山东
    缘)、1. 02-1. 45 GPa(苏鲁造山带西缘)。可以看出,郯庐早期韧性剪切带的变形温压环境明显
    低于造山带峰期变质的温压条件,因而郯庐断裂带应形成于大别-苏鲁造山带峰期变质之后的
    折返过程中。再结合该断裂带在大别造山带南端突然中止的地质事实,本次研究推断郯庐断
    裂带为形成于造山带折返过程中的转换断层。
    本次研究在郯庐断裂带中-南段晚期剪切带的糜棱岩中获得了131. 5-143. 3 Ma的角闪石年
    龄、121. 2-138. 8 Ma的白云母年龄和109. 8-137. 2 Ma的黑云母年龄。其中来自张八岭隆起的
    N14含角闪石糜棱岩的变形温度与K-Ar体系中角闪石的封闭温度一致,因而该角闪石样品记
The Tan-Lu fault zone is a major fault zone trending NNE in east China and extends about 2400 km. Long-term studies suggest that the large fault zone experienced complicated evolution history and recorded geodynamic processes of eastern China. Because extensional structures from late Cretaceous to Paleogene and compressional structures since Neogene are conserved well, most geologists agreed on that the Tan-Lu fault zone experienced extension and following compression since late Cretaceous. However, though lots of international geologists paid more attention to the early strike-slip history and origin of the Tan-Lu fault zone, especially the relation between it and the Dabie-Sulu orogenic belt, but their viewpoints about that were different. Some workers considered the fault zone as a syn-orogenic tectonics, and proposed different models for it, such as transform fault model, oblique plate boundary model, rotated suture line model and tear fault model. Other workers suggest that the fault zone originated as a result of circum-Pacific tectonic movement in Late Jurassic to Early Cretaceous. The reason of the debates about strike-slip time of the fault zone mostly is lack of systematic chronology work, especially lack of systematic chronological work on ductile shear zone formed at middle-deep levels.According to lots of field works, two phases of sinistral strike-slip ductile shear belts were found in the Tan-Lu fault zone. Steep mylonite foliation in the earlier shear belts strikes NE-NNE, and dips NW or SE; its stretching lineation is gentle. Steep mylonite foliation in the later shear belts strikes NE-NNE, and mostly dips SE. Its stretching lineation is gentle and dips SSW, the maximum dip angle is less than 20°. Such microstructures as S-C fabrics, rotated feldspar porphyroblasts, and mica fish and quartz c-axis fabrics all indicate sinistral shear sense.For the sake of getting exact time of the Tan-Lu strike-slip movement and understanding relation between the fault zone and the Dabie-Sulu orogenic belt, this work selected a series of mineral separates, such as hornblende, muscovite, biotite, plagioclase and K-feldspar from mylonites in middle- southern segment of Tan-Lu fault zone, for ~(40)Ar/~(39)Ar dating.In this study, muscovite ~(40)Ar/~(39)Ar ages of 181 Ma and 209.9-214.3 Ma were obtained from earlier Tan- Lu ductile shear zone respectively on the eastern margin of the Dabie belt and the western margin of the Sulu belt. The formation temperatures of all these mylonite are more than the closure temperature of muscovite, so these ages are cooling ages of the earlier Tan-Lu faulting. A maximum cooling age is closest to deformation age, so the latest formation time of Tan-Lu fault zone is 214.3 Ma (late Triassic). Based on newly-formed mineral assembles and deformation behaviors of feldspar and quartz in mylonites, and using muscovite-chlorite geothermometry, this work shows that deformation temperatures of earlier Tan-Lu faulting are separately 400-500℃ and 600-700 ℃ respectively on the eastern margin of Dabie belt and the western margin of the Sulu belt.
    Confining pressures are 0.25-0.42 GPa and 1.02-1.45 GPa respectively for the earlier shear zones on the eastern margin of the Dabie belt and the western margin of the Sulu belt according to geobarometry of Si-in-phengite. Therefore, the deformation temperatures and pressure ars less than that of peak metamorphism of the Dabie-Sulu orogenic belt, which suggests that the Tan-Lu fault zone was formed during exhumation of the Dabie-Sulu orogenic belt. Considering the fault zone terminates in the southern end of the Dabie belt, it is concludes that the Tan-Lu fault zone is a transfer fault formed during exhumation of the Dabie-Sulu orogenic belt.In this study, hornblende Ar/Ar ages of 131.5-143.3 Ma, muscovite 40Ar/"Ar ages of 121.2-138.8 Ma and biotite 40Ar/39Ar ages of 108.9-137.0 Ma were obtained from later ductile shear zone in the middle-southern segment of the Tan-Lu fault zone. The deformation temperature of N14 mylonite from the Zhangbaling uplift is equa
引文
[1] Akai K, Kamon M, Sano I, et al. Long-term consolidation characteristics of diluvial clay in osakabav. Soils and Foundations. 1991, 31(4): 61-74.
    [2] Akai P, Merriman R J, Robets B, et al. Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites. Eur J Mineral, 1996, 8: 1119-1137.
    [3] Akai P, Sassi F P, Sassi R. Simultaneous Measurements of chlorite and illite crystallinity: a more reliable tool for monitoring low- to very low grade metamorphism in metapelites. A case study from the Sourthem Alps(NE Italy). Eur J Mineral, 1995, 7: 1115-1128.
    [4] Altenberger U, Wilhelm S. Ductile deformation of K-feldspar in dry eclogite facies shear zones in the Bergen Arcs,Norway. Tectonophysics, 2000,320: 107-121.
    [5] Ames L, Tilton G R, Zhou G Timing of the Sino-Korean and Yangtze craton: U-Pb dating of coesite-bearing eclogite. Geology, 1993. 21(4): 339-342.
    [6] Baily S W. Summary and recommendations of AIPEA Nomenclature Committee. Clays and Clay Minerals, 1980,28: 73-78.
    [7] Baily S W. X-ray diffration identification of the polytypes of micas, serpentine and chlorite. Clays and Clay Minerals, 1988,36: 193-213.
    [8] Baldwin K L, Lister G S, Hill E J, et al. Thermochronologic constrains and the tectonic evolution of active metamorphic core complexes, Dentrecasteaux Islands,,Papua new guinea. Tectonics. 1993, 12(3): 611-628.
    [9] Barker C. Aquathermal pressuring-role of temperature in devolopment of abnormal-pressure zones. Bull. Am. Assoc.Petrol. Geol. 1992, 56: 2068-2071.
    [10] Blumenfeld P, Mainprice D, Bouchez J L. Glissement de direction domainant dans le quartz de dilons de granite,cisailles en donditions sub-solidus (Vosges,France). CRAcad. Sci., Ser II. 1985, 301:1303-1308.
    [11] Bouchez J L. Plastic deformation of quartzites at low temperatures in an area of natural strain gradient. Tectonophysics, 1997,39: 25-50.
    [12] Buatier M D, Peacer D R, O'Neil J R. Smectite-illite transition in Barbados accretionary wedge sediments:TEM and AEM evidence for dissolution/crystallization at low temperature. Clays and Clay minerals, 1992. 40(1):65-80.
    [13] Caritat P D, Huncheon I, Walshe J L. Chlorite geothermometry: a review. Clays and Clay Minerals, 1993, 41(2): 219-239.
    [14] Carswell D A, O'Brien P I, Wilson R N, et al. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains Of central China. J. Metamorphic Geol., 1997,45: 239-252.
    [15] Carswell D A, Wilson R N, Zhai M. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultrahigh pressure eclogites in the Dabieshan of cetral China. Lithos. 2000, 52:121-155.
    [16] Cathelineau M and Nieva D. A chlorite solid solution geothermometer. The Los Azufres(Mexico)geothermal system. Contrib. Miner. Petrol. 1985,91:235-244.
    [17] Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 1988,23:471-485.
    [18] Chang E Z. Collision orogene between north and south China and its eastern extension in the Korean Peninsula.Journal of Southeast Asian Earth Sciences. 1996, 13(3-5): 267-277.
    [19] Chopin C. Coesite and pure pyrope on high-grade blueschists of the Western Alps: a first record and some consequences. Contrib. Mineral. Petrol. 1984, 86:17-118.
    [20] Chung S L. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with
     implications for the eastern plate boundary between north and south China. The Journal of Geology, 1999, 107:301-312.
    [21] Dipple G M, Ferry J M. Metasomatism and fluid flow in ductile fault zone. Contrib. Mineral. Petrol., 1992. 112:149-164.
    [22] Dobson J, Chen H, Heller F. Triassic paleomagnetic results from the Huanan Block, SE China. Physics of the Earth and Planetary Interiors. 1999,112:203-210.
    [23] Dodson M H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral.Petrol. 1973, 40: 259-174.
    [24] Domanik K J, Holloyway J R. Experimental synthesisand phase relations of phengitic muscovite from 6.5 to 11 GPa in calcareous metapelite from the Dabie Mountains, China. Lithos, 2000. 52: 51-77.
    [25] Dunlap W J. Neocrystallization or cooling? ~(40)Ar/~(39)Ar ages of white micas from low-grade mylonites. Chemical Geology. 1997,143:181-203.
    [26] Eberl D D, Velde B, Mccormick T. Synthesis of illite-smectite from smectite at earth surface temperature and high pH. Clays and Clay Minerals, 1993.28(1): 49-60
    [27] Eide E A, Mc Williams M O, Liou J G ~(39)Ar/~(40)Ar geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China. Geology. 1994. 22: 601-604.
    [28] Enami M, Zang Q J, Yin Y J. High-pressure eclogites in northern Jiangsu-southern Shandong provinces, eastern China. J. Metamorph. Geol., 1993.11: 589-603.
    [29] Engebretson D C, Cox A, Gordon R G Relative motions between oceanic and continental plates in the Pacific basin. Special Paper 206, The Geological Society of America, 1985,1-59.
    [30] Enkin R, Yang Z, Cben Y, et al. Paleoinagnetic constraints on the geodynamic history of main Chinese blocks from the Permian to the present, a review. J. Geophys. Res., 1992,97: 13953-13989.
    [31] Essenc E J, Peacor D R. Clay mineral thermometry— a critical perspective. Clays and Clay Minerals, 1995, 43:540-553.
    [32] Essene E J. The current status of thermobarometry in metamorphic rocks. In: Daly J S, Cliff R A & Yardley B W D(eds), Evolution of Metamorphic belts. Geological Society of Special Publication No. 43,1989, Pp. 1-44.
    [33] Etheridge M A, Wilkie J C. Grainsize reduction, grain boundary sliding and the flow strength of mylonites.Tectonics. 1979,59: 159-167.
    [34] Faure M, Lin W, Scharer U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochro -nological insights from the Dabieshan (East China). Lithos, 2003, 70: 213-241.
    [35] Fisher Q J, Harris S D, McAllister E, et al. Hydrocarbon flow across faults by capillary leakage revisited. Marine and Petroleum Geology. 2001,18(2): 251-257.
    [36] Fletcher C J N, Fitches W R, Rundle C C, et al. Geological and isotopic constraints on the timing of movement in the Tan-Lu Fault Zone, northeastern China. Journal of Southeast Asian Earth Sciences, 1995, 11(1): 15-22.
    [37] Forster M A, Lister G S. The interpretation of ~(40)Ar/~(39)Ar apparent age spectra produced by mixing: application of the method of asymptotes and limits. Journal of Structural Geology. 2004,26: 287-305.
    [38] Frey M. Very low-grade metamorphism of sedimentary rocks. In: Frey, M. ed. Low Temperature Metamorphism.Glasgaw and London: Blackie, 1987. Pp: 9-58
    [39] Gilder S A, Leloup P H, Courtillot V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassicto Early Cenozoic paleomagnetic data. Journal of Geophysical Research, 1999, 104(B7): 15365- 15390.
    [40] Gilder S and Courtillot V. Timing of the north-south China collision from new middle to late Mesozoic paleomagnetic data from the North China Block. J. Geonhvs. Res. 1997.102:17713-17727.
    [41] Giorgis D, Cosca M, Li S G Distribution and significance of extraneous argon in UHP eclogite (Sulu terrain, China): insight from in situ ~(40)Ar/~(39)Ar UV-laser ablation analysis. Earth and Planetary Science Letters. 2000, 181:605-615.
    [42] Glasmacher U A, Tschernoster R, Clauer N, et al. K-Ar dating of magmatic sericite crystallites for determination of cooling paths of metamorphic overprints. Chemical Geology, 2001. 175:673-687
    [43] Gleason G C, Tullis J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell.Tectonophysics. 1993,247:1-23.
    [44] Govers R, Wortel MJR, Cloeting P L, et al. Stress magnitude estimates from earthquakes in oceanic plate interior. Jour. Geophys. Res. 1992,97(B8): 11749-11759.
    [45] Grimmer J C, Jonckheere R, Enkelmann E, et al. Cretaceous-Cenozoic history of the southern Tan-Lu fault zonr: apatite fission-track and structural constraints from the Dabie Shan (eastern China). Tectonophysics, 2002, 359: 225-253.
    [46] Grimmer J C, Ratschbacher L, McWilliams M, et al. When did the ultrahigh-pressure rocks reach the surface? A ~(207)Pb/~(206)Pb Zircon, ~(40)Ar/~(39)Arwhite mica, Si-in-white mica, single grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology, 2003, 197: 87-110.
    [47] Guidotti C V, Sassi F P. Muscovite as a petrogenetic indicator in pelitic schists. Neues. Jahrb. Min. Abhdl., 1976,127: 97-142.
    [48] Hacker B R, Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research. 2000, 105(B6):13339-13364.
    [49] Hacker B R, Retschbacher L, Webb L, et al. U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth Planet. Sci. Lett, 1998,161:215 -230.
    [50] Hacker B R, Wang Q. ~(39)Ar/~(40)Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics. 1995, 14(4): 994-1006.
    [51] Hames W E, Bowring S A. An empirical evaluation of the argon diffusion geogetry in muscovite. Earth and Planetary Science Letters. 1994, 124: 161-167.
    [52] Harland W B, Armstrong R L, Cox A V, Craig L E, Smith A G, Smith D G A Geologic Time Scale. Cambridge University Press. 1989.
    [53] Harrison T M, Duncan I, McDougall I. Diffusion of ~(40)Ar in biotite: temperature, pressure and compositional effects. Geochim. Cosmochim. Acta. 1985,49:2461-2468.
    [54] Harrison T M. Diffusion of ~(40)Ar in hornblende. Contributions to Mineralogy and Petrology. 1981, 78(3):324-331.
    [55] Harvey C C, Browne P R. Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand.Clays and Clay Minerals, 1991.39(4): 614-621.
    [56] Hayes J B. Polytypism of chlorite in sedimentary rocks. Clays and Clay Minerals, 1970,18:285-306.
    [57] Hillier S and Velde B. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 1991,26:149-168.
    [58] Hillier S, Velde B. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner, 1991,26:149-168.
    [59] Hoisch T D. A muscovite-biotite geothermometer. Am. Miner. 1989,74: 565-572.
    [60] Hsu K J, Li J, Chen I, et al. Tectonic evolution of Qinling Mountains, China. Eclogae. Geol. Helve., 1987, 80: 735-752.
    [61] Hubbert M K, Rubey W W. Role of fluid pressure in mechanics of overthrust faulting. Bull. Geol. Soc. Am. 1959,70: 115-166.
    [62] Hunziker J C. The evolution of illite to muscovite: an example of behaviour of isotopes in low-grade metamorphic terrains. Chemical Geology, 1986.57:31-40
    [63] Jowett E C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting(Toronto, May 27-29,1991). Program with Abstracts. 1991,16, A62.
    [64] Kaneoka I, Notsu K, Takigami Y, et al. Constraints on the evolution of the Japan Sea based on ~(40)Ar/~(39)Ar ages and Sr isotopic ratios for volcanic rocks of the Yamato Seamount chain in the Japan Sea . Earth Planet .Sci. Lett.,1990,97:211-225.
    [65] Karpova G V. Clay mineral post-sedimentary ranks in terrigenous rocks. Sedimentology, 1969,13: 5-20.
    [66] Kennedy C S, Kennedy G C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 1976,81:2467-2470.
    [67] Kirschner D L, Cosca M A, Masson H, et al. Staircase ~(40)Ar/~(39)Ar spectra of fine-grained whitw mica-timing and duration of deformation and empirical constraints on argon diffusion. Gelogy. 1996,24: 747- 750.
    [68] Kohls'tedt D L, Weather M S. Deformation-induced mocrostructures, paleopiezometer and differential stresses in deeply eroded fault zone. J. Geophys. Res. 1980, 85(11): 6267-6285.
    [69] Kubler B. La cristallinite de I'illite et les zones tout a fait superieures du metamorphism. In: Etages Tectoniques. Colloque de Neuchatel, 1967.105-122
    [70] Kuster M, Stockhert B. High differential stress and sublithostatic pore fluid pressure in the ductile regime—microstructural evidence for short-term post-seismic creep in the Sesia Zone, Wester Alps. Tectonophysics. 1999,303:263-277.
    [71] Law R D. Crystallographic fabrics:a selective review of their applications to research in structural geology. In: Knipe R J, Rutter E H. eds. Deformation mechanixms, rheology and tectonics. Geol. Soc. Spec. Publ. 1990, 54:335-352
    [72] Lee J, Sutter J F. Incremental ~(40)Ar/~(39)Ar thermochronology of mylonitic rocks from the northern snake range,Nevada. Tectonics. 1991,10(1): 77-100.
    [73] Levinson A A. Studies in the mica group: polymorphism among illites and hydrous micas. Am. Miner., 1955. 40: 41-49
    [74] Li S G, Wang S, Chen Y, et al. Excess argon in phengite from eclogite: evidence from dating eclogite minerals by Sm-Nd, Rb-Sr and ~(40)Ar/~(39)Ar methods. Chemical Geology, 1994,112: 343-350.
    [75] Li S, Xiao Y, Liu D, et al. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogitcs: timing and processes. Chemical Geology, 1993. 109(1/4): 89-111.
    [76] Li S, Jagoutz E, Chen Y, et al.. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in Dabie Mountains, central china. Geochimica et Cosmochimica Acta. 2000,64(6): 1077-1093.
    [77] Li X H. Cretaceous magmatism and lithospheric extension in Southeastern China. Journal of Asian Earth Sciences, 2000.18: 293-305.
    [78] Li Z X. Collision between the north and south blocks: A crust-detachment model for suturing in the region east of the Tan-Lu fault. Geology, 1994,22: 739-742.
    [79] Lin A, Miyata T, Wan T F. Tectonic characteristics of the central segment of the Tancheng-Lujiang fault zone, Shandong Peninsula, eastern China. Tectonophysics, 1998. 293:85-104
    [80] Lin J L, Fuller M. Paleomagnetism, North and South China collision, and the Tan-Lu fault. Phil. Trans. Roy. Soc.Lond., 1990, A331,589-598.
    [81] Lin J L, Fuller M, Zhang W Y. Preliminary Phanerozoic polar wander paths for the North and South China blocks. Nature, 1985, 313:444-449.
    [82] Liou J G, Zhang R Y, Ernst W G An introduction to ultrahigh-pressure metamorphism. The Island Arc, 1994, 3:1-24.
    [83] Lister G S, Domsiepen U F. Fabric transitions in the Saxony granulite terrain. Jstruct. Geol., 1982,41: 81-92.
    [84] Lovera O M, Richter F M, Harrison T M. Diffusion domains determined by 39Ar released during step heating. J.Geophys. Res., 1991, 96(B2): 2057-2069.
    [85] Ludwig K R. Isoplot-a geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Certer
     Special Publication. 2001.
    [86] Mainprice D, Bouchez J L, Blumendeld P, et al. Domiant c-slip in naturally deformed quartz: implications for dramatic plastic softening at high temperture. Geology, 1986, 14: 819-822.
    [87] Mancktelow N S, Pennacchioni G The influence of grain boundary fluids on the microstructure of quartz -feldspar mylonites. Journal of Structural Geology, 2004,26:47-69.
    [88] Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. The Island Arc, 1997,6: 121-142.
    [89] Massonne H J, Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar,phlogopite, and quartz. Contrib. Mineral. Petrol., 1987, 96: 212-224.
    [90] Massonne H J, Szpurka Z. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K_20-Mg0-Al_20_3-Si_20-H_20 and K_20-Fe0-Al_20_3-Si_20-H_20. Lithos, 1997,41: 229-250.
    [91] Maurel O, Monie P, Respaut J P, et al. Pre-metamorphic ~(40)Ar/~(39)Ar and U-Pb ages in HP metagranitoids from the Hercynian belt (France). Chemical Geology. 2003,193: 195-214.
    [92] McDougall I, Harrison T M. Geochronology and Thermochonology by the ~(40)Ar/~(39)Ar method. Oxford University Press, New York. 1988.
    [93] McDowell S D, Elders W A. Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib. Miner. Petrol. 1980, 74: 293-310.
    [94] McElhinny M W, Embleton B J, Ma X H, et al. Fragmentation of Asian in the Permian. Nature, 1981, 293:212-215.
    [95] Means W D.Hobbs B E, Lister G S, et al. Vorticity and non-coaxialicy in progressive deformation. J. Struct. Geol.1980,2(3): 371-378.
    [96] Mercier J C C, Anderson D A, Carter N L. Stress in the lithophere: inference from steady-state flow of rocks. J.Pure Appl. Geophys. 1977, 115, 199-226.
    [97] Merriman R J, Roberts B. A survey of white mica crystallinity and polytypes in pelitic rocks in Snowdonia and Llyn, North Wales. Mineralogical Magazine, 1985.49:305-319
    [98] Merriman R J, Roberts B. Low-grade metamorphism of the low Palaeozoic sequence. Stone P. The Geology of the Rhins Galloway district. Scotland: Memoir of the British Geological Survey, 1995, 67-70.
    [99] Mirwald P W, Massone H J. Quartz-coesite transition and the comparative friction measurements in pistoncylinder apparatus using talc-alsimag-glass and NaCl high pressure cell: a discussion. Neues Jahrbuch fuer Mineralogie Monatshefte. 1980,10:469-477.
    [100] Mount V S, Suppe J. Present-day stress orientations adjacent to active strike-slip faults, California and Sumatra.Jour. Geophys. Res. 1992,97(B8): 11995-12013.
    [101] Mourgues R, Cobbold P R. Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modeling. Tectonophysics. 2003,376,75-97.
    [102] Mulch A, Cosca M A, Handy M R. In-situ UV-laser ~(40)Ar/~(39)Ar geochronology of a micaceous mylonite: an example of defect-enhanced argon loss. Contrib. Mineral. Petrol. 2002,142: 738-752.
    [103] Newman J, Mitra G Lateral variations in mylonite zone thickness as influenced by fluid-rock interactions. Linvie Falls fault. North Coroline. J. Struc. Geol., 1993,15:849-863.
    [104] Nurminen K B. A recalibration of the chlorite-biotite-muscovite geobarometer. Contrib. Mineral. Petrol., 1987,96:519-522.
    [105] O'Hara K D, Blackburn W H. Volume loss model for trace element enrichments in mylonites. Geology, 1989.17:524-527.
    [106] Okay A I, Sengor A M C. Evidence for intracontinental thrust related exhumation of the ultra-high-pressure rocks in China. Geology, 1992,20:411-414.
    [107] Okay A I. Petrology of a diamond- and coesite-bearing metamorphic terrain: Dabie Shan, China. Eur J Mineral,
     1993,5:659-675.
    [108] Opdyke N D, Huang K, Xu G, et al. Paleomagnetic results from the Yangze Platform. J. Geophys. Res., 1986,91:9533-9568.
    [109] Otofuji Y, Hayashida A, Tom M. 1985 . When was the Japan Sea opened? Paleomagnetic evidence from southwest Japan, in: Nasu N, Uyeda S, Kushiro I, Kobayashi K and Kagami H. eds. Formation of Active Ocean Margins. Tokyo: Terra. 551 -566.
    [110] Park J O, Tokyuama H, Shinohara M, et al. Seismic record of tectonic evolution and backarc rifting in the southern Ryukyu island arc system. Tectonophysics. 1998,294: 21-42.
    [111] PasschierC W, Trouw R A J. Microtectonics. Berlin: Springer, 1996.
    [112] Passchier C W. The use of Mohr circle to describe non-coaxial progressive deformation. Tectonophysis. 1988,149:323-338.
    [113] Passchier C. W., Trouw R. A. J. Micro-tectonics. Springer-verlag Berlin Heidelberg. 1996.
    [114] Pollastro R M. Considerations and applications of the illite/smectite geothermometer in hydrocarbonbearing rocks of Miocene to Mississippian age. Clays and Clay minerals, 1993.41(1): 119-133
    [115] Ratschbacher L, Hacker B R, Webb L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central china: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research. 2000. 105(B6): 13303-13338.
    [116] Reddy S M, Kelly S P, Magennis L. A microstructural and argon laserprobe study of shear zone development at the western margin of the Narga Parbat-Haramosh Massif, wester Himalaya. Contrib. Mineral. Petrol. 1997,128:16-29.
    [117] Reddy S M, Potts G J. Constraining absolute deformation ages: the relationship between deformation mechanisms and isotope systematics. Journal of Structural Geology. 1999,21:1255-1265.
    [118] Ren J, Kensaku T, Li S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics. 2002,344(3-4): 175-205.
    [119] Reynolds P, Ravenhurst C, Zentilli M, et al. High-precision ~(40)Ar/~(39)Ar dating of two consecutive hydro -thermal events in the Chuquicamata porphyry copper system, Chile. Chemical Geology. 1998, 148: 45-60.
    [120] Rosenberg CL, Stunitz H. Deformation and recrystallization of plagioclase along a temperature gradient: an example from the Bergell tonalite. Journal of Structural Geology, 2003.25: 389-408.
    [121] Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U-Pb zircon Geochronology. Earth Planet. Sci. Lett, 1997, 151: 191 -120.
    [122] Sassi F P, Scolai A. The b_0 value of the porassie white micas as barometric indicator in low-grade metamorphism of pelitic schists. Contr. Min. Petrol., 1974.45: 148-152.
    [123] Schermer E R, Lur D R, Burchfiel B C. Temperature-time history of subducted continental crust, Mount Olympos region, Greece. Tectonics. 1990,9(5): 1165-1195.
    [124] Scheuber E Hammerschmidt K, Friedrichsen H. ~(40)Ar/~(39)Ar and Rb-Sr analyses from ductile shear zone from the Atacama fault zone, northern Chile: the age of deformation. Tectonophysice. 1995,250: 61-87.
    [125] Schmid R, Ryberg T, Ratschbacher L, et al. Crustal structure of the eastern Dabie Shan interpreted from deep reflection and shallow tomographic data. Tectonophysics, 2001,333: 347- 359.
    [126] Schmidt D, Schmidt S T, Mullis J, et al. Very low grade metamorphism of the Taveyane formation of western Switzerland. Contrib Mineral Petro, 1997, 129: 385-403.
    [127] Schofield D L, Dlemos R S. Relationship between syn-tectonic granite fabric and regional P-T-t-d paths: an example from the gander-Aralon boundary of NE Newfoundland. J Struct. Geol., 1998, 30: 459-471.
    [128] Sherlock S C, Arnaud N O. Flat plateau and impossible isochrones: Apparent ~(40)Ar-~(39)Ar geochronology in a high pressure terrain. Geochimica et Cosmochimica Acta. 1999,63(18): 2835-2838.
    [129] Simposon G D H, Thompson A B, Connolly J A D. 2000. Phase relations, singularities and thermobarometry of
     metamorphic assemblages containing phengite, chlorite, biotite, K-feldspar, quartz and H_2O. Contrib. Mineral.Petrol., 139: 555- 569.
    [130] Simpson C. Deformation of granitic rocks across the brittle-ductile transition. Journal of Structural Geology,1985,7:503-511.
    [131] Smith D C. Coesite in clinopyroxene in the caledonides and its implications for geodynamics. Nature, 1984, 310:641-644.
    [132] Smith J V, Yoder H S. Studies of micas polymorphs. Mineral. Mag., 1956. 31:209-235
    [133] Sobolev N V, Shatsky V S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature. 1990, 343: 742-746.
    [134] Thompson A B. Mineral reactions in pelitic schist: I. Prediction of P-T-X(Fe-Mg) phase relations. American Journal of Science. 1976,276:401-424.
    [135] Tikoff B., Fossen H. The limitations of three-dimensional kinematic vorticity analysis. J. Struct. Geol. 1995,17(12): 1771-1784.
    [136] Twiss R J. Theory and application of a recrystallized grain-size Paleopiezometer. Pure Appl. Geophys. 1977,115:227-244.
    [137] Uchimura H, Kono M, Tsunakawa H, et al. Paleomagnetism of late Mesozoic rocks from northeastern China: the role of the Tan-Lu fault in the North China Block. Tectonophysics, 1996,262: 301-319.
    [138] Velde B. Si~(4+) content of natural phengites. Contrib. Mineral. Petrol., 1967.14:250-258.
    [139] Walker J R, Thompson G R. Structural variations in chlorite and illite in diagenetic sequence from the Imperial valley, California. Clays and Clay Minerals, 1990,38:315-321.
    [140] Walker J R. Chlorite polytype geothermometry. Clays and Clay Minerals, 1993,41(2): 260-267.
    [141] Walker J R. Polytypism of chlorite in very low grade metamorphic rocks. Amer Mineral, 1989, 74: 738-743.
    [142] Wallis S. Vorticity analysis and recognition of ductile extention in the Sanbagawa belt, SW Japan . J. Struct.Geol. 1995,17(8): 1077-1093.
    [143] Walshe J L. A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ. Geol. 1986,81:681-703.
    [144] Wang H, Frey M, Stern W B. Diagenesis and metamorphism of clay minerals in the Helvetic Alps of Eastern Switzerland. Clays and Clay Minerals, 1996. 44: 96-112.
    [145] Wang X, Liou J G, Mao H K. Coesite-bearing eclogites from the Dabie Mountain in the central China. Geology.1989, 17: 1085-1088.
    [146] Watson M P, Hayward A B, Parkinson D N, et al. Plate tectonics history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 1987, (4): 205-225.
    [147] Weather M S, Cooper R F, Kohls'tedt D L, et al. Differential stress detemined from deformation induced micro -structures of the moine thrust zone. J. Geophys. Res. 1979,84(13): 7495-7509.
    [148] Weaver C E, Broekstra B R. Shale, slate metamorphism in Southern Appalachians. Amsterdam, Elsevier. 1984. Pp: 67-199.
    [149] Webb L E, Hacker B R, Ratschbacher L, et al. Thermo-chronologic constrains on deformation and cooling history of high- and ultrahigh- pressure rocks in the Qinling-Dabie orogcn, eastern China. Tectonics. 1999. 18(4):621-638.
    [150] Whitney G Role of water in the semetice-to illite reaction.Clays and Clay Minerals, 1990. 38:343-350
    [151] Wijbrans JR, McDougall I. ~(40)Ar/~(39)Ar dating of white mica from Alpine high-pressure metamorphic belt on Naxos (Greece): the resetting of the argon isotopic system. Contrib. Mineral. Petrol. 1986. 93: 187-194.
    [152] Xie Z, Chen J F, Zhou T X, et al. U-Pb ziron ages of the rocks in the North Dabie terrain, China. Scietia Geologica Sinica, 1998. 7(4): 501-511.
    [153] Xu J W and Zhu G Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review,
     1994,36:771-784.
    [154] Xu J W, Zhu G, Tong W X, et al. Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northern of the Pacific Ocean. Tectonophysics, 1987,134: 273-310.
    [155] Xu P, Liu F, Ye K, et al. Flake tectonics in the Sulu orogen in the eastern china as revealed by seismic tomography. Geophysical Research Letters, 2002,29(10) : 1-4.
    [156] Xu, J W (ed.). The Tangcheng-Lujiang Wrench Fault System. Chichester (UK): John Wiley & Sons Ltd. 1993. 1-74.
    [157] Xue F, Rowley D B, Tucker R D, et al. U-Pb zircon ages of granitoid rocks in the North Dabie comples, eastern Dabie Shan, China. Journal of Geology, 1997. 105:744-753.
    [158] Yang C and Hesse R. Clay minerals as indicatics of diagebetic and anchimetamorphism grade in an overthrust belt external domain of Southern Canadian Appalachinas. Clay Minerals, 1991,26:211-231.
    [159] Yang C, Hesse R. Clay minerals as indicatics of diagebetic and anchimetamorphism grade in an overthrust belt external domain of Southern Canadian Appalachinas. Clay Minerals, 1991,26:211-231.
    [160] Yang Z, Courtillot V, Ma X, et al. Jurassic Paleomagnetic constraints on the collision of the North and South China Blocks. Geophys Res. Lett., 1992,19(6) : 577-580.
    [161] Yao Y P, Ye k, Liu J B, et al. A transitional eclogite-to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, eastern China. Lithos, 2000, 52: 109-120.
    [162] Ye K, Yao Y P, Katayama I, et al. Large area lextent of ultrahigh pressure metamorphism in the Sulu ultrahigh pressure terrane of east china: new implications from coesite and omphacite inclusions in zircon granitic gneiss. Lithos. 52:157-164.
    [163] Yin A, Nie S Y. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia. Tectonics, 1993, 12(4) : 801-813.
    [164] Yoder H S, Eugster H P. Synthetic and natural muscovites. Geochim. Cosmochim. Acta., 1955. 8: 225-280
    [165] Zhang K J. North and South China collision along the eastern and southern North China margins. Tectonophysics, 1997,270: 145-156.
    [166] Zhang R Y, Liou J G, Cong B L. Ultrahigh-pressure metamorphism and decompressional P-T path of eclogites and country rocks from weihei, eastern China. The Island Arc. 1995,4:293-309.
    [167] Zhang Y Q, Dong S W, Shi W. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China. Tectonophysics, 2003. 363:243-258.
    [168] Zhang Zh M, Liou J G, Coleman, R G An outline of the plate tectonics of China. Geol Soc Am Bull, 1984, 95: 295-312.
    [169] Zhao X, Coe R S. Paleomagnetic constraints on the collision and rotation of North and South China. Nature, 1987,327:141-144.
    [170] Zulauf G, Palm S, Petschick R, et al. Element mobility and volumetric strain in brittle and brittle-viscous shear zones of the superdeep well KTB(Germany). Chemical Geology. 1999, 156: 135-149.
    [171] Zvyagin B B. Theory of the polymorphism of chlorites. Soviet Phys Crystallogr, 1963,8: 23-27.
    [173] 陈道公,汪相,等.北大别辉石岩成因:锆石微区年龄和化学组成.科学通报.2001,46(7) :586-590.
    [174] 陈沪生,张永鸿,徐师文,等.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社, 1999,Pp:160-162.
    [175] 陈江峰,谢智,刘顺生,等.大别造山带冷却年龄的39Ar/40Ar和裂变径迹年龄测定.中国科学(B辑), 1995. 25(10) :1086-1092.
    [176] 陈丕基.郯庐断裂巨大平移的时代与格局.科学通报,1988,33(4) :289-293.
    [177] 陈文,李曙光,张彦,等.苏鲁超高压变质带东海青龙山高压正片麻岩中白云母的40Ar/39Ar年代学研究. 地质论评.2003,49(5) :537-543.
    [178] 陈文寄,Harrison T M,Heizler M T,等.苏北-胶南构造混杂岩带冷却历史的多重扩散域.岩石学报.1992, 8(1) :1-17.
    [179] 陈文寄,计凤桔,李齐,等.沂沭断裂带断层泥中K-Ar、FT和TL体系年代学含义的初步研究.地震地 质,1988. 10(4) :191-198.
    [180] 陈宣华,王小凤,张青,等.郯庐断裂带形成演化的年代学研究.长春地质学院学报,2000. 30(3) : 215-220.
    [181] 陈义贤.辽河裂谷盆地断裂演化序次和油气藏形成模式.石油学报,1985,6(2) :1-11.
    [182] 戴俊生,李理,陆克政,等.渤海湾盆地构造对含油气系统的控制.地质论评,1999,45(2) :202-208.
    [183] 董树文,吴宣志,高锐,等.大别造山带地壳速度结构与动力学.地球物理学报,1998,41(3) :349-261.
    [184] 窦立荣,宋建国,王瑜.郯庐断裂带北段形成的年代学及其意义.地质论评,1996,42(6) :508-512.
    [185] 樊祺诚,刘若新,李惠民,等.汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学.科学通报,1998. 43(2) :133-137.
    [186] 葛宁洁,侯振辉,李惠民,等.大别造山带岳西沙村镁铁-超镁铁岩体的锆石U-Pb年龄.科学通报,1999. 44(19) :2110-2114.
    [187] 顾连兴,杜建国,翟建平,等.大别山榴辉岩退变质多硅白云母及地压计可用性讨论.矿物学报,2001. 21(2) :149-152.
    [188] 国家地震局地质研究所.郯庐断裂.北京:地震出版社,1987,83-141.
    [189] 国家地震局中国地震区划图编委会.中国及邻区地震震源机制图及说明书.北京:地震出版社.1991.
    [190] 简平,马昌前,杨坤光.大别造山带东部燕山晚期区域变质-岩浆活动与应变构造抬升的同位素年代学 证据.地球科学,1996. 21(5) :519-523.
    [191] 江在森,马宗晋,张希,等.GPS初步结果揭示的中国大陆水平应变场与构造变形.地球物理学报.2003, 346(3) :352-358.
    [192] 解习农,任建业,焦养泉,等.断陷盆地构造作用与层序样式.地质论评,1996,42(3) :239-244.
    [193] 金章东,朱金初,季峻峰,等.成矿流体对德兴斑岩铜矿床中伊利石结晶度的制约.中国科学(D辑), 2000. 30(5) :465-470
    [194] 靳是琴,李鸿超 编著.成因矿物学概论.吉林大学出版社.1984. Pp:119-120.
    [195] 劳秋元.郯庐断裂带前古生代、古生代的形成演化.见:构造地质论丛.地质出版社.1984. 3:80-93.
    [196] 李锦轶,杨天南,陈文,等.中国东部东海地区超高压变质岩构造变形事件的40Ar/39Ar定年与超高压变 质岩折返过程的重建.地质学报,2004. 78(1) :97-108.
    [197] 李军,王燮培.渤海湾盆地构造格架及演化.石油与天然气地质,1998,19(1) :63-68.
    [198] 李齐,陈文寄,马宝林,等.华北、扬子板块碰撞后热演化史的初步研究.地震地质,1995. 17(3) :193-203.
    [199] 李任伟,桑海清,张任祜,等.合肥盆地侏罗系沉积岩中高压-超高压变质岩物源年代学.科学通报, 2003,48(5) :480-485.
    [200] 李任伟,孙枢,李忠,等.高压-超高压岩石对合肥盆地侏罗系沉积的贡献.岩石学报,2002,18(4) : 526-530.
    [201] 李曙光,Jagoutz E,肖益林,等.大别山-苏鲁地体超高压变质年代学-Ⅰ.Sm-Nd同位素体系.中国科学 (D辑).1996,26(3) :249-257.
    [202] 李曙光,李惠民,陈移之,等.大别山-苏鲁地体超高压变质年代学-Ⅱ.锆石U-Pb同位素体系.中国科学 (D辑).1997,27(3) :200-206.
    [203] 李曙光,刘德良,陈移之,等.中国中部蓝片岩的形成时代.地质科学,1993,28(1) :21-27.
    [204] 李曙光,孙卫东,张宗清,李秋立.青岛仰口榴辉岩的Nd同位素不平衡及二次多硅白云母Rb-Sr年龄.科 学通报.2000,45(20) :2223-2227.
    [205] 李曙光,杨蔚.大别造山带深部地缝合线与地表地缝合线的解耦及大陆碰撞岩石圈楔入模型:中生代幔 源岩浆岩Sr-Nd-Pb同位素证据.科学通报.2002,47(24) :1898-1905.
    [206] 李武显,周新民.中国东南部晚中生代俯冲带探索.高校地质学报,1999,5(2) :164-169.
    [207] 李学明,李彬贤,张巽,等.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力学变质作用.中国科 学技术大学学报,1985,(增刊):254-261.
    [208] 李忠,刘少峰,张金芳,等.燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应.中国科学 (D辑).2003,33(10) :931-940.
    [209] 刘敦一,汤如富,周存亭,等.大别造山带核部桃园寨火山岩锆石U-Pb定年及其地质意义.地质学 报.2002,76(2) :217-221.
    [210] 刘福来,许志琴.南苏鲁超高压岩石含柯石英锆石中的流体包裹体.科学通报.2004,49(2) :181-189.
    [211] 刘茂强,杨丙中,邓俊国,等.伊通-舒兰地堑地质构造特征及其演化.北京:地质出版社,1993.
    [212] 刘若新 主编.中国新生代火山岩年代学与地球化学.北京:地震出版社.1992.
    [213] 刘贻灿,李曙光,徐树桐,等.大别山北部榴辉岩的Sm-Nd年龄测定及其对麻粒岩相退变质时间的制约. 地球化学,2001. 30(1) :79-87.
    [214] 刘永江,叶慧文,葛晓虹,等.阿尔金断裂变形岩激光微区40Ar/39Ar年龄.科学通报.2000. 45(19) :2101-2104.
    [215] 刘勇胜,袁洪林,高山,等.汉诺坝橄榄辉石岩包体锆石U-Pb年龄:97-158Ma岩浆底侵作用和麻粒岩相 变质作用之间的成因联系.科学通报,2004. 49(8) :790-797.
    [216] 卢造勋,夏怀宽.1992. 内蒙古东乌珠穆沁旗至辽宁东海地学断面.北京:地震出版社.
    [217] 陆克政,漆家福,戴俊生,等.渤海湾新生代含油气盆地构造模式.北京:地质出版社,1997.
    [218] 吕古贤,陈晶,李晓波,等.构造附加静水压力研究与含柯石英榴辉岩成岩深度测算.科学通报.1998, 43(24) :2590-2602.
    [219] 吕古贤,刘瑞珣,王方正,等.关于成岩成矿深度构造校正测算的理论基础、方法和实例.地质科学. 2003,38(4) :546-563.
    [220] 马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D 辑).2003,33(9) :817-827.
    [221] 马昌前,杨坤光,许长海,等.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理.岩石学报, 1999. 15(3) :379-395.
    [222] 马杏垣,刘昌锉,刘国栋.江苏响水至内蒙古满都拉地学断面说明书.北京:地质出版社,1991. Pp:55-62.
    [223] 毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测 得到的启示.中国科学(D辑).2003,33(4) :289-299.
    [224] 牛漫兰,朱光,刘国生,等.郯庐断裂带中南段中生代岩浆活动的构造背景与深部过程.地质科学,2002, 37(4) :393-404.
    [225] 牛漫兰,朱光,宋传中,等.郯庐断裂带中南段新生代玄武岩源区地幔特征及其演化.现代地质.2001, 15(4) :383-390.
    [226] 邱检生,王德滋,罗清华,等.鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年-以五莲分岭山火山机构为 例.高校地质学报.2001,7(3) :351-355.
    [227] 邱检生,王德滋,周金城,等.山东中生代橄榄安租岩系火山岩的地质-地球化学特征及岩石成因.地球 科学,1996,21(6) :546-552.
    [228] 任建业,陆永潮,李思田,等.伊舒地堑构造演化的沉积充填响应.地质科学,1999,34(2) :196-203.
    [229] 任有保,于有兰.1996. 沂水北部沂沐断裂带构造透镜体特征.山东地质,12(1) :76-83.
    [230] 商玉强,文琼英,张宝政.沂沐断裂带内部王氏组的沉积环境及构造意义.山东地质,1992,8(1) :30-41.
    [231] 邵济安,张履桥,李大明.华北克拉通元古代的三次伸展事件.岩石学报.2002,18(2) :152-160.
    [232] 沈修志,刘德良,薛爱民,等.华北南部盆地逆冲推覆构造特征及其与天然气(煤成气)的关系.南京大学 学报地球科学,1993,5(2) :200-206.
    [233] 施炜,张岳桥,董树文,等.山东胶莱盆地构造变形及形成演化-以王氏群和大盛群变形分析为例.地 质通报.2003,22(5) :325-334.
    [234] 宋传中,牛漫兰,刘国生,等.郯庐断裂带南段及邻区中、新生代盆地的反转机制.合肥工业大学学报 (自然科学版)2002,25(3) :325-330.
    [235] 苏良友.安徽合肥盆地石油地质特征探讨.安徽石油地质勘探,1983,7:23-33.
    [236] 苏尚国,周珣若,顾德林.山东沂水郯庐断裂带中段中生代火山岩特征及演化.地质论评,1999,45(增 刊):565-571.
    [237] 孙武城,徐杰,杨主恩,等.上海奉贤至内蒙古阿拉善左旗地学断面.北京:地震出版社.1992.
    [238] 汤家富,许卫.郯庐断裂带南段并无巨大平移-来自安徽境内的证据.地质论评,2002. 48(5) :449-456.
    [239] 万天丰,朱鸿,赵磊,等.郯庐断裂带的形成与演化:综述.现代地质.1996,10(2) :159-168.
    [240] 万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报,1996,2(1) :14-27.
    [241] 万天丰.山东省构造演化与应力场.山东地质,1992. 8(2) :70-101.
    [242] 王道轩,刘因,李双应,等.大别超高压变质岩折返至地表的时间下限:大别山北麓侏罗世砾岩中发现榴 辉岩砾石.科学通报,2001. 46(14) :1216-1220.
    [243] 王方正.高压、超高压变质岩形成深度讨论.地球科学.1996,21(1) :41-44.
    [244] 王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场.地学前缘,2002,9(2) :415-429.
    [245] 王清晨,刘景波,从柏林.构造超压能引起超高压变质作用吗?科学通报,1999,44(21) :2346-2350.
    [246] 王清晨,张儒瑗,从柏林,等.鲁东-苏北榴辉岩的构造特征及其折返机制.岩石学报.1992,8(2) :153-159.
    [247] 王小凤,李中坚,陈柏林,等著.郯庐断裂带.北京:地质出版社.2000.
    [248] 王元龙,张旗,王焰.宁芜火山岩的地球化学特征及其意义.岩石学报,2001,17(4) :565-575.
    [249] 王岳军,范蔚茗,等.北淮阳晚中生代火山岩定年及火山砾石地球化学:对大别灰色片麻岩隆升和中生 代地层格架的约束.科学通报.2002,47(20) :1528-1534.
    [250] 吴汉宁,常承法,刘椿,等.依据古地磁资料探讨华北和华南块体运动及其对秦岭造山带构造演化的影 响.地质科学,1990,(3) :201-214.
    [251] 吴跃东,侯明金,刘家去.合肥盆地东北缘白噩纪地质特征及沉积环境分析.安徽地质,1999,9(2) : 102-107.
    [252] 肖文交,周垗秀,杨振宇,等.大别-郯庐-苏鲁造山带复合旋转拼贴作用.地球科学进展,2000,15(2) : 147-153.
    [253] 邢历生,李中坚,王小凤,等.郯庐断裂带东侧华南地块逆时针旋转-古地磁新证据.地质力学学报. 1995,1(3) :31-37.
    [254] 徐嘉炜,马国锋.郯庐断裂带研究的十年回顾.地质论评.1992,38(4) :316-324.
    [255] 徐嘉炜.郯城-庐江平移断裂系统.构造地质论丛.1984,3:18-22.
    [256] 徐佩芬,刘福田,王清晨,等.大别-苏鲁碰撞造山带的地震层析成像研究-岩石圈三维速度结构.地球 物理学报,2000,43(3) :376-385.
    [257] 徐树桐,陈冠宝等.安徽省主要构造要素的变形和演化.北京:海洋出版社,1987,Pp:93-109.
    [258] 徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程.地质学报.1992,66(1) :1-14.
    [259] 徐树桐,刘贻灿,陈冠宝,等.大别山、苏鲁地区榴辉岩中新发现的微粒金刚石 科学通报.2003,48(10) : 1069-1075.
    [260] 徐夕生,周新民,王德滋.壳幔作用与花岗岩成因-以中国东南沿海为例.高校地质学报,1999. 5(3) : 241-250.
    [261] 许浚远.依舒地堑新生代构造演化.地球科学,1997,22(4) :406-410.
    [262] 许坤,潘耀丽,彭峰.辽河盆地下第三系层序分析.地层学杂志,1997,21(4) :267-273.
    [263] 许文良,王冬艳,王清海,等.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar.定年:对 岩石圈减薄时间的制约.地球化学.2004a,33(3) :221-231.
    [264] 许文良,王清海,王冬艳,等.华北克拉通东部中生代岩石圈减薄的过程与机制:中生代火成岩和深源 捕虏体证据.地学前缘.2004b,11(3) :309-317.
    [265] 许志琴,张泽明,刘福来,等.苏鲁高压-超高压变质带的折返构造及其拆返机制.地质学报,2003,77(4) : 433-450.
    [266] 许志琴.郯庐裂谷系概述.构造地质论丛.1984,3:39-46.
    [267] 薛爱民,金维浚,袁学诚.大别山北缘合肥盆地中、新生代构造演化.高校地质学报,1999,5(2) :157-163.
    [268] 闫竣,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源捕虏体:对中国东部岩石圈减薄时间制约的新证 据.科学通报,2003. 48(14) :1570-1574.
    [269] 杨经绥,许志琴,吴才来,等.含柯石英锆石SHRIMP U-Pb定年:胶东印支期超高压变质作用的证据. 地质学报,2002. 76(3) :354-372.
    [270] 杨坤光,马昌前,许长海,等.北淮阳构造带与大别造山带的差异性隆升.中国科学D辑,1999. 29(2) : 97-103.
    [271] 杨文采,程振炎,陈国九,等.苏鲁超高压变质带北部地球物理调查(Ⅰ)-深反射地震.地球物理学报, 1999,42(1) :41-52.
    [272] 杨晓勇,杨学明,刘德良,等.郯庐断裂带南段与大别-胶南造山带构造复合(叠加)的显微构造证据.地 球物理学报.1998,41:123-132.
    [273] 叶凯,从柏林,平岛崇男,等.山东海阳所麻粒岩向过渡榴辉岩转化的变质动力学过程及其构造意义.岩 石学报,1999. 15(1) :21-36.
    [274] 张德全,孙桂英.大别山天堂寨花岗岩的侵位时代及地质意义.岩石矿物学杂志.1990. 9(1) :31-37.
    [275] 张宏福,英基丰,徐平,等.华北中生代玄武岩中地幔橄榄石捕虏晶:对岩石圈地幔置换过程的启示. 2004,49(8) :784-789.
    [276] 张家声.郯庐剪切带的性质和意义.地球科学.1992. 17(4) :363-471.
    [277] 张家声.沂沭断裂带中段基底韧性变形带.地震地质,1983. 5(2) :11-24.
    [278] 张良田,黄洪.安徽中新生代陆相坳、断陷盆地的特征及演化浅析.中国区域地质,1989,(2) :129-136.
    [279] 张旗,简平,刘敦一,等.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D辑).2003, 33(4) :309-314.
    [280] 张拴宏,周显强.鲁西地区韧性剪切带显微构造研究及岩组分析.地质找矿论丛.1999,14(1) :39-47.
    [281] 张永军,黄钟瑾.张八岭推覆体特征及其成因机制.高校地质学报,1998,4(4) :444-451.
    [282] 张岳桥,赵越,董树文,等.中国东部及邻区早白垩世裂陷盆地构造演化阶段.地学前缘.2004,11(3) : 123-134.
    [283] 赵越,杨振宇,马醒华.东亚大地构造发展的重要转折.地质科学.1994,29(2) :105-119.
    [284] 赵宗举,杨树锋,陈汉林,等.合肥盆地基底构造属性.地质科学,2000,35(3) :288-296.
    [285] 郑建平,路凤香,O’Reilly S Y,等.华北东部地幔改造作用和置换作用:单斜辉石激光探针研究.中国科 学(D辑).2000,30(4) :373-382.
    [286] 郑建平,路凤香.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性.岩石学 报.1999,15(1) :65-74.
    [287] 郑亚东,Davis G S,王踪,等.燕山带中生代主要构造事件与板块构造背景问题.地质学报,2000,74(4) : 289-302.
    [288] 钟增球.剪切带的流体-岩石相互作用.地学前缘.1996,3(3-4) :209-215.
    [289] 周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄.高校地质学报.2003,9(2) :185-194.
    [290] 周进高,赵宗举,邓红婴.合肥盆地构造演化及含油气性分析.地质学报,1999,73(1) :15-24.
    [291] 周祖翼,许长海,Reiners P W,等.大别山天堂寨地区晚白垩世以来剥露历史的(U-Th)/He和裂变径迹分 析证据.科学通报.2003,48(6) :598-602.
    [292] 朱光,刘国生,Dunlap W J,等.郯庐断裂带同造山走滑运动的40Ar/39Ar年代学证据.科学通报,2004a, 49(2) :190-198.
    [293] 朱光,刘国生,牛漫兰,等.郯庐断裂带的平移运动与成因.地质通报.2003,22(3) :200-207.
    [294] 朱光,刘国生,牛漫兰,等.郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程.地震地质.2002b,24(2) :265-277.
    [295] 朱光,牛漫兰,刘国生,等.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件.地质学报,2002a 76(3) :323-334.
    [296] 朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的40Ar/39Ar年代学研究及其构造意义.中国科学(D辑), 2001a,31(3) :250-256.
    [297] 朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学.2004b,39(1) : 36-49.
    [298] 朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景.地质科学.2001b,36(3) :269-278.
    [299] 朱光,王勇生,牛漫兰,等.郯庐断裂带的同造山运动.地学前缘.2004c.11(3) :169-182.
    [300] 朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据.地质论评,1995. 41(5) :452-456.
    [301] 朱光,徐嘉炜.沂沐断裂带内盖层的剪切变形及其构造意义.长春地质学院学报.1995,25(3) :279-285.
    [302] 朱明新,王河锦.长沙-醴陵-浏阳一带冷家溪群及板溪群的甚低级变质作用.岩石学报,2001. 17(2) :291-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700