直接甲醇燃料电池内的两相流与热质传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动电话、个人数字设备、笔记本电脑等便携式电子产品的迅猛发展,目前现有的二次电池技术已无法满足日益增长的高能耗需求。直接甲醇燃料电池(DMFC)由于具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,因而已成为便携式设备最有前景的可替代电源之一
     目前国内外研究主要集中在工作温度60℃以上的DMFC,而手机、笔记本电脑等便携式电子产品需要在常温(25℃左右)下工作。因此,开展常温下DMFC的研究具有非常重要的意义。
     本文的工作主要分为两部分:一部分是对液相进料DMFC进行实验研究,另一部分是对空气自呼吸式DMFC进行实验研究。空气自呼吸式DMFC是液相进料DMFC的特殊情况,二者都有可能取代二次电池作为便携式电子设备的电源。
     首先,本文研究了液相进料DMFC内两相流动及其传输特性,主要内容包括:利用可视化技术研究了阳极和阴极流场内的两相流动与传输特性,研究了阳极流场两相流动阻力特性,进一步分析了阳极和阴极流场组合对电池性能的影响。主要结果如下:
     (1)研究了阳极流场内的两相流动与传输特性。在阳极蛇形流场中,流道中CO2气泡数量随着电流密度的增大而增多,低电流密度时,流道内以泡状流为主,中等电流密度时,泡状流开始转变成弹状流,高电流密度时,流道内开始出现段塞流,其它文献中并未出现。甲醇流量增大,流道内气泡数量减少,增强了甲醇的传质过程,但甲醇流量过高,会导致甲醇渗透增加,并且带走更多的热量,降低电池温度,导致电池性能下降。因此,选择合适的甲醇流量对低温运行的DMFC非常重要。实验发现蛇形流场不会发生“气体堵塞”现象,而高电流密度时平行流场和交指流场均会产生“气体堵塞”现象,平行流场的“气体堵塞”一般出现在流道与出口总管接口处,而交指流场的“气体堵塞”则一般出现在进口流道。
     (2)研究了阳极流场两相流动阻力特性。在小流量情况下,阳极蛇形流场进出口压降随着电流密度增大先升高后降低最后趋于稳定;在大流量情况下,蛇形流场进出口压降随电流密度增大一直增加直到稳定。随着甲醇浓度的增大,蛇形流场进出口压降有所减小,但是变化不大,说明甲醇浓度对阳极进出口压降的影响较小。在相同流量情况下,蛇形流场内的压降比平行流场和交指流场的大;随甲醇流速增大,蛇形流场和交指流场的压降增加幅度远较平行流场快。
     (3)研究了阴极流场内的两相流动与传输特性。在阴极蛇形流场中,放电开始阶段,流道内中下游产生水雾,然后才出现水滴,且优先出现在肋板和碳纸界面处;之后液态水的分布形成一个循环过程(水滴—水弹—水膜),流型主要是膜状流。恒电流放电时,相同放电时间,随着电流密度增加,流道内液态水增多;中低电流密度时,电压随放电时间逐渐下降,而高电流密度时,电压则先上升后下降。氧气流量增大,流道内液态水分布较少,保证了氧气往催化层的传输过程,性能变好。对于平行流场,高电流密度时,会发生“水淹”现象,增大氧气流量,延缓并减轻了“水淹”现象,电池性能有所提高。对于交指流场,氧气流量较低时,少部分进口流道会出现一些“水柱”,而氧气流量较高时,则不会出现这种现象。流道内发生水淹现象,导致氧气传质过程的恶化,电池性能迅速下降。因此,常温下阴极流场的水管理工作非常必要。
     (4)对于阳极流场,蛇形流场因其更易于排除C02气泡而性能最好,而平行和交指流场中则出现了CO2气泡堵塞流道的现象,影响了甲醇的传输,性能较差;对于阴极流场,平行流场下半部分流道出现了“水淹”现象,影响了氧气的传输,电池性能较差。对于阴极流场,蛇形和交指流场均能顺利排除水滴,性能比平行流场的好;交指流场能保证氧气的充足供应,高电流密度时比蛇形流场的电池性能好。蛇形流场作为阳极流场和交指流场作为阴极流场将是电池性能较好的流场组合形式之一,在室温25℃时,电池功率密度最高达到45mW.cm-2。
     其次,本文针对空气自呼吸式DMFC单电池,对开路阶段和放电阶段电池温度特性进行实验研究;接着采用可视化手段对阳极气泡和阴极水滴分布特性进行了研究;最后分析了集流板结构对空气自呼吸式DMFC性能的影响。得出的主要结论如下:
     (1)放置时间达到30min时,电池的各参数值(开路电压、阳极温差、阴极温差、甲醇溶液温差)基本上稳定,便可以进行数据采集;为了得到更准确的测量结果,可以适当的把放置时间增加到60min。电池温差随电流密度的增大而增大。当电流密度为20mA·cm-2时,温差先升高后降低;当电流密度为50mA·cm-2时,放电时间较短,并未出现温差降低的现象。甲醇溶液量越少,温差越高,电池性能越好,可以通过减小甲醇储液腔的容量来提高电池的性能。
     (2)在阳极孔型集流板中,随电流密度增加,呼吸孔内气泡增多,大多出现在孔的上半部分。相对于孔型集流板中,竖直放置平行集流板内CO2气泡排出少一个竖直方向的阻力,更易于气泡的排出,高电流密度时,平行集流板的电池性能要优于孔型集流板的电池。平行集流板流道竖直放置比水平放置时更容易排出CO2气泡,因而竖直放置时电池性能更好。
     (3)在阴极孔型集流板中,恒电流放电,放电开始阶段,水滴出现的较慢,而放电后期,水滴产生较快;水滴的分布不是均匀的,总在某些特定的位置出现。恒电流放电,在相同放电时间内,随着电流密度的增大,阴极侧的水增多。在高电流密度(大于50mA·cm-2)时,相对于孔型集流板,平行集流板更有利于氧气传输和水的排除,因而性能较好。
     (4)由于平行集流板(PACC)有利于CO_2的排出,所以PACC用作阳极集流板时电池的性能最佳。而由于孔型集流板(PECC-1)的开孔率较低所以不论它用作阳极还是阴极集流板时效果都不理想。当甲醇浓度为2mol·L-1寸,阴极采用孔型集流板(PECC-2)寸电池性能最好;当甲醇浓度为4mol·L~1时,电流密度较高时阴极采用PACC寸电池性能最好。
In recent years, with the rapid development of electric devices such as mobile phones, personal digital assistants and laptop computers, which demand much more power due to new functions, the present battery technology is unlikely to keep pace with these growing power demands. The air-breathing direct methanol fuel cell (DMFC), which is considered as promising substitution to the conventional power sources for portable devices because of its simple system, high energy density, environmental benignancy, fast refueling and low operating temperature, has been a research hotspot in the field of electrochemistry and energy science.
     Based on the literature survey, it is easy to find that many researches are focused on DMFC at the higher temperatures (>60℃). However, mobile phones, laptops and other portable electronic products work at ambient temperature of25℃. Therefore, studies on DMFC at room temperature have very great significance.
     The work of this paper is divided into two parts:the liquid-feed DMFC experimental and the experimental study of the air-breathing DMFC. The air-breathing DMFC is one category of DMFC without external pumps or other ancillary devices for fuel and oxidant supply. Both of them are likely to substitue the battery of portable electronic devices as the power.
     Firstly, a transparent DMFC was developed to visualize the two-phase flow and transport in the anode and cathode flow field. The main contents are drawn as follows:Two-phase flow and characterization of flow resistance in the anode flow field; Visualization of water flooding in the cathode flow field; Effect of the anode and cathode flow fields on the cell performance.
     (1) Investigation on two-phase flow and transport characteristics in the anode flow field were conducted. In the serpentine flow field, the quantity of CO2bubbles increased with the increase of current densities. At low current densities, bubble flow appeared in the anode flow field; at moderate current densities, a number of gas slugs formed, and then bubble flow changed into slug flow; at high current densities, plug flow appeared. As the methanol flow rates increased, the amount of the CO2 bubbles decreased, enhancing the mass transport process of methanol. However, higher methanol flow rate led to an increase of methanol crossover and to take away more heat. This eventually, resulted in a deterioration of cell performance. Therefore, it is significant to use an appropriate methanol flow rate for the portable DMFCs operating at ambient temperature. Channel-blocking phenomenon caused by CO? gas was found in the parallel flow field and interdigitated flow field, but it was not found in the serpentine flow field. The channel-blocking phenomenon was found in the interface of the flow channel and outlet pipes of the parallel flow field and it was found in the inlet flow channel of the interdigitated flow field.
     (2) Characterization of flow resistance in the anode flow field was experimentally studied. At low methanol flow rates, the pressure drop enhanced at first, and then decreased and eventually to be stable with increasing current density. Methanol concentration had a significant influence on the cell performance and less effect on the pressure drop. The pressure drop in serpentine flow field was larger than that in parallel flow field and interdigitated flow field under the same operating condition. With the increase in the methanol solution flow rate, pressure drop in serpentine and interdigitated flow field increased, which was lager than that in parallel flow field.
     (3) Two-phase flow and transport characteristics in the anode flow field were experimentally investigated. The water fog appeared in the middle and lower reaches of the anode flow field in the serpentine flow field at the beginning of discharge test; then the water droplets emerged around the corner of the channel ribs; afterwards, the distribution of liquid water formed a cyclic process (water droplet-water slug-water membrane). For the constant current discharge test, at the same discharge time, the amount of water droplets increased with the increase of current density. At low and moderate current densities, the cell voltage decreased with discharge time; while, at high current densities, the cell voltage increased at first and then decreased. With increasing oxygen flow rate, the distribution of water in the flow field became smaller, thus enhancing the mass transfer of the oxygen and improving the cell performance. At high current densities, channel-blocking phenomenon caused by liquid water was found in the parallel flow field. With a higher oxygen flow rate, this phenomenon could be mitigated. For the interdigitated flow field, some water slugs appeared in part of the inlet channel only at low oxygen flow rate, resulting in a small effect on the cell performance.
     (4) Effect of the anode and cathode flow fields on the performance of DMFC was experimentally investigated. The serpentine flow field (SFF) as anode flow field had a positive effect on cell voltage and power for the better removal of COt bubbles. It was also found that CO2bubbles blocked the flow channels in the parallel flow field (PFF) and interdigitated flow field (IFF) at high current densities, leading to a worse cell performance. For the cathode flow field, it was found that water drops blocked the flow channels in the PFF, but this channel-blocking phenomenon was never found in the SFF and IFF. The DMFC equipped with the SFF and IFF yielded much better performance than that with the PFF. The IFF enhanced oxygen transport and the cell gained a better performance than that with the SFF at high current densities. It could be deduced that the SFF as the anode flow field and the IFF as the cathode flow field would be one of the best choice for the DMFC with a maximum power density of45mW·cm-2being achieved at25℃
     Secondly, a transparent air-breathing DMFC was developed to visualize the two-phase flow and transport process in the anode and cathode flow field. The main study contents include the transient voltage and temperature characteristics of the DMFC in the test and the visualization of the CO2bubble behavior in the anode current-collector and water droplets accumulation in the cathode current-collector. The effect of the anode and cathode current-collectors on the cell performance was also investigated. The main results are summarized as follow:
     (1) The transient voltage and temperature of the passive air-breathing DMFCs were investigated experimentally at different discharging current densities and methanol solution quantities. The cell performance became better with the longer waiting time, but became stable when the parameters (open circuit voltage, anode temperature difference, cathode temperature difference and methanol solution temperature difference) approch to steady. When the waiting time was longer than 30min, all of the parameters of cell were basically stable, and then the polarization data could be collected with different concentration of methanol solution. In order to get a more accurate measurement results, the waiting time could be properly extended to60min. The temperature difference increased with an increase in the discharging current density. At the low current density (20mA·cm-2), the temperature difference increased at first and decreased subsequently. At the high current density (50mA·cm-2), the temperature difference did not fall down because of the short discharging time. At the same concentration of methanol solution, with a smaller methanol solution quantity, the cell performance became better due to the higher temperature difference.
     (2) Visualization of the CO2bubble behavior in the anode current-collector was investigated. In the perforated current collector, with the increase of current density, the quantity of CO2gas bubbles increased progressively, most of them were presented at the upper portion of the breathing holes. Since the CO2gas bubbles could depart from the parallel current-collector more easily than that from the perforated current collector, the cell performance with parallel current-collector was better than that with perforated current collector. The parallel current-collector placed vertically could eliminate CO2bubbles more efficiently than that placed horizontally. Therefore, it gained a better performance.
     (3) The water droplets accumulation in the cathode current-collector was visualized during the constant current discharge test. At the beginning of discharge test, the generation rate of water droplets was slowly. However, at the end of discharge test, the generation rate of water droplets was fast. The distribution of the water droplets was not uniform. Water droplets always emerged at some preferential locations. For the constant current discharge test, at the same discharge time, with the increase of current density, the amount of water droplets increases. At the high current density (>50mA·cm-2), parallel current-collector was more efficient to remove water than the perforated current collector.
     (4) The effect of the current-collector structure on the performance of an air-breathing DMFC was investigated. Parallel current-collector (PACC) as anode current-collector had a positive effect on cell voltage and power density. For the cathode current-collector structure, the performance of DMFC increased at the methanol concentration of2mol·L-1for perforated current collector (PECC-2). But the methanol concentration of4mol·L-1led to an enhancement of cell performance that adopting PACC as cathode current-collector.
引文
[1]隋智通,隋升,罗冬梅.燃料电池及其应用[M].北京,冶金工业出版社,2004.
    [2]王振,韩吉田,王济浩,等.基于MATLAB的质子交换膜燃料电池仿真实验系统[J].山东大学学报(工学版),2007,37(2):38-42.
    [3]王振,康兴娜,韩吉田,等.质子交换膜燃料电池动态特性仿真[J].山东大学学报(工学版),2008,38(5):50-55.
    [4]黄倬,屠海令,张冀强,等.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社,2005.
    [5]衣宝廉.燃料电池—原理·技术·应用[M].北京,化学工业出版社,2003.
    [6]X.Ren, Y.P. Zelena, S.Thomass, et al. Recent advance in direct methanol fuel cells at Los Alamos National Laboratory[J]. Journal of Power Sources,2000,86:111-116.
    [7]A.K.Shukla, M.K.Ravikumar, K.S.Gandhi. Direct methanol fuel cells for vehicular application[J]. Journal of Solid State Electrochemistr,1998,18(6):44-46.
    [8]J.Pavio, J.Hallmark, J.Bostaph, et al. Developing micro-fuel cells for wireless communication[J]. Fuel Cells Bulletin,2002,43:8-11.
    [9]吴韬,齐亮,郭建伟,等.直接甲醇燃料电池在军事领域上的应用[J].自动测量与控制,2007,26(1):79-81.
    [10]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [11]冯向法.甲醇·氨和新能源经济[M].北京:化学工业出版社,2010.
    [12]王林山,李瑛.燃料电池[M].北京:冶金工业出版社,2005.
    [13]M.G.Zhou直接甲醇燃料电池.[2011-08-31]http://www.hqew.com/tech/sheji/ 408749.html.
    [14]G.Q.Lu, C.Y.Wang. Electrochemical and flow characterization of a direct methanol fuel cell [J]. Journal of Power Sources,2004,134 (1):33-40.
    [15]K.Scott, W.Taama, J.Cruickshank. Performance of a direct methanol fuel cell[J]. Journal of Applied Electrochemistry,1998,28 (3):289-297.
    [16]K.Scott, W.Taama, S.Kramer, et al. Limiting current behaviour of the direct methanol fuel cell[J]. Electrochimica Acta,1999,45 (6):945-957.
    [17]A.K.Shukla, P.A.Christensen, A.J.Dickinson, et al. A liquid-feed solid polymer electrolyte direct methanol fuel cell operating at near-ambient conditions[J]. Journal of Power Sources,1998, 76:54-59.
    [18]A.K.Shukla, C.L.Jackson, K.Scott, et al. An improved-performance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions[J]. Electrochimica Acta,2002,47 (21):3401-3407.
    [19]K.Sundmacher, T.Schultz, S.Zhou, et al. Dynamics of the direct methanol fuel cell (DMFC):experiments and model-based analysis[J]. Chemical Engineering Science,2001,56 (2):333-341.
    [20]B.Gurau, E.S.Smotkin. Methanol crossover in direct methanol fuel cells:a link between power and energy density[J]. Journal of Power Sources,2002,112 (2):339-352.
    [21]Z.G.Qi, A.Kaufman. Open circuit voltage and methanol crossover in DMFCs [J]. Journal of Power Sources,2002,110 (1):177-185.
    [22]J.B.Ge, H.T.Liu. Experimental studies of a direct methanol fuel cell [J]. Journal of Power Sources,2005,142 (1):56-69.
    [23]魏昭彬,刘建国,乔亚光,等.直接甲醇燃料电池性能[J].电化学,2001,7(2):228-232.
    [24]郭航,马重芳,汪茂海,等.热物理参数对燃料电池内传质过程的影响[J].工程热物理学报,2004,25(1):148-150.
    [25]丁玉栋,朱恂,包立炯,等.液相进料直接甲醇燃料电池性能的实验研究[J].动力工程,2006,26(4):599-603.
    [26]林才顺,张红飞,王淑燕,等.直接甲醇燃料电池电化学性能[J].北京科技大学学报,2007,29(5):486-489.
    [27]D.H.Jung, C.H.Lee, C.S.Kim, et al. Performance of a direct methanol polymer electrolyte fuel cell[J]. Journal of Power Sources,1998,71:169-173.
    [28]刘建国,衣宝廉Nafion膜厚度对直接甲醇燃料电池性能的影响[J].电源技术,2002,26(1):17-20.
    [29]蒋淇忠,马紫峰,刘振泰,等.液相进料直接甲醇燃料电池性能研究[J].高校化学工程学报,2001,15(1):46-51.
    [30]李建玲,毛宗强,徐景明.直接甲醇燃料电池性能研究[J].电化学,2002,32(2):72-74.
    [31]李建玲,毛宗强,徐景明.直接甲醇燃料电池膜电极电化学性能影响因素[J].电池, 2002,32(1):70-71.
    [32]A.K.Shukla, C.L.Jackson, K.Scott, et al. A solid-polymer electrolyte direct methanol fuel cell with a mixed reactant and air anode[J]. Journal of Power Sources,2002,111 (1):43-51.
    [33]H.Yang, T.S.Zhao. Addition of non-reacting gases to the anode flow field of DMFCs leading to improved Performance[J]. Electrochemistry Communications,2004,6:1098-1103.
    [34]P.Argyropoulos, K.Scott, W.M.Taama. Dynamic response of the direct methanol fuel cell under variable load conditions [J]. Journal of Power Sources,2000,87(1-2):153-161.
    [35]P.Argyropoulos, K.Scott, W.M.Taama. The effect of operating conditions on the dynamic response of the direct methanol fuel cell[J]. Electrochimica Acta,2000,45 (12):1983-1998.
    [36]P.Argyropoulos, K.Scott, W.M.Taama. An investigation of scale-up on the response of the direct methanol fuel cell under variable load conditions[J]. Journal of Applied Electrochemistry, 2001,31 (1):13-24.
    [37]汪茂海,郭航,马重芳,等.直接甲醇燃料电池动态性能的研究[J].中国电机工程学报,2005,25(6):161-165.
    [38]廖强,朱小伟,朱恂,等.质子交换膜燃料电池可视化研究进展[J].化工进展,2007,26(9):1213-1222.
    [39]P.Argyropoulos, K.Scott, W.M.Taama. Gas evolution and power performance in Direct Methanol Fuel Cells[J]. Journal of Applied Electrochemistry,1999,29:661-669.
    [40]P.Argyropoulos, K.Scott, W.M.Taama. Carbon Dioxide Evolution in Direct Methanol Fuel Cells[J]. Electrochimica Acta,1999,44:3575-3584.
    [41]K.Scott, W.M.Taama, P.Argyropoulos. Engineering aspects of the direct methanol fuel cell system[J]. Journalof Power Sources,1999,79:43-59.
    [42]K.Scott, W.M.Taama, P.Argyropoulos. Material aspects of the liquid feed direct methanol fuel cell[J]. Journal of Applied Electrochemistry,1998,28:1389-1397.
    [43]H.Yang, T.S.Zhao. Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells[J]. Electrochimica Acta,2005,50 (16-17):3243-3252.
    [44]C.W.Wong, T.S.Zhao, Q.Ye, et al. Transient capillary blocking in the flow field of a micro-DMFC and its effect on cell performance [J]. Journal of The Electrochemical Society, 2005,152 (8):A1600-A1605.
    [45]郭航,贾杰林,汪茂海,等DMFC两相流及其对传质影响的研究[J].工程热物理学报, 2007,28(1):101-103.
    [46]叶芳,孔佳,郭航,等.直接甲醇燃料电池三通道蛇形阳极流场两相流研究[J].工程热物理学报,2009,30(9):101=]03.
    [47]K.Sundmacher, K.Scott. Direct methanol polymer electrolyte fuel cell:Analysis of charge and mass transfer in the vapour-liquid-solid system[J]. Chemical Engineering Science,1999,54: 2927-2936.
    [48]M.M.Mench, S.Boslet, S.Thynell, et al. Experimental study of a direct methanol fuel cell[C]// Proc. of the symposium on direct methanol fuel cells, the 199th Electrochemical Society Proceedings Series, Princeton,2001.
    [49]J.Nordlund, C.Picard, E.Birgersson, et al. The design and usage of a visual direct methanol fuel cell[J]. Journal of Applied Electrochemistry,2004,34 (8):763-770.
    [50]Q.Liao, X.Zhu, X.Y.Zheng, et al. Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC[J]. Journal of Power Sources,2007,171:644-651.
    [51]朱恂,郑雪艳,丁玉栋,等.直接甲醇燃料电池阳极两相流动可视化实验[J].电源技术2007,31(11):856=860.
    [52]何健烽,章渊昶,朱菊香,等.直接甲醇燃料电池阳极通道内气泡行为[J].化工进展,2010,29(5):831-838.
    [53]H.Yang, T.S.Zhao, P.Cheng. Characteristics of gas-liquid two-phase flow patterns in miniature channel having a gas permeable sidewall[C]. International Mechanical Engineering Congress and Exhibition. New Orleans, USA,2002.
    [54]H.Yang, T.S.Zhao. In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields[J]. Journal of Power Sources,2005,139:79-90.
    [55]T.Bewer, T.Beckmann, H.Dohle. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution[J]. Journal of Power Sources, 2004,125:1-9.
    [56]B.R.Fu, C.Pan. Flow pattern transition instability in a microchannel with CO2 bubbles produced by chemical reactions[J]. International Journal of Heat and Mass Transfer,2005,48 (21-22):4397-4409.
    [57]赵建福,郭航,叶芳,等DMFC内部气液两相流动与电性能的短时落塔实验研究[J].空间科学学报,2008,28(1):17-21.
    [58]郭航,赵建福,律翠萍,等.短时微重力条件下燃料电池性能实验研究[J].工程热物理学报,2008,29(5):865-867.
    [59]K.Tuber, D.Pocz, C.Hebling, et al. Visualization of water buildup in the cathode of a transparent PEM fuel cell[J].Journal of Power Sources.2003,124:403-414.
    [60]X.GYang, F.Y.Zhang, A.L.Lubawy, et al. Visualization of Liquid Water Transport in a PEFC[J].Electrochemical and Solid-State Letters.2004,7 (11):A408-A411.
    [61]N.Pekula, K.Heller, P.A.Chuang, et al. Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005, 542 (1-3):134-141.
    [62]F.Y.Zhang, X.G.Yang, C.Y.Wang. Liquid Water Removal from a Polymer Electrolyte Fuel Cell[J]. Journal of The Electrochemical Society,2006,153 (2):A225-A232.
    [63]X.Liu, H.Guo, C.F.Ma.Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells[J]. Journal of Power Sources,2006,156:267-280.
    [64]X.Liu, H.Guo, F.Ye, et al. Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells[J]. Electrochimica Acta,2007,52:3607-3614.
    [65]刘璿,郭航,叶芳,等.质子交换膜燃料电池流道淹没与传质强化[J].工程热物理学报,2006,27(S2):53-56.
    [66]K.Nishida, S.Tsushima, K.Teranishi, et al. Visualization of microscopic behavior and promotion of water removal in a porous electrode of polymer electrolyte fuel cell化学工学论文集,2007,33(2):181-185.
    [67]T.Ous, C.Arcoumanis.Visualisation of water droplets during the operation of PEM fuel cells[J]. Journal of Power Sources,2007,173:137-148.
    [68]F.B.Weng, A.Su, C.Y.Hsu. The study of the effect of gas stoichiometric flowrate on the channel flooding and performance in a transparent fuel cell[J]. International Journal of Hydrogen Energy,2007 (32):666-676.
    [69]G.Q.Lu, F.Q.Liu, C.Y.Wang. Water Transport Through Nafion 112 Membrane in DMFCs[J]. Electrochemical and Solid-State Letters,2005,8(1):A1-A4.
    [70]丁玉栋,朱恂,廖强,等.直接甲醇燃料电池阴极水淹过程实验研究[J].工程热物理学报,2009,30(4):625-630.
    [71]J.H.Nam, M.Kaviany. Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium[J]. International Journal of Heat and Mass Transfer,2003, 46 (24):4595-4611.
    [72]S.Litster, D.Sinton, N.Djilali. Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers[J]. Journal of Power Sources.2006,154 (1):95-105.
    [73]林才顺,靳尉仁.直接甲醇燃料电池用流场的研究进展[J].湿法冶金,2005,24(4):187-191.
    [74]T.S. Zhao, C. Xu. R. Chen, et al. Mass transport phenomena in direct methanol fuel cells[J]. Progress in Energy and Combustion Science,2009,35:275-292.
    [75]A.S.Arico, P.Creti, V.Baglio, et al. Influence of flow field design on the performance of a direct methanol fuel cell[J]. Journal of Power Sources,2000,91 (2):202-209.
    [76]M.Kunimatsu, T.Shudo, Y.Nakajima. Study of performance improvement in a direct methanol fuel cell[J]. JSAE Review,2002,23 (1):21-26.
    [77]K.Tuber, A.Oedegaard, M.Hermann, et al. Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells [J]. Journal of Power Sources,2004, 131 (1-2):175-181.
    [78]C.Xu, T.S.Zhao. A new flow field design for polymer electrolyte-based fuel cells[J]. Electrochemistry Communications,2007,9:497-503.
    [79]Y.F.Zhang, P.Zhang, Z. Y.Yuan, et al. A tapered serpentine flow field for the anode of micro direct methanol fuel cells[J]. Journal of Power Sources,2011,196:3255-3259.
    [80]C.W.Wong, T.S.Zhao, Q.Ye, et al. Experimental investigations of the anode flow field of a micro direct methanol fuel cell[J]. Journal of Power Sources,2006,155 (2):291-296.
    [81]S.Y.Hwang, H.I.Joh, M.A.Scibioh, et al. Impact of cathode channel depth on performance of direct methanol fuel cells[J]. Journal of Power Sources,2008,183:226-231.
    [82]郭航.质子交换膜直接甲醇燃料电池极板及其流床的研究[D].西安:西安交通大学能源与动力工程学院,2003.
    [83]G.B.Jung, A.Su, C.H.Tu, et al. Effects of cathode flow fields on direct methanol fuel cell-simulation study [J]. Journal of Power Sources,2007,171:212-217.
    [84]T.Shudo, K.Suzuki. Performance improvement in direct methanol fuel cells using a highly porous corrosion-resisting stainless steel flow field[J]. International Journal of Hydrogen Energy, 2008,33:2850-2856.
    [85]J.Y.Chang, Y.D.Kuan, S.M.Lee, et al. Characterization of a liquid feed direct methanol fuel cell with Sierpinski carpets fractal current collectors [J]. Journal of Power Sources,2008,184: 180-190.
    [86]V. B.Oliveira, C.M.Rangel, A.M.F.R.Pinto. Effect of anode and cathode flow field design on the performance of a direct methanol fuel cell[J]. Chemical Engineering Journal,2010,157 (1): 174-180.
    [87]A.Faghri, Z.Guo. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling[J]. International Journal of Heat and Mass Transfer,2005,48: 3891-3920.
    [88]T.S.Zhao, R.Chen, W.W.Yang, et al. Small direct methanol fuel cells with passive supply of reactants[J]. Journal of Power Sources,2009,191:185-202.
    [89]郭航,吴晓辉,叶芳,等.空气自呼吸式燃料电池动态性能传质影响实验研究[J].工程热物理学报,2010,31(7):1178-1180.
    [90]X.Q.Cao, J.T.Han, Z.T.Yu, et al. Investigation of passive direct methanol fuel cell (DMFC) at the open circuit condition[J]. Advanced Materials Research,2012,457:156-160.
    [91]T.Shimizu, T.Momma, M.Mohamedi, et al. Design and fabrication of pumpless small direct methanol fuel cells for portable applications[J]. Journal of Power Sources,2004,137:277-283.
    [92]D.Kim, E.A.Cho, S.A.Hong, et al. Recent progress in passive direct methanol fuel cells at KIST[J]. Journal of Power Sources,2004,130:172-177.
    [93]J.G.Liu, T.S.Zhao, R.Chen, et al. Effect of methanol concentration on passive DMFC performance[J]. Feature article in Fuel Cell Bulletin,2005:12-17.
    [94]J.G.Liu, T.S.Zhao, R.Chen, et al. The effect of methanol concentration on the performance of a passive DMFC[J]. Electrochemistry Communications,2005,7:288-294.
    [95]Y.J.Kim, B.Bae, M.A.Scibioh, et al. Behavioral pattern of a monopolar passive direct methanol fuel cell stack[J]. Journal of Power Sources,2006,157 (1):253-259.
    [96]曾毓群,陈杰,许瑞,等.甲醇浓度对空气自呼吸式直接甲醇燃料电池性能的影响[J].中国有色金属学报,2005,15(9):1441-1445.
    [97]B.K.Kho, B.C.Bae, M.A.Scibioh, et al. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells[J]. Journal of Power Sources,2005,142 (1-2): 50-55.
    [98]R.Chen, T.S.Zhao. Performance characterization of passive direct methanol fuel cells[J]. Journal of Power Sources,2007,167 (2):455-460.
    [99]Z.Guo, Y.Cao. A Passive Fuel Delivery System for Portable Direct Methanol Fuel Cells[J]. Journal of Power Sources,2004,132 (1-2):86-91.
    [100]Z.Guo, A.Faghri. Development of a 1 W passive DMFC[J]. International Communications in Heat and Mass Transfer,2008,35 (3):225-239.
    [101]M.A.Abdelkareem, N.Morohashi, N.Nakagawa. Factors affecting methanol transport in a passive DMFC employing a porous carbon plate[J]. Journal of Power Sources,2007,172 (2): 659-665.
    [102]Y.Yang, Y.C.Liang. A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension[J]. Journal of Power Sources,2007,165 (1):185-195.
    [103]J.G.Liu, T.S.Zhao, Z.X.Liang, et al. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells[J]. Journal of Power Sources,2006,153:61-67.
    [104]林才顺,王新东,张红匕,等.扩散层PTFE载量对空气自呼吸式直接甲醇燃料电池性能的影响[J].化工新型材料.2006,34(12):44-47.
    [105]H.K.Kim, J.M.Oh, J.H.Kim, et al. Membrane electrode assembly for passive direct methanol fuel cells[J]. Journal of Power Sources,2006,162 (1):497-501.
    [106]Y.H.Pan. Advanced air-breathing direct methanol fuel cells for portable applications[J]. Journal of Power Sources,2006,161 (1):282-289.
    [107]K.Y.Song, H.K.Lee, H.T.Kim. MEA design for low water crossover in air-breathing DMFC[J]. Electrochimica Acta,2007,53:637-643.
    [108]R.Chen, T.S.Zhao. A novel electrode architecture for passive direct methanol fuel cells[J]. Electrochemistry Communications,2007,9:718-724.
    [109]J.Liu, G.Sun, F.Zhao, et al. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC[J]. Journal of Power Sources,2004,133:175-180.
    [110]刘建国,顾军,于涛等.空气自呼吸式直接甲醇燃料电池的环境适应性研究[J].电化学.2008,14(2):159-165.
    [111]叶丁丁,朱恂,李俊,等.空气自呼吸式DMFC水滴积聚及对放电性能的影响[J].工程热物理学报,2010,31(1):130-132.
    [112]W.M.Yang. S.K.Chou, C.Shu. Effect of current-collector structure on performance of passive micro direct methanol fuel cell[J]. Journal of Power Sources,2007,164:549-554.
    [113]R.Chen, T.S.Zhao. Porous current collectors for passive direct methanol fuel cells[J]. Electrochimica Acta,2007,52:4317-4324.
    [114]R.Chen, T.S.Zhao, J.G.Liu. Effect of cell orientation on the performance of passive DMFCs[J]. Journal of Power Sources,2006,157:351-357.
    [115]C.Litterst, S.Eccarius, C.Hebling, et al. Increasing μDMFC efficiency by passive CO2 bubble removal and discontinuous operation[J]. Journal of Micromech. Microeng.2006,16 (9): S248-S253.
    [116]Y.J.Chuang, C.C.Chieng, C.Pan, et al. A spontaneous and passive waste-management device (PWMD) for a micro direct methanol fuel cell[J]. Journal of Micromech. Microeng,2007,17 (5):915-922.
    [117]X.Q.Cao, J.T.Han, Z.T.Yu, et al. Visualization study of CO2 bubble behavior in passive direct methanol fuel cell[J]. Advanced Materials Research,2012,457:98-101.
    [118]C.Y.Chen, P.Yang. Performance of an air-breathing direct methanol fuel cell[J]. Journal of Power Sources,2003,123:37-42.
    [119]A.Blum, T.Duvdevani, M.Philosoph, et al. Water-neutral micro direct-methanol fuel cell (DMFC) for portable application[J]. Journal of Power Sources,2003,117:22-25.
    [120]Q.Z.Lai, G.P.Yin, J. Zhang, et al. Influence of cathode oxygen transport on the discharging time of passive DMFC[J]. Journal of Power Sources,2008,17 (1):458-463.
    [121]赖勤志,尹鸽平,工振波.空气自呼吸式直接甲醇燃料电池的性能影响因素研究[J].高校化学工程学报,2009,123:756-761.
    [122]V.Mehta, J.S.Cooper. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources,2003,114 (1):32-53.
    [123]H.Allen, C.Tapas, S.Priscila. Bipolar plates for PEM fuel cells:A review[J]. International journal of hydrogen energy,2005,30:1297-1302.
    [124]杨春,王金海,谢晓峰,等.表面改性金属双极板在直接甲醇燃料电池中的应用[J].化工学报,2011,62(S1):1-2.
    [125]Y.L.Zhu, C.Liu, J.S.Liang, et al. Investigation of the effects of compression pressure on direct methanol fuel cell[J]. Journal of Power Sources,2011,196:264-269.
    [126]T.A.Zawodninski, T.E.Springer, F.Uribe, et al. Characterization of polymer electrolytes for fuel cell application[J]. Solid State Ionics,1993,60(1-3):199-211.
    [127]张健,尹鸽平,邵玉艳,等.直接甲醇燃料电池活化过程中膜电极变化[J].稀有金属材料与工程,2008,37(3):476-479.
    [128]J.G.Collier, J.R.Thome. Convective boiling and condensation[M]. Oxford, Clarendon Press,1994.
    [129]V.P.Carey. Liquid-vapor phase-change phenomena:An introductionto the thermophysics of vaporization and condensation processesin heat transfer equipment[M]. Washington, Hemisphere Pub. Corp.,1992.
    [130]H.Yang, T.S.Zhao, Q.Ye. Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells[J]. Journal of Power Sources,2005,142:117-124.
    [131]P.Argyropoulos, K.Scott, W.M.Taama. Pressure drop modeling for liquid feed directmethanol fuel cells:Part I. Model development[J]. Chemical Engineering Journal,1999, 73:217-227.
    [132]P.Argyropoulos, K.Scott, W.M.Taama. Pressure drop modeling for liquid feed direct methanol fuel cells:Part Ⅱ. Model based parametric analysis [J]. Chemical Engineering Journal, 1999,73:229-245.
    [133]王江,施明恒,蒋杰,等.直接甲醇燃料电池阳极流道两相流动的拟沸腾模型(I)流动压力降的计算[J].工程热物理学报,2006,27(2):289-291.
    [134]丁玉栋,廖强,朱恂,等.DMFC阳极流动阻力特性实验研究[J].工程热物理学报,2008,29(11):1185-1189.
    [135]E.P.Bruce, M.P.John, P.O.John. The properties of gases and liquids [M]. McGraw-Hill Companies,2001.
    [136]叶丁丁,廖强,朱恂,等.被动式直接甲醇燃料电池运行温度特性[J].电源技术,2009,133(10):853-856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700