下填充封装过程的宏介观多尺度建模与计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下填充过程对倒装芯片封装过程至关重要,它直接影响了封装的结构和热可靠性。采用数值模拟的方法预测并分析下填充封装过程,对于优化成型过程,提高封装的可靠性都具有重要的意义。现有的下填充成型过程模拟以二维模型为主,三维模型尚不完善,而且关于下填充成型过程中毛细驱动力作用机理的认识也不够清楚。另一方面,对下填充过程中多相流以及悬浮固体颗粒再分布等介观问题,传统方法难以准确描述多相界面作用,不能真正反映颗粒与熔体之间的相互作用关系,无法准确考虑多形态颗粒的分布形式,有必要采用更有效的方法分析下填充封装中的介观过程。
     以下填充封装过程为研究对象,本文从宏、介观两个层次研究了芯片塑封下填充成型过程模拟的理论与方法。在宏观过程模拟方面,主要工作有:
     (1)研究了塑封下填充工艺中的毛细作用机理,提出了“互激励”毛细作用模型,认为壁面非平衡黏附力和自由界面表面张力都是毛细作用不可或缺的组成部分,这两种力在毛细作用过程中互相协同、彼此竞争,构成了毛细作用对立统一的两个方面。基于此模型采用分层计算方法实现了静态毛细界面计算的数值方法和动态毛细流动计算的数值方法,并通过平行平板和毛细管毛细实验对所提出的模型和方法进行了验证。
     (2)基于提出的“互激励”毛细模型,采用三维N-S方程,结合Kamal固化反应模型和广义Cox-Merz黏度模型,建立了塑封下填充成型的宏观物理模型。采用SUPG/PSPG计算格式建立了稳定的有限元求解过程,实现塑封成型中非牛顿流动、固化反应以及包含固化放热的成型温度变化的物理过程;
     在介观过程计算方面,主要的工作有:
     (3)基于扩展的格子波尔兹曼(LBM)伪势模型建立了下填充介观多相流充填模拟过程,研究了封胶熔体的表面张力,及其与硅芯片、基板以及焊点壁面润湿性能对下填充过程的影响,考察了焊点间距以及边界通道对充填过程一致性的影响,并分析了布胶方式对边界绕流作用的影响;
     (4)基于Ladd壁面模型建立了下填充颗粒悬浮介观模型,一方面研究了成型过程中不同剪切速率以及固体颗粒形状等因素对剪切迁移影响,另一方面研究了固体颗粒密度,颗粒形状以及封胶基体黏度对颗粒沉淀行为的影响。
Underfill is an important process in flip-chip encapsulation because of its great impacton the reliability of electronic packagings. Numerical prediction of underfill is beneficialto optimize the encapsulation process and improve the quality of packagings. Existingunderfill molding is mainly two dimensional, and the three dimensional is not satisfied.The mechanism of capillary action in underfill is not well understood. Furthermore, themultiphase phenomenon and particle filler redistribution in underfill could not be analyzedexactly, as the force of complex interface is poorly characterized, the interaction betweenparticles and fluid is not modeled synchronously, and polydispersity of particles could beconsidered. Therefore, it is necessary to employ new methods to describe and analyzethese mesoscale phenomena.
     In this thesis, we simulate the macroscale and mesoscale process of the underfillencapsulation respectively. In macroscale process simulation, we have done:
     (1) The driven mechanism of the capillary action in underfill is analyzed bypresenting an inter-motivation model, in which the capillary action is modeled as twodifferent forces, i.e., the unbalanced adhesive force close to the wall and the surfacetension force on the free surface. Those two forces compete and also cooperate with eachother during the capillary flow process, and they are the unity of opposites of the capillaryaction. Based on this model, a layer numerical method for equilibrium state and dynamiccapillary process is established respectively. Parallel-plate experiments and capillary tubeexperiments are conducted to verified our model.
     (2) Based on the presented inter-motivation capillary model, three dimensional N-Sequation and the Kamal curing reaction equation coupled with generalized Cox-Merzconstitutive model are used to established a macroscale underfill simulation system. ThePSPG (Pressure Stabilizing Petro Galerkin) and SUPG (Streamline Upwind PetrovGalerkin) finite element method is used to solve the equations in our system. In oursimulation, the non-Newton behavior of the melt, curing reaction and thermal responsecould be characterized comprehensively.
     In mesoscale process simulation, we have done:
     (3) The modified interparticle-potential LBM (Lattice Boltzmann method) model isused to simulate the mesoscale underfill multiphase flow. The surface tension coefficientof the melt, and its wettability with the surface of die, substrate and solder bumps areanalyzed in the simulation. The effects of the bump bitch, edge channel and encapsulantdispensing are investigated.
     (4) The Ladd's LBM model about suspension particles is used to study the distributionof particle filler in underfill process, including the shear-induced migration and the settling.For shear-induced particle migration, the effects of shear rate and particle size areanalyzed. For the particle settling, the particle density, size and viscosity of the melt isinvestigated respectively.
引文
[1]郭大琪,黄强.倒装芯片下填充工艺的新进展(一).电子与封装,2008,8(1):16-20.
    [2] Wan JW, Zhang WJ, Bergstrom DJ. Recent advances in modeling the underfillprocess in flip-chip packaging. Microelectron J,2007,38(1):67-75.
    [3] Zhou SY, Sun Y, Libres J, et al. A multiscale modeling and experimental study ofunderfill flow and void formation for flip-chip packages. in: Proceedings of the59th Electronic Components and Technology Conference. San Diego: IEEE2009:2004-2010.
    [4]张凤阳.倒装芯片封装中下填充流动行为的数值模拟:[硕士学位论文].上海:华东理工大学图书馆,2011.
    [5] Wan J. Analysis and modeling of underfill flow driven by capillary action inflip-chip packaging:[Doctor thesis]. Saskatoon: University of Saskatchewan,2005.
    [6]梁凤梅.倒装芯片底部填充工艺.电子工艺技术,2000,21(6):252-254.
    [7] Lasky RC, Morvan YY. What is Needed to Establish Flip Chip as a Standard SMTProcess. in: Proceedings of NEPCON. Anaheim: Cahners Exposition Group1999:1025-1032.
    [8]张良明.影响倒装芯片底部填充胶流动的因素分析.材料研究与应用,2008,2(2):151-154.
    [9]张涛,孙忠新.底部填充工艺探讨.印制电路信息,2011,(6):66-70.
    [10] Tay AAO, Huang ZM, Wu JH, et al. Numerical simulation of the flip-chipunderfilling process. In: Tay AAO, ed. Proceedings of the19971st ElectronicPackaging Technology Conference. Piscataway: IEEE1997:263-269.
    [11] Han S, Wang KK. Analysis of the flow of encapsulant during underfillencapsulationof flip-chips. IEEE Trans Compon Packag Manuf Technol Part B:Adv Packag,1997,20(4):424-433.
    [12] Kulkarni VM, Seetharamu KN, Narayana PAA, et al. Flow analysis for flip chipunderfilling process using characteristic based split method. In: Toh KC, Mui YC,How J, Pang JHL, eds. Proceedings of the6th Electronics Packaging TechnologyConference. Singapore: IEEE2004:615-619.
    [13] Pantuso D, Jiang L, Shankar S, et al. A FEM/VOF hybrid formulation for underfillencapsulation modeling. Comput Struct,2003,81(8–11):879-885.
    [14] Wan JW, Zhang WJ, Bergstrom DJ. Numerical modeling for the underfill flow inflip-chip packaging. IEEE Trans Compon Packag Technol,2009,32(2):227-234.
    [15] Yang H, Bayyuk S, Krishnan A, et al. Computational simulation of underfillencapsulation of flip-chip ICs-Part I: Flow modeling and surface-tension effects.in: Proceedings of the48th Electronic Components&Technology Conference.Seattle: IEEE1998:1311-1317.
    [16] Shen YK, Lee HC. Three-dimensional simulation of flip chip encapsulationprocess. Int Commun Heat Mass Transfer,2002,29(7):961-970.
    [17] Hashimoto T, Shin-ichiro T, Morinishi K, et al. Numerical simulation ofconventional capillary flow and no-flow underfill in flip-chip packaging. ComputFluids,2008,37(5):520-523.
    [18] Khor CY, Abdullah MZ, Mujeebu MA, et al. FVM based numerical study on theeffect of solder bump arrangement on capillary driven flip chip underfill process.Int Commun Heat Mass Transfer,2010,37(3):281-286.
    [19] Moon SW, Li Z, Gokhale S, et al.3-D numerical simulation and validation ofunderfill flow of flip-chips. IEEE Transactions on Components Packaging andManufacturing Technology,2011,1(10):1517-1522.
    [20] Young WB. Non-Newtonian Flow Formulation of the Underfill Process inFlip-Chip Packaging. IEEE Transactions on Components Packaging andManufacturing Technology,2011,1(12):2033-2037.
    [21] Bellet M. Implementation of surface tension with wall adhesion effects in athree-dimensional finite element model for fluid flow. Commun Numer MethodsEng,2001,17(8):563-579.
    [22] Han S, Wang KK, Cho SY. Experimental and analytical study on the flow ofencapsulant duringunderfill encapsulation of flip-chips. in Proceedings of the46th Electronic Components&Technology Conference. Orlando: IEEE1996:327-334.
    [23] Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surfacetension. J Comput Phys,1992,100(2):335-354.
    [24] Shen YK, Ju CM, Shie YJ, et al. Resin flow characteristics of underfill process onflip chip encapsulation. Int Commun Heat Mass Transfer,2004,31(8):1075-1084.
    [25] Schwiebert MK, Leong WH. Underfill Flow as Viscous Flow Between ParallelPlates Driven by Capillary Action. IEEE Trans Compon Packag Manuf TechnolPart B: Manuf,1996,19(2):133-137.
    [26] Wang H, Zhou HM, Zhang Y, et al. Three-dimensional simulation of underfillprocess in flip-chip encapsulation. Comput Fluids,2011,44(1):187-201.
    [27]周华民.塑料注射成型三维真实感流动保压过程模拟及实验研究:[博士学位论文].武汉:华中科技大学图书馆,2002.
    [28] Zhou HM, Zhang YS, Li DQ. An improved approach to filling simulation for3-Dsurface models. Mod Plast,2001,78(7):71-73.
    [29] Zhou HM, Li DQ. A numerical simulation of the filling stage in injection moldingbased on a surface model. Adv Polym Tech,2001,20(2):125-131.
    [30] Zhou H, Zhang Y, Li D. Injection moulding simulation of filling and post-fillingstages based on a three-dimensional surface model. P I Mech Eng B-J Eng,2001,215(10):1459-1463.
    [31] Li JH, Chen L, Zhou HM, et al. Surface model based modeling and simulation offilling process in gas-assisted injection molding. J Manuf Sci E-T Asme,2009,131(1).
    [32] Zhou HM, Geng T, Li DQ. Numerical filling simulation of injection molding basedon3D finite element model. J Reinf Plast Compos,2005,24(8):823-830.
    [33] Zhou HM, Li DQ. Modelling and prediction of weld line location and propertiesbased on injection moulding simulation. Int J Mater Prod Tec,2004,21(6):526-538.
    [34] Qu JM, Wong CP. Effective elastic modulus of underfill material for flip-chipapplications. IEEE Trans Compon Packag Technol,2002,25(1):53-55.
    [35] Guo Y, Lehmann GL, Driscoll T, et al. A model of the underfill flow process:Particle distribution effects. in: Proceedings of the49th Electronic Components&Technology Conference. San Diego: IEEE1999:71-76.
    [36]郭照力,郑楚光.格子Boltzmann方法的原理及应用.1ed.北京:科学出版社2008:9-14.
    [37] Raabe D. Overview of the lattice Boltzmann method for nano-and microscalefluid dynamics in materials science and engineering. Modell Simul Mater Sci Eng,2004,12(6): R13-R46.
    [38] Nourgaliev RR, Dinh TN, Theofanous TG, et al. The lattice Boltzmann equationmethod: theoretical interpretation, numerics and implications. Int J MultiphaseFlow,2003,29(1):117-169.
    [39] Wolf-Gladrow DA. Lattice-gas cellular automata and lattice Boltzmann models.Lecture Notes in Mathematics,2000,1725:1-13.
    [40] Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: theory andapplications. Physics Reports,1992,222(3):145-197.
    [41]刘志勇,许庆彦,柳百成.枝晶生长的介观尺度三维数值模拟.清华大学学报:自然科学版,2007,47(8):1253-1258.
    [42]焦宪友.基于元胞自动机法的材料晶粒长大和再结晶模拟:[硕士学位论文].济南:山东大学图书馆,2006.
    [43]陈晋,朱鸣芳,孙国雄.元胞自动机方法在枝晶生长模拟中的应用.铸造,2005,54(7):706-709.
    [44]王欣,刘勇,丁玉梅等.材料研究中的介观模拟方法.高分子通报,2011,(7):30-36.
    [45]郭靖原,洪泽恺,陈民等.金属凝固与晶体生长过程的蒙特卡罗模拟.工程热物理学报,2001,22(6):725-728.
    [46]张海.基于蒙特卡罗方法的晶粒生长模拟系统研究:[硕士学位论文].长沙:中南大学图书馆,2007.
    [47]解新安,丁年平,刘焕彬等.淀粉微球形成过程的介观模拟及实验.化学学报,2011,69(2):169-175.
    [48] Zhang JF. Lattice Boltzmann method for microfluidics: models and applications.Microfluid Nanofluid,2011,10(1):1-28.
    [49]陈梨俊.以耗散粒子动力学为纽带的多尺度贯通模拟方法:[博士学位论文].长春:吉林大学图书馆,2007.
    [50] Aidun CK, Clausen JR. Lattice-Boltzmann Method for Complex Flows. AnnualReview of Fluid Mechanics,2010,42:439-472.
    [51] Jia XL, McLaughlin JB, Kontomaris K. Lattice Boltzmann simulations of flowswith fluid-fluid interfaces. Asia-Pac J Chem Eng,2008,3(2):124-143.
    [52] Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review ofFluid Mechanics,1998,30(1):329-364.
    [53]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用.1ed.北京:科学出版社2008:8-10.
    [54] Wang M, Pan N. Predictions of effective physical properties of complexmultiphase materials. Mat Sci Eng R,2008,63(1):1-30.
    [55] Ladd AJC, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions.J Stat Phys,2001,104(5-6):1191-1251.
    [56] Raiskinm ki P. Dynamics of multiphase flows: liquid-particle suspensions anddroplet spreading:[Doctor thesis]. Jyvaskyla: University of Jyvaskyla,2004.
    [57] Kang QJ, Zhang DX, Chen SY. Displacement of a two-dimensional immiscibledroplet in a channel. Phys Fluids,2002,14(9):3203-3214.
    [58] Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiplephases and components. Phys Rev E,1993,47(3):1815-1819.
    [59] Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions bythe lattice Boltzmann equation. Phys Rev E,1994,49(4):2941-2948.
    [60] Shan X, Doolen G. Multicomponent lattice-Boltzmann model with interparticleinteraction. J Stat Phys,1995,81(1):379-393.
    [61] Martys NS, Chen H. Simulation of multicomponent fluids in complexthree-dimensional geometries by the lattice Boltzmann method. Phys Rev E,1996,53(1):743-750.
    [62] Raiskinmaki P, Koponen A, Merikoski J, et al. Spreading dynamics ofthree-dimensional droplets by the lattice-Boltzmann method. Comp Mater Sci,2000,18(1):7-12.
    [63] Raiskinmaki P, Shakib-Manesh A, Jasberg A, et al. Lattice-Boltzmann simulationof capillary rise dynamics. J Stat Phys,2002,107(1-2):143-158.
    [64] Chin J, Boek ES, Coveney PV. Lattice Boltzmann simulation of the flow of binaryimmiscible fluids with different viscosities using the Shan-Chen microscopicinteraction model. Philos T Roy Soc A,2002,360(1792):547-558.
    [65] Kupershtokh AL, Medvedev DA. Lattice Boltzmann equation method inelectrohydrodynamic problems. J Electrostatics,2006,64(7-9):581-585.
    [66] Shan X. Analysis and reduction of the spurious current in a class of multiphaselattice Boltzmann models. Phys Rev E,2006,73(4):0477011-4.
    [67] Joshi AS, Sun Y. Multiphase lattice Boltzmann method for particle suspensions.Phys Rev E,2009,79(6):0667031-16.
    [68] Falcucci G, Ubertini S, Chiappini D, et al. Modern lattice Boltzmann methods formultiphase microflows. Ima J Appl Math,2011,76(5):712-725.
    [69] Ladd AJC. Numerical simulations of particulate suspensions via a discretizedBoltzmann equation. Part1. Theoretical foundation. J Fluid Mech,1994,271:285-309.
    [70] Ladd AJC. Numerical simulations of particulate suspensions via a discretizedBoltzmann equation. Part2. Numerical results. J Fluid Mech,1994,271:311-339.
    [71] Behrend O. Solid-fluid boundaries in particle suspension simulations via the latticeBoltzmann method. Phys Rev E,1995,52(1):1164-1175.
    [72] Aidun CK, Lu Y. Lattice Boltzmann simulation of solid particles suspended influid. J Stat Phys,1995,81(1):49-61.
    [73] Nguyen NQ, Ladd AJC. Lubrication corrections for lattice-Boltzmann simulationsof particle suspensions. Phys Rev E,2002,66(4):0467081-12.
    [74] Kromkamp J, van den Ende D, Kandhai D, et al. Lattice Boltzmann simulation of2D and3D non-Brownian suspensions in Couette flow. Chem Eng Sci,2006,61(2):858-873.
    [75] Lee WS, Yu J. Comparative study of thermally conductive fillers in underfill forthe electronic components. Diamond Relat Mater,2005,14(10):1647-1653.
    [76] Fine P, Cobb B, Nguyen L. Flip chip underfill flow characteristics and prediction.IEEE Trans Compon Packag Technol,2000,23(3):420-427.
    [77] Huang Y, Bigio D, Pecht MG. Fill pattern and particle distribution of underfillmaterial. IEEE Trans Compon Packag Technol,2004,27(3):493-498.
    [78]王灿才.喷墨印刷质量的分析与研究.包装工程,2008,29(2):55-57.
    [79]瞿茹芸,唐正宁,杨松.渗墨对喷墨印刷色彩复制影响的分析.包装工程,2007,28(3):10-12.
    [80]施向东,程常现.印刷油墨的物理干燥过程与机理.包装工程,2004,25(2):36-38.
    [81]徐敏.基于表面张力自装配机理及其在微电子封装中的应用:[硕士学位论文].武汉:华中科技大学图书馆,2004.
    [82]吕曜,夏善红,刘梅等.毛细作用驱动的MEMS流休自组装模拟仿真.微纳电子技术,2006,43(5):228-232.
    [83]颜毅林.基于表面张力作用的MEMS自组装及其精度控制技术研究:[硕士学位论文].桂林:桂林电子科技大学图书馆,2008.
    [84]董加瑞,王昂生.毛细作用下土壤水分扩散特性研究及试验.北京大学学报:自然科学版,1998,34(1):50-57.
    [85]吕清禄.毛细透排水技术在地下水补注中的应用.给水排水动态,2006,(1):7-9.
    [86]刘念,窦万里,王雪斌等.番茄地埋滴灌与膜下滴灌的效果比较.新疆农垦科技,2005,(3):52-53.
    [87]王幸果.毛细现象在微推进系统中的应用.火箭推进,2003,29(6):59-63.
    [88]刘庆志,苗建印,张加迅等.多回路耦合CPL系统的调温特性研究.装备指挥技术学院学报,2005,15(5):57-60.
    [89]刘璿.微重力环境下质子交换膜燃料电池内两相流体动力学特性研究:[博士学位论文].北京:北京工业大学图书馆,2008.
    [90] Lucas R. Rate of capillary ascension of liquids. Kolloid Z,1918,23:15-22.
    [91] Washburn EW. The dynamics of capillary flow. Physical Review,1921,17(3):273-283.
    [92] Quere D. Inertial capillarity. Europhys Lett,1997,39(5):533-538.
    [93] Sorbie KS, Wu YZ, McDougall SR. The extended washburn equation and itsapplication to the oil/water pore doublet problem. J Colloid Interface Sci,1995,174(2):289-301.
    [94] Szekely J, Neumann AW, Chuang YK. The rate of capillary penetration and theapplicability of the Washburn equation. J Colloid Interface Sci,1971,35(2):273-278.
    [95] Stange M, Dreyer ME, Rath HJ. Capillary driven flow in circular cylindrical tubes.Phys Fluids,2003,15(9):2587-2601.
    [96] Martic G, Gentner F, Seveno D, et al. A molecular dynamics simulation of capillaryimbibition. Langmuir,2002,18(21):7971-7976.
    [97] Levine S, Lowndes J, Watson EJ, et al. A theory of capillary rise of a liquid in avertical cylindrical tube and in a parallel-plate channel: Washburn equationmodified to account for the meniscus with slippage at the contact line. J ColloidInterface Sci,1980,73(1):136-151.
    [98] Newman S. Kinetics of wetting of surfaces by polymers; capillary flow. J ColloidInterface Sci,1968,26(2):209-213.
    [99] Cuvelier C, Schulkes RMSM. Some Numerical Methods for the Computation ofCapillary Free Boundaries Governed by the Navier-Stokes Equations. SIAMReview,1990,32(3):355-423.
    [100] Polevikov VK. Methods for numerical modeling of two-dimensional capillarysurfaces. Computational Methods in Applied Mathematics,2004,4(1):66-93.
    [101] Marmur A. Tip-surface capillary interactions. Langmuir,1993,9(7):1922-1926.
    [102] Hammecker C, Mertz JD, Fischer C, et al. A geometrical model for numericalsimulation of capillary imbibition in sedimentary rocks. Transport in porous media,1993,12(2):125-141.
    [103] de Lazzer A, Dreyer M, Rath HJ. Particle-surface capillary forces. Langmuir,1999,15(13):4551-4559.
    [104] Erickson D, Li D, Park CB. Numerical simulations of capillary-driven flows innonuniform cross-sectional capillaries. J Colloid Interface Sci,2002,250(2):422-430.
    [105] Ichikawa N, Hosokawa K, Maeda R. Interface motion of capillary-driven flow inrectangular microchannel. J Colloid Interface Sci,2004,280(1):155-164.
    [106] Lee SL, Lee HD. Evolution of liquid meniscus shape in a capillary tube. Journal ofFluids Engineering-Transactions of the Asme,2007,129(8):957-965.
    [107] Saha AA, Mitra SK. Effect of dynamic contact angle in a volume of fluid (VOF)model for a microfluidic capillary flow. J Colloid Interface Sci,2009,339(2):461-480.
    [108] Saha AA, Mitra SK. Numerical Study of Capillary Flow in Microchannels WithAlternate Hydrophilic-Hydrophobic Bottom Wall. Journal of FluidsEngineering-Transactions of the Asme,2009,131(6):0612021-12.
    [109] Chen YF, Tseng FG, ChangChien SY, et al. Surface tension driven flow for openmicrochannels with different turning angles. Microfluid Nanofluid,2008,5(2):193-203.
    [110] Ichikawa N, Satoda Y. Interface Dynamics of Capillary Flow in a Tube underNegligible Gravity Condition. J Colloid Interface Sci,1994,162(2):350-355.
    [111] Zhmud BV, Tiberg F, Hallstensson K. Dynamics of capillary rise. J ColloidInterface Sci,2000,228(2):263-269.
    [112] Dreyer M, Delgado A, Path H-J. Capillary Rise of Liquid between Parallel Platesunder Microgravity. J Colloid Interface Sci,1994,163(1):158-168.
    [113] Wang CX, Xu SH, Sun ZW, et al. Influence of Contact Angle and Tube Size onCapillary-Driven Flow Under Microgravity. AIAA J,2009,47(11):2642-2648.
    [114] Blake TD. The physics of moving wetting lines. J Colloid Interface Sci,2006,299(1):1-13.
    [115] Shirani E, Ashgriz N, Mostaghimi J. Interface pressure calculation based onconservation of momentum for front capturing methods. J Comput Phys,2005,203(1):154-175.
    [116] Francois MM, Cummins SJ, Dendy ED, et al. A balanced-force algorithm forcontinuous and sharp interfacial surface tension models within a volume trackingframework. J Comput Phys,2006,213(1):141-173.
    [117] Yaws CL. Chemical properties handbook. New York: McGraw-Hill1999.
    [118]彭家贵,陈卿.微分几何.北京:高等教育出版社2002:59-70.
    [119] Iwamoto N, Nakagawa M, Mustoe GGW. Simulating underfill flow formicroelectronics packaging. in: Proceedings of the49th Electronic Components&Technology Conference. San Diego: IEEE1999:294-301.
    [120]严波,李阳,李德群等.三维塑料注射成形过程模拟.华中科技大学学报(自然科学版),2010,38(2):68-71.
    [121] Zhou H, Yan B, Zhang Y.3D filling simulation of injection molding based on thePG method. J Mater Process Technol,2008,204(1-3):475-480.
    [122] Yan B, Zhou H, Li D. Numerical simulation of the filling stage for plastic injectionmoulding based on the Petrov-Galerkin methods. Proc Inst Mech Eng Pt B: J EngManuf,2007,221(10):1573-1577.
    [123]王建军,陆明万,张雄等.流体力学广义GLS/PG方法基本理论.水动力学研究与进展A辑,2002,17(3):294-303.
    [124] Tezduyar TE, Mittal S, Ray SE, et al. Incompressible flow computations withstabilized bilinear and linear equal-order-interpolation velocity-pressure elements.Comput Methods Appl Mech Eng,1992,95(2):221-242.
    [125] Tezduyar TE. Stabilized Finite Element Formulations for Incompressible FlowComputations. Adv Appl Mech,1991,28:1-44.
    [126] Hughes TJR, Franca LP, Balestra M. A new finite element formulation forcomputational fluid dynamics: V. Circumventing the Babu ka-Brezzi condition: Astable Petrov-Galerkin formulation of the Stokes problem accommodatingequal-order interpolations. Comput Methods Appl Mech Eng,1986,59:85-99.
    [127]王辉,周华民,李德群.三维塑封充模过程数值模拟方法.上海交通大学学报,2010,44(2):176-179.
    [128] Wang H, Zhou HM, Zhang Y, et al. Stabilized filling simulation of microchipencapsulation process. Microelectron Eng,2010,87(12):2602-2609.
    [129] Zinani F, Frey S. Galerkin least-squares solutions for purely viscous flows ofshear-thinning fluids and regularized yield stress fluids. J Braz Soc Mech Sci,2007,29(4):432-443.
    [130] Hughes TJR, Franca LP, Hulbert GM. A new finite element formulation forcomputational fluid dynamics: VIII. The Galerkin/least-squares method foradvective-diffusive equations. Comput Methods Appl Mech Eng,1989,73(2):173-189.
    [131] Massarotti N, Nithiarasu P, Zienkiewicz OC. Characteristic-based-split (CBS)algorithm for incompressible flow problems with heat transfer. Int J NumerMethod H,2009,8(8):969-990.
    [132] Nithiarasu P, Mathur JS, Weatherill NP, et al. Three-dimensional incompressibleflow calculations using the characteristic based split(CBS) scheme. Int J NumerMethods Fluids,2004,44(11):1207-1229.
    [133] Zienkiewicz OC, Codina R. A general algorithm for compressible andincompressible flow-Part I. the split, characteristic-based scheme. Int J NumerMethods Fluids,1995,20:869-885.
    [134] Codina R. On stabilized finite element methods for linear systems ofconvection-diffusion-reaction equations. Comput Methods Appl Mech Eng,2000,188(1-3):61-82.
    [135] Codina R. Stabilization of incompressibility and convection through orthogonalsub-scales in finite element methods. Comput Methods Appl Mech Eng,2009,190(13-14):1579-1599.
    [136] Codina R. Stabilized finite element approximation of transient incompressibleflows using orthogonal subscales. Comput Methods Appl Mech Eng,2002,191(39):4295-4321.
    [137] Masud A, Hughes TJR. A stabilized mixed finite element method for Darcy flow.Comput Methods Appl Mech Eng,2002,191(39):4341-4370.
    [138] Nakshatrala KB, Turner DZ, Hjelmstad KD, et al. A stabilized mixed finiteelement method for Darcy flow based on a multiscale decomposition of thesolution. Comput Methods Appl Mech Eng,2006,195(33-36):4036-4049.
    [139] Codina R, Blasco J. Stabilized finite element method for the transientNavier-Stokes equations based on a pressure gradient projection. Comput MethodsAppl Mech Eng,2000,182(3-4):277-300.
    [140] Buscaglia GC, Basombrío FG, Codina R. Fourier analysis of an equal-orderincompressible flow solver stabilized by pressure gradient projection. Int J NumerMethods Fluids,2000,34(1):65-92.
    [141] Codina R, Blasco J. A finite element formulation for the Stokes problem allowingequal velocity-pressure interpolation. Comput Methods Appl Mech Eng,1997,143(3):373-391.
    [142] Lube G, Rapin G. Local projection stabilization for incompressible flows:Equal-order vs. inf-sup stable interpolation. Electron T Numer Ana,2008,32:106-122.
    [143] Braack M, Burman E. Local Projection Stabilization for the Oseen Problem and itsInterpretation as a Variational Multiscale Method. SIAM J Numer Anal,2006,43(6):2544-2566.
    [144] Zhou HM, Li DQ. Integrated simulation of the glass and mould in the TV panelpressing process. Int J Mater Prod Tec,2007,30(4):340-359.
    [145] Zhou HM, Yan B, Li DQ. Three-dimensional numerical simulation of the pressingprocess in TV panel production. Simul-T Soc Mod Sim,2006,82(3):193-203.
    [146] Zhou HM, Yan B, Li Y. Glass pressing simulation based on the PG method. Int JComput Fluid D,2008,22(3):201-207.
    [147]严波.三维塑料注射成形及结晶过程数值模拟关键技术研究:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [148] Youngs DL. Time-dependent multi-material flow with large fluid distortion. In:Morton KW, Baines MJ, eds. Numerical methods for fluid dynamics: Proceedingsof a First Conference. New York: Academic Press1982:41-51.
    [149] Choi BY, Bussmann M. A piecewise linear approach to volume tracking a triplepoint. Int J Numer Methods Fluids,2007,53(6):1005-1018.
    [150] Rider WJ, Kothe DB. Reconstructing volume tracking. J Comput Phys,1998,141(2):112-152.
    [151] Lopez J, Hernandez J, Gomez P, et al. An improved PLIC-VOF method fortracking thin fluid structures in incompressible two-phase flows. J Comput Phys,2005,208(1):51-74.
    [152] Nguyen L, Quentin C, Fine P, et al. Underfill of flip chip on laminates: simulationand validation. IEEE Trans Compon Packag Technol,1999,22(2):168-176.
    [153] Shih MF, Young WB. Experimental study of filling behaviors in the underfillencapsulation of a flip-chip. Microelectronics Reliability,2009,49(12):1555-1562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700