液相进料直接甲醇燃料电池两相流动与传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
便携式电子设备和无线通讯技术的发展对电源的要求越来越高,传统电池已很难满足要求。而且,当今能源危机和环境污染日益严峻,促使人们寻求一种高效、清洁、廉价方便、续航能力强的新能源动力技术。而直接甲醇燃料电池(DMFC)可以使用液态甲醇溶液作为燃料,与传统动力装置相比具有其独特的优点,如能量密度高、启动响应快速、零排放、低温运行、可利用现有的能量供应系统等,是最有希望尽快商业化的下一代移动式电源。因此,国内外众多研究单位开展了关于DMFC的研究。
     至今,国内外对DMFC的研究主要集中在化工、材料和电池性能的整体优化方面,对于电池中关键的传输现象和传输机理等热物理问题的研究多为数值模拟,系统的实验数据较缺乏。因此,本文从工程热物理学科角度出发,研究液相进料DMFC内两相流动及其传输特性。主要内容包括:液相进料DMFC的设计与制造;实验系统的建立及DMFC性能研究;DMFC阳极流道CO_2气泡动态特性研究;DMFC阳极流场两相流动特性及其对电池性能的影响;液相进料DMFC阳极流动阻力特性;DMFC阴极流动阻力特性及水淹过程; DMFC多孔扩散层气液两相逆流传输模拟实验研究。主要研究成果如下:
     (1)在流道内扩散层表面与流道侧壁面的角区和碳布纤维束之间的交叉空隙处优先生成CO_2气泡; CO_2气泡生长和脱离主要受浮力、曳力、剪切升力和表面张力的控制;气泡生长速率随电流密度和接触环直径的增大而增大;甲醇浓度、甲醇溶液流速和温度增加,气泡脱离直径变小;扩散层表面润湿性越好,气泡的脱离直径越小。
     (2)甲醇溶液流量增加,流道内单个气泡的体积减小,气泡从流道排出的速度加快,电池性能提高;甲醇溶液温度变化对流道内气泡的生成及聚合过程影响很小;甲醇浓度、电池阴阳极压差增大,流道内的CO_2气泡增多,体积增大;电池采用下进料、上排气方式有利于CO_2气泡的排出,电池的性能较好;
     (3)相同操作条件下,蛇形流场内产生的压降大于平行流场;放电电流密度、甲醇溶液流量和温度增加,流场进出口压降增加;甲醇浓度提高,进出口压降均略有减小;流场进出口压降随流道宽度的变小而增大;在相同流道宽度情况下,流场进出口压降随流道深度的变小而增大;流场进出口压降与流道当量直径和流场的开孔率均有关系。
     (4)建立DMFC阳极蛇形流场进出口压降均相模型,计算结果表明计算数据与实验数据变化趋势一致,但相对误差较大;用无因次准则整理文献中微小槽道内气液两相流流型实验数据,绘制微小槽道内水平流动气液两相流流型图,建立基于流型模型的DMFC阳极蛇形流场进出口压降模型,计算结果优于均相模型但与实验数据间的相对误差仍然偏大;将附着在扩散层表面未脱离的CO_2气泡视为连续重复的粗糙单元,并引入系数k表征放电电流密度对气泡分布均匀性的影响,提出计算DMFC阳极蛇形流场进出口压降的改进方法,计算结果表明:采用Beattie & Whalley关系式确定两相均质粘度,模型计算数据与实验数据间相对误差小,模型预测效果较好。
     (5)恒电流放电时,平行流场中首个液滴大多首先在流场右上区域冒出;流场中新液滴的出现具有瞬间涌出特性而且总是优先出现在流场板和扩散层交界的夹角处及扩散层表面碳纤维束交叉处;液滴的生长过程具有非连续性,与流道边壁相接触的液滴和液柱的生长速度均大于流道中间位置及靠近流道中间位置的未与流道边壁接触的液滴的生长速度,而且液柱有逆气流方向反向生长现象。电池恒电流放电时,流场内液态水的存在对流场压降的影响较大;随着氧气流量增大,阴极扩散层表面首个可见液滴的生成时间随之增加,阴极流道内的液态水逐渐减少,而且流场中大液滴数量和形成液柱的长度也减少,电池性能得到提高,但流场进出口压降却增加;进气温度升高,阴极扩散层表面首个可见液滴的生成时间同样随之增加,而且阴极流道内的液态水减少,流场中大液滴数量和形成液柱的长度也减少,流场进出口压降降低,电池性能得到提高。
     (6)利用多孔网络实验模拟研究DMFC多孔扩散层气液两相逆流传输特性,结果表明:可渗透壁面上多孔成泡时常伴随气泡回缩现象,气泡进入快速生长期后,多孔网络内出现明显的水侵渗现象;喉道内水侵渗机制呈“活塞状”,孔内侵渗机制包含三种:(1)孔初始状态有相邻两喉道被气相占据,其余两相邻喉道被液相占据,呈“弯月形”侵渗;(2)孔初始状态有三个相邻喉道被液相占据,剩余一个喉道被气相占据,呈“球缺形”侵渗;(3)孔初始状态有两个相对的喉道被液相占据,另外两个相对的喉道被气相占据,以几何截面突变处的“夹断”气柱方式侵渗;多孔网络内空气驱替水的机制包含三步:(1)喉道内呈“活塞状”驱替液相;(2)气相由喉道进入孔,呈“球冠形”驱替;(3)气相占据整个孔;空气流量小,气驱液在多孔网络内呈现稳定驱替(stable displacement)现象,随着空气流量的增加,逐渐向“树冠形”分布转变;多孔网络内气相驱动压力随气相流量和水流量的增加而增加;水流量增加,多孔网络内水最大侵渗高度增加,气相饱和度略有减小。
The increased functionality demands for present and future create a critical need for smaller, less-costly, environmentally safe, highly efficient and long-lasting power in portable energy applications. However, the performance capability of conventional electrochemical battery is unlikely to keep pace with the expanded power requirements. Direct methanol fuel cells (DMFCs) has inherent advantages over other battery system in particular for portable electronics application for the view point of using aqueous methanol solution as fuel, high energy density, rapid start-up and response, low operating temperature, zero emission and easy-to-recharge character. It has been widely recognized as the most promising power sources for the next generation portable electronic equipment. Consequently, a large number of research works focus on the development of DMFCs.
     Based on the literature survey, it is easy to find that many researches focused on the chemicals, materials and optimization of system performance. However, systematic experiments on the transport mechanisms inside it is still lack. Therefore, a homemade transparent DMFC was developed to visualize the two-phase flow and transport in the anode and cathode flow field. The main contents of this thesis include: The design and manufacture of a liquid feed DMFC; Test bench setup and experimental study of the cell performance; Two-phase flow and transport characteristics in the anode flow field; Visualization of water flooding and characterization of flow resistance in the cathode flow field; Building a pressure drop model for two-phase flow in the single serpentine anode flow field; Experimental study on the gas-liquid countercurrent flow in porous diffusion layer of DMFCs. The main results are summarized as follow:
     (1) For the anode using a parallel flow field, it is observed that the pores around the corner of the channel ribs and the intersection of the carbon cloth fibres were favorable sites for the emergence of CO_2 gas bubbles under constant current mode. When the gas slugs are removed, the fraction of gas coverage reduced gradually. The growth and departure of CO_2 bubbles are mainly controlled by the balance between buoyant, drag, shear lift and surface tension force in the horizontal flow channels of the vertical DMFC. Both a higher current density and a bigger diameter of contact ring induce the growth of CO_2 bubbles. The bubble departure diameter decreases with the increasing in methanol flow rate, methanol concentration and operating temperature. A more hydrophilic gas diffusion layer usually lead to smaller bubble departure diameters.
     (2) Increasing the flow rate of the methanol solution, the individual CO_2 bubbles emerging into the channels become smaller, and the coalescent gas slugs become shorter and less as well. This results in an improved methanol supply from the flow field to the catalyst layer, and consequently the cell performance. However, further increase in the methanol flow rate over a particular value does not result in the improvement of the cell performance. The temperature change of the methanol solution shows no influence on the formation and coalescence of CO_2 gas bubbles. There are more CO_2 bubbles and larger gas slugs can be found in the channels when the methanol concentration and the pressure difference between the anode and the cathode increases. Feeding methanol from lower and exhausting CO_2 gas from upper enhanced the removal of CO_2 bubbles, and hence the cell performance.
     (3) It is also found that the pressure drop between inlet and outlet is larger in serpentine flow field than that in parallel flow field under the same operational parameters. With the increase of current density, methanol solution flow rate and temperature, the pressure drop of anode flow field increases. The pressure drops in serpentine and parallel flow field decrease slightly with the increasing of methanol concentration when the DMFCs are operated under the same current density. The result from the parallel flow plates with the same channel depth and different channel widths shows that the pressure drop increases with the decrease of channel width. On the other hand, it is found that the pressure drop increases with the decrease of channel depth when the same channel width and different channel depths are used. It is clear from the experimental data that both the channel equivalent diameter and the open ratio plays an important role on the pressure drop.
     (4) A homogenous model is developed for the first time for the calculation of the two-phase flow pressure drop in the serpentine flow field of a DMFC. The results show that the relationships between pressure drop and methanol solution flow rate and current density agree with those of experiences, but the relative error is not neglectable. The separated model based flow pattern in mini-channels is also built for the improvement of the predictive validity. Although the results also agreed with the experimental results and the relative error less than homogenous model, satisfied accuracy are still not achieved. The dynamics of CO_2 bubbles has a great influence on the frictional pressure drop of the two-phase flow in flow channels. Therefore, the attached CO_2 bubbles can be treated as continued repeating rough units, and using a factor k to characterize the effect of discharge current density on the distribution of bubbles, an improved method for calculating the frictional pressure drop of the two-phase flow is proposed. The results show that the relative error is smaller than the homogenous model and the separated model, the predictive validity is good when using the relation of Beattie & Whalley to calculating two-phase homogeneous viscosity.
     (5) It was observed that the first droplet usually emerged in the up-right region of the parallel flow field and most liquid droplets usually appear in the downstream of channels. The growth of new droplets has the instant effusing character and they usually appear from the pores around the corner of the channel ribs and the intersection of the carbon cloth fibres. The droplets has the character of pulsed growth, the land-touching droplets developing on each side of the channel and water columns contacting the channel wall grow faster than those far from the wall. In addition, it is interesting to note that some water columns grow in a direction opposite to the oxygen flow. Moreover, it is shown that with a higher oxygen flow rate and a higher inlet oxygen temperature usually lead to a much more forming time in for a water droplet on the surface of gas diffusion layer, whereas droplets can be more easily removed from the wall. These enhance the mass transfer of the oxygen, and thus improve the cell performance. The pressure drop significantly affects the liquid water in the flow field. Under the constant current discharge operating mode, the pressure drop increases with the increase in the flow rate of the oxygen or at a lower temperature of the cell. Increasing the temperature of the oxygen leads to the decrease of the pressure drop.
     (6) From results of two-phase counter flow in the porous layer of DMFCs, it is found that the formation of the multiple bubbles usually accompanies with the bubble retrieve phenomenon. Water invasion process can be observed when the bubble is at the rapid growth stage. During the water invasion process, snap-off occurs at the junction between the pore and throat due to the velocity difference between liquid and gas phases. Water invasion in the network is rather complex. In throats, displacement is piston-like. Three types of invasion can be observed in the pores: (1) two neighboring throats are filled by gas and the rest two are filled by liquid, forming meniscus-like invasion (2) crown-like invasion under the condition that three throats are filled by liquid and the last one is gas-filled.; (3) snap-off invasion under the situation that the opposite two throat are liquid-filled while the other two are filled by gas. There are three steps for the gas invasion in the network: (1) piston-like displacement in the throats due to the pressure effects; (2) crown-like invasion in the pores; (3) pore filling process. The stable displacement occurs at a smaller air flow rate. With the increase in the air flow rate, air distribution in the network can be transformed to dendrite. With increasing the gas and liquid flow rate, gas pressure increases in the network. The largest invasion height of the liquid increases with the increasing in liquid flow rate. The gas saturation in the network slightly reduces with the increase in the liquid flow rate.
引文
[1]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用[M].北京,冶金工业出版社,2000.5
    [2] Kordesch KV, Oliveira JCT. Fuel Cells[M]. Ulmann’s Encyclepedia industrial Chemistry, Fifth Edition, VCH, Weinheim, Germany, 1996;A12:55
    [3]黄汉生.日本燃料电池研究开发动向[J].现代化工.1998, 10: 42-46
    [4]毛宗强.质子交换膜燃料电池(PEMFC)最新进展[J].新能源.1999,21(1):7-10
    [5]衣宝廉.燃料电池——原理·技术·应用[M].北京,化学工业出版社,2003.8
    [6]王伟,蒋柏泉,陈敬军.质子交换膜燃料电池研究进展[J].江西化工,2004(1):1-4
    [7]邵志刚,衣宝廉,俞红梅,再生氢氧燃料电池[J],化学通报,2000(3),22-26
    [8] Kordesh K, Simader G, Fuel Cells and Their Applications[M], Weinheim; New York; Basel; Cambridge; Tokyo:VCH,1996
    [9] Steele B. C. H., Heinzel A. Materials for fuel-cell technologies[J].Nature, 2001, 414(6861): 345-352
    [10] Li Q.F.,Hjuler H. A.,Hasiotis C., et al.. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes[J]. Electrochemical and Solid State Letters, 2002, 5(6): 125-128
    [11] Lamy C., Lima A., LeRhun V., et al.. Recent advances in the development of direct alcohol fuel cells (DAFC)[J]. Journal of Power Sources, 2002, 105(2): 283-296
    [12] AricòA. S., Creti P,Antonucci P.L,et al.. Comparison of ethanol and methanol oxidation in a liquid-feed solid polymer electrolyte fuel cell at high temperature[J]. Electrochemical and Solid State Letters, 1998,1(2): 66-68.
    [13]宋树芹,陈利康,刘建国,等,直接乙醇燃料电池初探[J].电化学,2002,8(l):105-110
    [14] Mueller J. T., Urban P. M., Hoelderich W. F., et al.. Electro-oxidation of dimethyl ether in a polymer-electrolyte-membrane fuel cell[J]. Journal of the Electrochemical Society, 2000, 147(11): 4058-4060
    [15] Peled E,Livshits V., Duvdevani T.. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane(NP-PCM) [J]. Journal of Power Sources, 2002,106(1~2): 245-248.
    [16] Qi Z. G., Kaufman A.. Performance of 2-propanol in direct-oxidation fuel cells[J]. Journal of Power Sources, 2002, 112(1): 121-129
    [17] Qi Z. G., Kaufman A.. Electrochemical oxidation of 1-methoxy-2-propanol in direct liquidfuel cells[J]. Journal of Power Sources, 2002,110 (1): 65-72.
    [18]陈维民.黄文迎.庞志成.电动车用质子交换膜燃料电池堆[J].电源技术. 2000, 24(3): 128-130
    [19]丛文博.金丽华.刘志祥.质子交换膜燃料电池的初步研究[J].电源技术. 2001,25(1): 13-15
    [20]白玉霞,邱新平.质子交换膜燃料电池中的相关基础性问题[J].物理.2004.33(2)95-98
    [21] Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membrane formed therefrom[M]. US5422411,1995-06-06
    [22] S. D. Mikhailenko, S. M. J. Zaidi, S. Kaliaguine. Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids[J]. Journal of Polymer Science: Part B: Polymer Physics, 2000,38:1385-1386
    [23] R. Note K. Ledjeff, M. Bauer. et al. Partially sulfonated poly(arylene ether sulfone)– A versatile proton conducting membrane material for modern energy conversion technologies [J]. Journal of Membrane Science, 1993, 83: 211-220
    [24] P. Genova-Dimitrava, B. Baradie, D. Foscallo et al. Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphataantimonic acid [J]. Journal of Membrane Science, 2001, 185: 59-71
    [25] D. C. Papageorgopoulos, M. Keijzer, F. A. D. Bruijn. The Inclusion of Mo, Nb and Ta in Pt and PtRu Carbon Supported Electrocatalysts in the Quest for Improved CO Tolerant PEMFC Anodes [J]. Electrochim. Acta. 2002,48:197-204
    [26] K. L. Ley, R. Liu, C. Pu. Methanol Oxidation on Single Phase Pt-Ru-O Ternary Alloys [J]. J. Electrochem. Soc.. 1997,144:1543-1548
    [27] H. A. Gasteiger, N. M. Markovic,RN. Ross. H2 and CO Electrooxidation on Welt-Characterized Pt, Ru and Pt-Ru. l. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects [J]. J. Phys. Chem.. 1995,99:8290-8301
    [28] H. A. Gasteiger, N. M. Markovic, P. N. Ross. H2 and CO Electrooxidation on Well-Characterized Pt, Ru and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixture at 620℃[J]. J. Phys. Chem.1995,99:16757-16767
    [29] B. N. Grgur, N. M. Markovic, P. N. Ross. The Electro-Oxidation of H2 and H2/CO on Carbon Supported PtXMoy Alloy Catalysts [J]. J. Electrochem. Soc..1999,146:1613-1619
    [30] P. K. Shen, A. C. C. Tseung. Anodic Oxidation of Methanol on Pt/W03 in Acid Media [J]. J. Electrochem. Soc.. 1994,141:3082-3089
    [31] S. Mukerjee, S. Srinivasan, A. J. Appleby. Effect of Sputtered Film of Platinum on Low Platinum Loading Electrode on Electrode Kinetics of Oxygen Reduction in Proton ExchangeMembrane Fuel Cells [J]. Electrochim. Acta. 1993,38:1661-1629
    [32] S. Mukerjee, S. Srinivasan. Effect of Preparation Conditions of Pt Alloys on Electronic, Structural and Electrocatalytic Activities for Oxygen Reduction. XRD, XAS and Electrochemical Studies [J]. J. Phys. Chem.. 1995,99:4577-4589
    [33] G. S. Kumar, M. Raja, S. Parthasarathy, High performance electrodes with very low platinum loading for polymer electrolyte fuel cells [J]. Electrochimica Acta, 40(3),285-290 (1995).
    [34]邵志刚,衣宝廉,韩明等.质子交换膜燃料电池电极的一种新的制备方法[J].电化学. 2000. 6(3), 317-322
    [35] G. C. Lalande, Cx Tamizhmani. Physical, Chemical and Electrochemical Characterization of Heat-Treated Tetracarboxylic Cobalt Phthalocyanine Adsorbed on Carbon Black as Electrocatalyst for Oxygen Reduction in Polyme Electrolyte Fuel Cells [J]. Electrochim. Acta.1995,40:2635-2646
    [36] M.Viral, C.J.Smith. Review and analysis of PEM fuel cell design and manufacturing [J]. Journal of Power Sources.2003, 114(1):32-53
    [37] E. A. Ticianelli, C. R. Derouin, A. Redondo. Method to Advanced Technology of Proton Exchange Membrane Fuel Cells [J]. J. Electrochem. Soc.1988,135:2209-2214
    [38] Z. Poltarzewski, P. Staiti. Nafion Distribution in Gas Diffusion Electrodes for Solid Polymer Electrolyte Fuel Cell Applications [J]. J. Electrochem. Soc..1992,139:761-765
    [39] M. Uchida, Y Fukuoka. Effect of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer Electrolyte Fuel Cells [J]. J.Electrochem. Soc.. 1996, 143:2245-2252
    [40] L. Giorgi, E. Antolini, A. Pozio, et al. Influence of the PTFE Content in the Diffusion Layer of Low-Pt Loading Electrodes for Polymer Electrolyte Fuel Cells [J]. Electrochim. Acta. 1997,43:3675-3680
    [41] S. Escribano, P. Aldebert. Electrodes for Hydrogen Oxygen Polymer Electrolyte Membrane Fuel Cells [J]. Solid State Ionics. 1995,77:318-323
    [42] M. S. Wilson, S. Gotesfeld. Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes [J]. J. Appl. Electrochem.. 1992,22:1-7
    [43] R.Hornung, GKappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells [J]. Journal of Power Sources. 1998, 72(1):20-21
    [44]衣宝廉.燃料电池一高效、环境友好的发电方式(第一版)[M],北京,化学工业出版社. 2000.07
    [45]詹姆斯.拉米尼,安德鲁.迪克斯著,朱红译,燃料电池系统——原理.设计.应用(第二版)[M],北京,科学出版社,2006.02
    [46] P.L.Hentali, J.B.Lakeman, GO.Mepsted, P.L.Adcock, J.M.Moore. New materials for polymer electrolyte membrane fuel cell current collectors [J]. Journal of Power Sources. 1999, 80(1-2):235-245
    [47] D.P.Davies, P.L.Adcock, M.Turpin. Bipolar plate materials for solid polymer fuel cells [J]. Journal of Applied Electrochemistry. 2000, 30(1):101-105
    [48] R.Hornung, GKappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells [J]. Journal of Power Sources. 1998, 72(1):20-21
    [49] A. R. Carl. Water and Heat Management in Solid Polymer Fuel Cell Stack [P]. USP:4826742,1989
    [50] P. W David. Embossed Fluid Flow Field Plate for Electrochemical Fuel Cell [P]. USP:5521018,1996
    [51] GFaita, C. Mantegazza. Electrochemical Cell Provided with Ion Exchange Membranes and Bipolar Metal Plates [P]. USP: 5482792, 1996
    [52] TV. Nguyen. Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells [J]. J. Electrochem. Soc.. 1996,143:103-105
    [53] A. S. Arico, P. Creti, V. Baglio. Influence of Flow Field Design on the Performance of a Direct Methanol Fuel Cell [J]. J. Power Sources. 2000,91:202-209
    [54] Sharon Thomas, Marcia Zalbowitz. Fuel Cell - Green Power [M]. Los Alamos National Laboratory, 1999
    [55] Ren X, Zelena Y P,Thomass, et al. Recent advance in direct methanol fuel cells at Los Alamos National Laboratory [J]. J Power Sources, 2000,86:111-116
    [56] John C. Amphlett, Brant A. Peppley, Ela Halliop, Aamir Sadiq. The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell [J]. J Power Sources, 2001,96:204-213
    [57]郑重德.高比能燃料电池展望[J].电子科技导报.1998, 7: 7-8
    [58] M P Hogarth, G A Hards. Direct Methanol Fuel Cell [J]. Platinum Metals Rev. 1996,40(4): 150-159
    [59]马紫峰,廖小珍,冷拥军.直接甲醇燃料电池技术及应用[J].化工进展.1999, 6: 44-46
    [60]刘国林,余炎.为未来的汽车和家庭供电的燃料电池[J].国外科技动态.1998, 352: 19-21
    [61] Carrete L., Friedrich K. A., Stimming U., Fuel Cells一Fundamentals and Applications [M], 2001,1,5-39
    [62] Gregor Hoogers,Fuel Cell Technology Handbook [M],CRC Press LLC,2003.
    [63]张军,许莉,王宇新.液体进料直接甲醇燃料电池的电化学性能[J],电源技术.2003,27(04):355-359
    [64]李建玲,毛宗强,徐景明.直接甲醇燃料电池性能研究[J],电池,2002,02:72-74
    [65] Kazuyoshi Furukawa, Keiichi Okajima, Masao Sudoh. Structural control and impedance analysis of cathode [J] Journal of Power Sources 139 (2005) 9-14
    [66] Sharon C. Thomas , Xiaoming Ren, Shimshon Gottesfeld. Direct methanol fuel cell: progress in cell performance and cathode research[J]. Electrochimica Acta 47 (2002) 3741-3748
    [67] J.Prabhuram, T.S. Zhao, H. Yang. Methanol adsorbates on the DMFC cathode and their effect on the cell performance[J]. Journal of Electroanalytical Chemistry 578 (2005) 105–112
    [68] Jiabin Ge, Hongtan Liu. Experimental studies of a direct methanol fuel cell [J] Journal of Power Sources 142 (2005) 56–69
    [69] V. A. Paganin, E. Sitta, T. Iwasita and W. Vielstich. Methanol crossover effect on the cathode potential of a direct PEM fuel cell [J]. Journal of Applied Electrochemistry (2005)
    [70]丁玉栋;朱恂;包立炯;廖强,液相进料直接甲醇燃料电池性能的实验研究[J],动力工程, 2006, 26(04): 599-603
    [71] Shao Zhi-Gang, Zhu Fuyun, Lin Wen-Feng, et al. PtRuO2/Ti anodes with a varying Pt:Ru ratio for direct methanol fuel cells [J], Journal of Power Sources, 2006, 161(2): 813-819
    [72] Shao Zhi-Gang, Lin Wen-Feng, Christensen, et al. Ti mesh anodes prepared by electrochemical deposition for the direct methanol fuel cell [J], International Journal of Hydrogen Energy, 2006, 31(13): 1914-1919
    [73] Xu C, Zhao T S, He Y L. Effect of cathode gas diffusion layer on water transport and cell performance in direct methanol fuel cells [J], Journal of Power Sources, 2007, 171(2): 268-274
    [74] Arisetty Srikanth, Prasad Ajay K, Advani Suresh G. Metal foams as flow field and gas diffusion layer in direct methanol fuel cells [J], Journal of Power Sources, 2007, 165(1): 49-57
    [75] T.Okada, G. Xie, O. Gorseth. Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes [J]. Electrochim. Acta. 1998,43:3741-3747
    [76] A. V. Anantaraman, C. L. Gardner. Studies on Ion-Exchange Membranes. Part1. Effect of Humidity on the Conductivity of Nafion [J]. J. Electroanal. Chem..1996,414:115-120
    [77] E. A. Ticianelli, C. R. Derouin, A. Redondo. Method to Advanced Technology of Proton Exchange Membrane Fuel Cells [J]. J. Electrochem. Soc. 1988,135:2209-2214
    [78] D. L. Wood, J. S. Yi, T. V. Nguyen. Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells [J]. Electrochimica Acta. 1998,43:3795-3809
    [79] M. Watanabe, M. Satoh, T. Yasutaka, et al. Management of the Water Content in Polymer Electrolyte Membranes with Porous Fiber Wicks [J]. J. Electrochem. Soc.. 1993,140:3190-3193
    [80] S. Miachon, P. Aldebert. Internal Hydration H2/O2 100 cm2 Polymer Electrolyte Membrane Fuel Cell [J]. J. Power Sources. 1995,56:31-36
    [81] H.P.Dhar. Near Ambient, Unhumidified Solid Polymer Fuel Cell [P]. USP: 5242764,1993
    [82] M. Watanabe, H. Uchida, M. Emori. Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells [J]. J. Electrochem. Soc.. 1998,145:1137-1141
    [83] D. P. Wilkinson, H. H. Voss, K. Prater. Water Management and Stack Design for Solid Polymer Fuel Cells [J]. J. Power Sources. 1994,49:117-127
    [84] H. H. Voss, D. P. Wilkinson, P. G. Pickup, et al. Anode Water Removal: a Water Management and Diagnostic Technique for Solid Polymer Fuel Cells [J]. Electrochim. Acta. 1995,40:321-328
    [85] R. Mosdale, S. Srinivasan. Analysis of Performance and of Water and Thermal Management in Proton Exchange Membrane Fuel Cells [J]. Electrochim. Acta. 1995,40:413-421
    [86] Scott K, Taama W, Cruickshank J. Performance and modeling of a direct methanol solid polymer electrolyte fuel cell [J]. J. Power Sources, 1997, 65(1~2):159-171
    [87] Scott K, Argyropoulos P, Sundmacher K. A model for the liquid feed direct methanol fuel cell [J]. J. Electroanal. Chem., 1999, 477(2):97-110
    [88] Baxter, S. R., Battaglia,VS,and White, R. E. Methanol fuel cell model: anode [J]. J. Electrochem. Soc., 146(2), 437-447
    [89] Jeng K.T,Chen C. W. Modeling and simulation of a direct methanol fuel cell anode [J]. J. Power Sources, 2002,112, 367-375
    [90]徐洪峰,韩明,衣宝廉.质子交换膜燃料电池阴极数学模型[J].电源技术, 1999, 23(6):312-315
    [91] Gurau V, Barbir F, Liu H. An analytical solution of a half-cell model for PEM fuel cells [J]. J. Electrochem. Soc., 2000, 147(7): 2468-2477
    [92] Kulikovsky A A, Divisek J, Kornyshev A A. Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones [J]. J. Electrochem. Soc., 1999,146(11):3981-3991
    [93] Gierke T. D, Munn G. E, Wilson F. C, The morphology in Nafion perfluorinated membrane products [J]. Washington DC: American Chemical Society,1982.283-307
    [94] Ren X M, Henderson W, Gottesfeld S. Electro-osmotic drag of water in ionomeric membranes[J]. J. Electrochem. Soc., 1997, 144(9):267-270
    [95] Thampan T, Malhotra S, Tang H, et al. Modeling of conductive transport in proton-exchangemembranes for fuel cells [J], J. Electrochem. Soc. 2000,147(9):32-42
    [96] Verbrugge M W. Methanol Diffusion in Perfluorinated Ion-Exchange Membranes[J]. J. Electrochem. Soc., 1989, 136(2):417-423
    [97] Cruickshank J, Scott K. The degree and effect of methanol crossover in the direct methanol fuel cell [J]. J. Power Sources, 1998, 70:40-47.
    [98] Scott K, Taama W. Performance of a direct methanol fuel cell [J]. J. Appl. Electrochem., 1998,28:289-297
    [99] Paddsion S. J,Paul R, Zawodzinsi T. A. A statistical mechanical model of proton and water transport in a proton exchange membrane [J]. J. Electrochem. Soc. 2000,147(2):167
    [100] Z. H. Wang, C. Y Wang. Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells[J]. Journal of The Electrochemical Society. 2003,150 (4) A508~A519
    [101] Dohle H, Divisek J, Jung R. Process engineering of the direct methanol fuel cell[J]. J. Power Sources, 2000, 86(1-2):469-477
    [102] Kulikovsky A A, Divisek J, Kornyshev A A. Two-dimensional simulation of direct methanol fuel cell [J]. J. Electrochem. Soc., 2000, 147(3):953~959
    [103] Srinivasan S, Ticianelli E A, Derouin CR,et al.. Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes [J]. J. Power Sources, 1988, 22:359~375
    [104] Kim J, Lee S M, Srinivasan S, et al.. Modeling of proton-exchange membrane fuel-cell performance with an empirical-equation [J]. J. Electrochem.Soc., 1995, 142(8):2670~2674
    [105] Squadrito G, Maggio G, Passalacqua E, et al.. An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour [J]. J. Appl. Electrochem., 1999, 29(12):1449~1455.
    [106] Argyropoulos, P., K. Scott, W.M.Taama. Pressure drop modeling for liquid feed direct methanol fuel cells: Part 1. Model development. Chemical Engineering Journal, 1999,73: 217-227.
    [107] Argyropoulos, P., K. Scott, W.M.Taama. Pressure drop modeling for liquid feed direct methanol fuel cells: PartⅡ. Model based parametric analysis [J]. Chemical Engineering Journal, 1999,73: 229-245
    [108] Jinliang Yuan, Masoud Rokni, Bengt Sunden. Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts with Different Cross-sections [J]. International Journal of Heat and Mass Transfer. 2001,44:4047-4058
    [109] Sukkee Um, C.Y Wang. Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells [J]. Journal of the Electrochemical Society.2000,147(12):4485-4493
    [110] Matamoros L, Bruggemann D. Simulation of the water and heat management in protonexchange membrane fuel cells [J]. Journal of Power Sources. 2006, 161(1): 203-213.
    [111] Zhu X, Sui P C, Djilali N. Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel [J]. Journal of Power Sources. 2007, 172(1): 287-295.
    [112] Yang H,Zhao T S. Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells [J]. Electrochimica Acta,2005,50(16–17):3243-3252.
    [113] Argyropoulos P,Scott K,Taama W M.Carbon dioxide evolution patterns in direct methanol fuel cells [J]. Electrochimica Acta,1999,44(20),3575–3584.
    [114] Scott K,Argyropoulos P,Yiannopoulos P,et al.Electrochemical and gas evolution characteristics of direct methanol cells with stainless steel mesh flow beds [J]. Journal of Applied Electrochemistry,2001,31(8):823–832.
    [115] Wong C W,Zhao T S Ye Z Q,et al.Transient capillary blocking in the flow field of a micro–DMFC and its effect on cell performance [J]. Journal of The Electrochemical Society,2005,152(8):A1600–A1605.
    [116] Yang H,Zhao T S,Ye Q. In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields [J]. Journal of Power Sources,2005,139(1–2):79–90.
    [117] Joakim Nordlund,Cyril Picard,Erik Birgersson,et al.The design and usage of a visual direct methanol fuel cell[J]. Journal of Applied Electrochemistry,2004,34(8):763–770.
    [118] Mench M M,Boslet S,Thynell S,et al.Experimental study of a direct methanol fuel cell[C]// Proc.of the symposium on direct methanol fuel cells,the 199th Electrochemical Society Proceedings Series,Princeton,2001.
    [119] Yang H,Zhao T S,Cheng P.Characteristics of gas–liquid two–phase flow patterns in miniature channel having a gas permeable sidewall[C]. International Mechanical Engineering Congress and Exhibition. New Orleans,USA,2002.
    [120] Lu G Q,Wang C Y.Electrochemical and flow characterization of a direct methanol fuel cell[J]. Journal of Power Sources,2004,134(1):33–40.
    [121] Fu B R,Pan Chin.Flow pattern transition instability in a microchannel with CO2 bubbles produced by chemical reactions[J]. International Journal of Heat and Mass Transfer,2005,48(21–22):4397–4409.
    [122] Bewer T,Beckmann T,Dohle H,et al.Novel method for investigation of two–phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution [J]. Journal of Power Sources,2004,125(1):1-9.
    [123] Berning T,Djilaliz N.A 3D,Multiphase,Multicomponent model of the cathode and anode of a PEM fuel cell[J]. Journal of The Electrochemical Society,2003,150(12):1589–1598.
    [124] Liu Xuan,Guo Hang,Ye Fang,et al.Water flooding and pressure drop characteristics inflow channels of proton exchange membrane fuel cells [J ]. Electrochimica Acta,2007,52(11):3607–3614.
    [125]胡桂林.质子交换膜燃料电池的两相流和动态模拟研究[D].浙江:浙江大学,2005.
    [126] Liu Xuan,Guo Hang,Ma Chongfang.Water flooding and two–phase flow in cathode channels of proto n exchange membrane fuel cells[J ]. Journal of Power Sources,2005,156(2):267–280.
    [127] Zawodzinski T A,Springer T E,Davey J,et al.A comparative study of water uptake by and transport through ionomeric fuel cell membranes[J]. Electrochem.Society,1993,140(7):1981–1985.
    [128] Ren X,Springer T E,Gottesfeld S.Water and methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance[J]. Electrochem.Socirty,2000,147(1):92–98.
    [129] Kumar A,Reddy R G.Effect of channel dimensions and shape in the flow–field distributor on the performance of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources,2003,113(1):11–18.
    [130] Kumar A,Reddy R G.Modelling of polymer electrolyte membrane fuel cell with metal foam in the flow–field of bipolar/end plates[J]. Journal of Power Sources,2003,114(1):54–62.
    [131] Mench M M,Dong Q L,Wang C Y.In situ water distribution measurmants in a polymer electrolyte fuel cell[J]. Journal of Power Sources,2003,124(1):90–98.
    [132] Kimihiko Sugiura,Motoki Nakata,Tadakatsu Yodo,et al.Evaluation of a cathode gas channel with a water absorption layer/waste channel in a PEFC by using visualization technique[J]. Journal of Power Sources,2005,145(2):526–533.
    [133] Hakenjos A,Muenter H,Wittstadt U,et al.A PEM fuel cell for combined measurement of current and temperature distribution and flow field flooding[J]. Journal of Power Sources,2004,131(1–2):213–216.
    [134] Tuber K,Oedegaard A,Hermann M,et al.Investigation of fractal flow–fields in portable proton exchange membrane and direct methanol fuel cells[J]. Journal of Power Sources,2004,131(1–2):175–181.
    [135] Klaus Tüber,David Pócza,Christopher Hebling.Visualization of water buildup in the cathode of a transparent PEM fuel cell[J ]. Journal of Power Sources,2003,124(2):403–414.
    [136] Kim Han Sang,Ha Tae Hun,Park Sung Jin,et al.Visualization study of cathode flooding with different operating conditions in A PEM Unit Fuel Cell[C]. Proceedings of FUELCELL 2005.Third International Conference on Fuel Cell Science,Engineering and Technology. Ypsilanti,Michigan,2005.
    [137] Mench M M,Wang C Y,Ishikawa,et al.In situ current distribution measurements in polymer electrolyte fuel cells[J]. J.of Electrochem.Soc.,2003,150(8):A1052–A1059.
    [138] Dilip Natarajan,Trung Van Nguyen.Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells[J]. Journal of Power Sources,2004,135(1–2):95–109.
    [139] Zhang J,Shimoi R,Shinohara K,et al.Visualization and quantification of the water distribution inside an operating fuel cell by neutron radiography[C]//14th International Conference on the Properties of Water and Steam,Kyoto,2004.
    [140]刘璿,郭航,叶芳,等.质子交换膜燃料电池流道淹没与传质强化[J].工程热物理学报,2006,27(S2):53–56.
    [141] Yang X G,Zhang F Y,Lubawy A L,et al.Visualization of liquid water transport in a PEFC[J ]. Electrochemical and Solid–State Letters,2004,7(11):A408–A411.
    [142] Pekula N,Heller K,Chuang P A,et al.Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2005,542(1–3):134–141.
    [143] Satija R,Jacobson D L,Arif M et al.In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells[J]. Journal of Power Sources,2004,129(2):238–245.
    [144] Borrelli John,Kandlikar Satish G,Trabold Thomas,et al.Water transport visualization and two phase pressure drop measurement in a simulated PEMFC cathode mini channel [C].Proceedings of ICMM2005 3rd International Conference on Microchannels and Minichannels,June 13–15,2005,Toronto,Ontario,Canada,2005.
    [145]侯明,吴金锋,衣宝廉,等.质子交换膜燃料电池新型静态排水结构[J].电源技术,2002,26(3):131–133.
    [146] Tatsuhiro Okadae.The effect of magnetic field on the oxygen reduction reaction and its application in PEMFC[J]. Electrochemical Acta,2003,48(5):531–539.
    [147] Qi Zhigang,Kaufman Arthur.Improvement of water management by a microporous sublayer for PEM fuel cells[J]. Journal of Power Sources,2002,109(1):38–46.
    [148] Lim Chan,Wang C Y.Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell[J]. Electrochimica Acta,2004,49(24):4149–4156.
    [149] Liu Fuqiang,Lu Guoqiang,Wang Chaoyang.Low crossover of methanol and waterthrough thin membranes in direct methanol fuel cells[J]. Journal of The Electrochemical Society,2006,153(3):A543–A553l.
    [150] Choi K H,Peck D H,Kim C S,et al.Water transport in polymer membranes for PEMFC [J]. Journal of Power Sources,2000,86(1–2):197– 201.
    [151]律翠萍,叶芳,郭航,等.质子交换膜燃料电池的水热管理[J].节能,2005(8):6–10.
    [152] Nam Jin Hyun,Kaviany Massoud.Effective diffusivity and water–saturation distribution in single– and two–layer PEMFC diffusion medium[J]. International Journal of Heat and Mass Transfer,2003,46( 24):4595–4611.
    [153] Pasaogullari Ugur,Wang C Y.Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society,2004,151(3):A399–A406.
    [154] Litster S,Sinton D,Djilali N.Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers[J]. Journal of Power Sources,2006,154(1):95–105.
    [155] Amey Y.Karnik,Stefanopoulou Anna G,Sun Jing. Water equilibria and management using a two–volume model of a polymer electrolyte fuel cell[J]. Journal of Power Sources,2007,164(2):590–605.
    [156] Ma H P,Zhang H M,Hu J,et al.Diagnostic tool to detect liquid water removal in the cathode channels of proton exchange membrane fuel cells[J]. Journal of Power Sources,2006,162(1):469–473.
    [157] Weng Fang Bor,Su Ay,Hsu Chun Ying.The study of the effect of gas stoichiometric flow rate on the channel flooding and performance in a transparent fuel cell[J]. International Journal of Hydrogen Energy,2007,32(6):666–676.
    [158] Weng Fang Bor,Su Ay,Hsu Chun Ying,et al.Study of water–flooding behaviour in cathode channel of a transparent proton–exchange membrane fuel cell[J]. Journal of Power Sources,2006,157(2):674–680.
    [159] Bellows R J,Lin M Y,Arif M,et al.Neutron imaging technique for Insitu measurement of water transport gradients within Nafion in polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society,1999,146:1099–1103.
    [160]裴宇阳,唐国有,郭之虞.中子照相技术及其应用[J].新技术应用,2004(5):17–22.
    [161] Ludlow D J,Calebrese C M,Yu S H,et al.PEM fuel cell membrane hydration measurement by neutron imaging[J]. Journal of Power Sources,2006,162(1):271–278.
    [162] Turhan A,Heller K,Brenizer J S,et al.Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging[J]. Journal of Power Sources,2006,160(2):1195–1203.
    [163] Kramer Denis,Zhang Jianbo,Shimoi Ryoichi,et al.In situ diagnostic of two–phase flow phenomena in polymer electrolyte fuel cells by neutron imaging:Part A.Experimental,data treatment,and quantification[J]. Electrochimica Acta,2005,50(13):2603–2614.
    [164] Zhang Jianbo,Kramer Denis,Shimoi Ryoichi,et al.In situ diagnostic of two–phase flow phenomena in polymer electrolyte fuel cells by neutron imaging:Part B.Material variations[J]. Electrochimica Acta,2006,51(13):2715–2727.
    [165] Li Xianguo,Sabir Imran,Park Jaewan.A flow channel design procedure for PEM fuel cells with effective water removal[J]. Journal of Power Sources,2007,163(2):933–942.
    [166] Bazylak A,Sinton D,Liu Z S,et al.Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers[J]. Journal of Power Sources,2007,163(2):784–792.
    [167] Feindel K W,LaRocque L P A,Starke D,et al.In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using H–NMR microscopy[J]. Journal of the American Chemical Society,2004,126(37):11436–11437.
    [168] Shohji Tsushima,Kazuhiro Teranishi,Kousuke Nishida,et al.Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply[J]. Magnetic Resonance Imaging,2005,23(2):255–258.
    [169] Sinha P K,Halleck P,Wang C Y.Quantification of liquid water saturation in a PEM fuel cell diffusion medium using X–ray microtomography[J]. Electrochemical & Solid–State Letters,2006,9(7):A344–348.
    [170] Jewett Gregory, Guo Zhen, Faghri Amir. Water and air management systems for a passive direct methanol fuel cell[J]. Journal of Power Sources, 2007,168: 434-446
    [171] Murphy O. J.,Cisar A.,Clarke E. Low cost light weight high power density PEM fuel cell stack [J],Electrochimica Acta,1998,43(24):3829-3840
    [172] Ruge M. Buchi F. N.,Bipolar elements for PE fuel cell stacks based on the mould to size process of carbon polymer mixtures[C], Proceedings of the Fist European PEFC Form (EFCF), 2001,299-308.
    [173] Spizer M.,Reitmajer G.,Willis P. D.,et al. Efficient manufacture of bipolar plates with epoxy molding components[C]. Proceedings of the Fist European PEFC Form (EFCF), 2001,269-276.
    [174] Handley C., Brandon N. P., Van der Vorst R.. Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells [J]. Journal of Power Sources, 2002, 106(1-2):344-352.
    [175] Davies D. P., Adcock P. L., Turpin M., et al. Bipolar plate materials for solid polymer fuelcells [J]. Journal of Applied Electrochemistry, 2000, 30(1):101-105.
    [176] Ihonen J., Jaouen F., Lindbergh G., et al. A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements [J]. Electrochimica Acta, 2001, 46(19): 2899-2911.
    [177] D. P. Wilkinson, O. Vanderleeden. Serpentine flow field design, Handbook of fuel cell (Volume 3: Fuel Cell Technology and Applications ) [M], Wiley, 2003, 315-324.
    [178] Yuming Yang, Yung C. Liang. A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension[J]. Journal of Power Sources,2007,165:185-195.
    [179] Wilson M. S. and Gottesffeld S., Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J], Journal of Applied Electrochemistry, 1992, 22, 1~7
    [180] Arico A. S., Creti P., Giordano N., Antonucci V, Antonucci P. L., Chuvilin A., Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode[J], Journal of Applied Electrochemistry, 1996, 26, 959~967
    [181] Uchida M., Fukuoka Y., Sugawara Y,Ohara H., Ohta A., Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells[J], Journal of the Electrochemical Society, 1998, 145, 3708~3713
    [182] Arico A. S., Creti P., Antonucci P L., Cho J., Kim H., Antonucci V., Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface[J], Electrochimica Acta, 1998, 43, 3719-3729
    [183] Wilson M. S. and Gottesfeld S., Thin-film catalyst layers for polymer electrolyte fuel cell electrodes[J], Journal of Applied Electrochemistry, 1992, 22, 1-7
    [184] Ren X.M., Wilson M.S., Gottesfeld S., High performance direct methanol polymer electrolyte fuel cells [J], Journal of the Electrochemical Society, 1996, 143, L12~L15
    [185] Wilson M.S., Valerio J.A., Gottesfeld S., Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers [J], Electrochimica Acta, 1995,40,355-363
    [186]邵志刚,博士论文,质子交换膜燃料电池三合一组件的制各、优化与应用[D],大连化学物理研究所,2000
    [187] Antoine O., Bultel Y., Ozil P., Durand R., Catalyst gradient for cathode active layer of proton exchange membrane fuel cell [J], Electrochimica Acta, 2000, 45, 4493~4500
    [188] Wilson M.S., Valerio J.A., Gottesfeld S., Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers [J], Electrochimica Acta, 1995,40,355~363
    [189] Wei Z B, Wang S L,Yi B L,et al. Influence of electrode structure on the performance of adirect methanol fuel cell [J]. J Power Sources,2002,106(1-2):364-369.
    [190] Loffler M. S., Gross B., Nater H., Hempelmann R., Krajewski T., and Divisek J., Synthesis and characterization of catalyst layers for direct methanol fuel cell applications [J], Physical Chemistry Chemical Physics, 2001, 3, 333~336
    [191] Taylor E J,Anderson E B,Vilambi N R K. Preparation of high platinum utilization gas diffusion electrodes for Proton Exchange Membrane Fuel Cells [J]. J Electrochem Soc,1992,139(5):L45-L46.
    [192] Witham C.K., Chun W., Valdez T. L, Narayanan S. R., Performance of direct methanol fuel cells with sputter- deposited anode catalyst layers [J], Electrochemical and Solid State Letters, 2000, 3, 497~500
    [193] Gulzow E., Kaz T., Reissner R., Sander H., Schilling L., Bradke M., Study of membrane electrode assemblies for direct methanol fuel cells [J], Journal of Power Sources, 2002, 105,261~266
    [194] T.A. Zawodninski Jr., T.E.Springer, F.Uribe, et al., Characterization of polymer electrolytes for fuel cell application [J]. Solid State Ionics, 1993, 60:199-211
    [195]朱科,陈延禧,等.质子交换膜燃料电池膜电极活化工艺及机理[J].电源技术. 2002,26(04):267-269.
    [196] C. Lim, C. Y. Wang. Development of high-power electrodes for a liquid-feed direct methanol fuel cell[J]. Journal of Power Sources, 2003, 113(1):145-150.
    [197] Scott k,Taama W M,Kramer S,et al.Limitting current behaviour of the direct methanol fuel cell [J]. Electrochimica Acta,1999,45(6):945~957
    [198] Gurau B, Smotkin E S. Methanol crossover in direct methanol fuel cells: a link between power and energy density [J]. Journal of Power Sources, 2002,112(2):339~352
    [199] Jiabin Ge, Hongtan Liu. Experimental studies of a direct methanol fuel cell [J]. Journal of Power Sourses, 2005,142:56~59
    [200] Klausner J F, Mei R, Berhard D M, et al. Vapor bubble departure in forced convection boiling [J]. International Journal of Heat and Mass Transfer, 1993, 36(3):651-662.
    [201]包立炯.毛细管管口气泡生长及脱离特性研究[D].重庆大学硕士学位论文,2007.5
    [202]刘红,谢茂昭,韩景东.黏性液体中锐孔处气泡的形成[J].热科学与技术. 2005, 4(3):262-266.
    [203] Mei R, Klausner J F. Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity [J]. Physics Fluids, 1992, 4:63-70.
    [204] L. Z. Zeng, J. F. Klausner, D. M. Bernhaed, et al. A unified model for the prediction of bubble detachment diameters in boiling systems -Ⅱ. Flow boiling [J]. InternationalJournal of Heat and Mass Transfer, 1993, 36(9):2271-2279.
    [205] Jay Benziger, James Nehlsen, David Blackwell, et al. Water flow in the gas diffusion layer of PEM fuel cells[J], Journal of Membrane Science, 261: 98-106, 2005
    [206]刘光启,马连湘,邢志友,等.化学化工物性数据手册[M].北京,化学工业出版社,2002
    [207] George Wypych, Handbook of Solvents [M], Chem Tec Publishing, 2001
    [208] Yang, H., T. S. Zhao, et al. Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells[J]. Journal of Power Sources, 2005,142: 117-124.
    [209]王江,施明恒,蒋杰,等.直接甲醇燃料电池阳极流道两相流动的拟沸腾模型(Ⅰ)流动压力降的计算[J].工程热物理学报,2006,27(2): 289-291
    [210]林宗虎.气液两相流和沸腾传热[M].西安,西安交通大学出版社,2003.04
    [211] Lin Z H, Wang S Z, Wang D. Gas-liquid two-phase flow and boiling heat transfer[J],Xi’an Jiao Tong University Press, 2003.
    [212] Bruce E. Poling, John M. Prausnitz, John P. O’Connell. The Properties of Gases and Liquids (Fifth Edition) [M]. McGraw-Hill Companies, Inc. 2001
    [213] Beck Kyun Kho, Byungchan Bae, M. Aulice Scibioh, et al. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells[M], Journal of Power Sources, 142(2005), 50-55
    [214] Qi S. L., Zhang P., Wang R. Z., Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes[J], international journal of heat and mass transfer, 50: 1993-2001, 2007.
    [215] Wu H.Y., Cheng P., An experimental study of convective heat transfer in silicon microchannels with different surface conditions[J], Int. J. Heat Mass Transfer 46 (14) :2547–2556, (2003).
    [216] R. L. Webb, E. R. G. Eckert, and R. J. Goldstein, Heat transfer and friction in tubes with repeated-rib roughness[J], Int. J. Heat Mass Transfer 14, 601 1971
    [217] S. G. Kandlikar, D. Schmitt. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels[J], Physics of Fluids 17, 100606, 2005.
    [218]孔珑,流体力学[M],北京,高等教育出版社,2003.9
    [219]刘光启,马连湘,邢志友,等.化工物性算图手册[M].北京,化学工业出版社,2002
    [220]陈之航,曹柏林,赵在三,等.气液双相流动和传热[M].北京,机械工业出版社,1983
    [221] Kandlikar SG. Fundamental issues related to ?ow boiling in mini-channels and micro-channels[J]. Exp Therm Fluid Sci, 26:389–407, 2002.
    [222] Kawaji M. Fluid mechanics aspects of two-phase ?ow: Flow in other geometries. In:Kandlikar S.G., Shoji M. Dhir V.K. (Eds.), Handbook of Phase Change: Boiling and Condensation[M]. Taylor & Francis, Washington, DC,pp. 205–259, 1999.
    [223] Amador, C., Salman, W., Sanguanpiyapan, S., Gavriilidis, A., Angeli, P., 2004. Effect of gas-inlet conditions on the mechanism of Taylor flow formation[C]. In: Fifth International Conference on Multiphase Flow, ICMF'04 Yokohama, Japan, paper No. 515.
    [224] Thulasidas, T.C., Abraham, M.A., Cerro, R.L., 1997. Flow patterns in liquid slugs during bubble-train flow inside capillaries[J]. Chem. Eng. Sci. 52, 2947–2962.
    [225] Triplett K.A., Ghiaasiaan S.M., Adbel-Khalik S.I.,et al, Gas–liquid two-phase flow in microchannels. Part I: Two-phase flow patterns [J]. Int. J. Multiphase Flow 25, 377–394. 1999.
    [226] Yang C.Y., Shieh C.C., Flow pattern of air–water and two-phase R-134a in small circular tubes [J]. Int. J. Multiphase Flow 27, 1163–1177, 2001.
    [227] John W.Coleman, Srinivas Garimella, Characterization of two-phase flow patterns in small diameter round and rectangular tubes [J], International Journal of Heat and Mass Transfer, 42:2869-2881, 1999.
    [228] M. K. Akbar, D. A. Plummer, S. M. Ghiaasiaan, On gas-liquid two-phase flow regimes in microchannels [J], Int. J. Multiphase Flow 29, 855–865, 2003.
    [229] Fukano, T., Kariyasaki, A., Characteristics of gas–liquid two-phase flow in a capillary[J]. Nucl. Eng. Des. 141, 59–68, 1993.
    [230] Hassan, I., Vaillancourt, M., Pehlivan, K., Two-phase flow regime transitions in microchannels: a comparative experimental study[J]. Microscale Thermophys. Eng. 9, 165–182, 2005.
    [231] A. Kawahara, P. M.-Y. Chung, M. Kawaji, Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel[J], Int. J. Multiphase Flow 28, 1411–1435, 2002.
    [232] Barajas, A.M., Panton, R.L., The effects of contact angle on two-phase flow in capillary tubes[J]. Int. J. Multiphase Flow 19, 337–346, 1993.
    [233] Rapolu, P., Son, S.Y., Capillarity effect on two-phase ?ow resistance in microchannels[C]. Proceedings of 18th International Symposium on Transport Phenomena, pp. 1431–1436, 2007.
    [234] Lee, C.Y., Lee, S.Y., Influence of surface wettability on transition of two-phase flow pattern in round mini-channels [J]. Int. J. Multiphase Flow 34, 706–711, 2008.
    [235] P. ArgyroPoulos,K. Scott,W. M. Taama, Gas evolution and power performance in direct methanol fuel cells [J],Journal of Applied Electrochemistry, 29:661-669,1999.
    [236] Duncan Chisholm,Two-phase flow in pipelines and heat exchangers[M],London : George Godwin, 1983
    [237] PB Whalley,Air-water two-phase flow in a helically coiled tube[J],International Journal of Multiphase Flow, 6 (4):363-367, 1980.
    [238]严旭,孙刚.积分模型求解管道两相流压降[J],油气储运,27 (2):7-12, 2008.
    [239]鲁钟琪.两相流与沸腾换热[M].北京,清华大学出版社,2002.
    [240] W. W. Akers, H. A. Deans, O. K. Crosser. Condensation heat transfer within horizontal tubes[J], Chen. Eng. Prog. Symposium Ser. 55(1959) 171-176.
    [241] D. R. H. Beattie, P. B. Whalley. A simple two-phase flow frictional pressure drop calculation method[J], International Journal of Multiphase Flow, 8 :83-87, 1982.
    [242] S. Lin, C. C. K. Kwok, R. Y. Li, et al. Local frictional pressure drop during vaporization for R12 through capillary tubes[J], International Journal of Multiphase Flow, 17:95-102, 1991.
    [243] Zong Y, Zhou B, Sobiesiak A. Water and thermal management in a single PEM fuel cell with non-uniform stack temperature[J]. Journal of Power Sources. 2006, 161(1): 143-159.
    [244] Xu C, Zhao T S, Yang W W. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells[J]. Journal of Power Sources. 2008, 178(1): 291-308
    [245] Chen F, Chu H S, Soong C Y, et al. Effective schemes to control the dynamic behavior of the water transport in the membrane of PEM fuel cell [J]. Journal of Power Sources. 2005, 140(2): 243-249.
    [246] Su A, Weng F B, Hsu C Y, et al. Studies on flooding in PEM fuel cell cathode channels[J]. International Journal of Hydrogen Energy. 2006, 31(8): 1031-1039.
    [247] Borrelli J, Kandlikar S G, Trabold T, et al. Water transport visualization and two-phase pressure drop measurements in a simulated PEMFC cathode minichannel[C]. 3rd international conference microchannels and minichannels. 2005: 1-9.
    [248] Ous T, Arcoumanis C. Visualisation of water droplets during the operation of PEM fuel cells [J]. Journal of Power Sources. 2007, 173(1): 137-148.
    [249] G.Q. Lu, F.Q. Liu and C.Y. Wang, Water transport through Nafion 112 membrane in direct methanol fuel cells [J], Electrochemical & Solid-State Letters, 2005, Vol. 8, pp.A1-A4.
    [250]王克文,关继腾,范业活,等.孔隙网络模型在渗流力学研究中的应用[J],力学进展. 35(3):353-360,2005.
    [251] R. Lenormand, C. Zarcone, A. Sarr. Mechanisms of the displacement of one fluid by another in a network of capillary ducts [J]. J Fluid Mech, 1983, 337-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700